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CHAPTER 13: MAGNETIC RESONANCE 

In this chapter we discuss dpamical magnetic effects associated with the spin 
angular momentum of nuclei and of electrons. The principal phenomena are 
often identified in the literature by their initial letters, such as 

NMK: nuclear magnetic resonance 
NQR: nuclear quadnipole resonance 
EPR or ESR: electron paramagnetic or spin resonance (Fig. 1) 
FMR: ferromagnetic resonance 
SWR: spin wave resonance (ferromagnetic films) 
AFMR: antiferrorriagnetic resonance 
CESR: conduction electron spin resonance 

The information that can bc ohtained about solids by resonance studies 
may be categorized: 

Electronic structure of single defects, as revealed by the fine structure of 
the absorption. 
Motion of the spin or of the surroundings, as revealed by changes in the line 
width. 
Internal magnetic fields sampled by the spin, as revealed by the position of 
the resonance line (chemical shift; Knight shift). 
Collective spin excitations. 

It is best to discuss NMR as a basis for a brief account of the other reso- 
nance experimcnts. A great impact of NMR has been in organic chemistry and 
biochcrnistry, where NMR provides a powerful tool for the identification and 
the stnicture determination of cornplex molecules. This success is due to the 
extremely high resolutiori attainable in diamagnetic liquids. A major medical 
application of NMK is magnetic resonance imaging (MRI), which allows the 
resolution in 3D of abnormal growths, configurations, and reactions in the 
whole body. 

NUCLEAR MAGNETIC RESONANCE 

L i r  consider a nucleus that possesses a magnetic moment p  and an angu- 
lar momentum 751. The two quantities are parallel, and we may writc 

p = y f i I  ; (1) 

the magnetogyric ratio y is constant. By convention I denotes the nuclear 
angular mo~nentum measured in units of fi. 



Figure 2 Energy level splitting of a nucleus of spin I = i in a static magnetic field B,. 

The energy of interaction with the applied magnetic field is 

. . U = - p  B a 

if B, = Bog, then 

The allowed values of I ,  are m, = I ,  I  - 1, . . . , -I ,  and U = -mIyABo. 
In a magnetic field a nucleus with I  = has two energy levels correspond- 

ing to m, = ?+, as in Fig. 2. If Awo denotes the energy difference between the 
two levels, then fiw, = $iB, or 

This is the fundamental condition for magnetic resonance absorption. 
For the proton1 y = 2.675 X lo4 s-I gauss-' = 2.675 X 10's-I tesla-l, 

so that 

where v is the frequency. One tesla is precisely lo4 gauss. Magnetic data for 
selected nuclei are even  in Table 1. For the electron spin, 

'The magnetic moment p, of the proton is 1.4106 X erg G-' or 1.4106 X J T-', 
and y = 2pdfi. The nuclear magneton pn is defined as e&WM,c and is equal to 5.0509 X lo-" erg 
G-' or 5.0509 X lO-"J T-'; thus p, = 2,793 nuclear magnetons. 



Table 1 Nuclear magnetic resonance data 

For every element the most abundant magnetic isotope is shown. After 
Varian Associates NMR Table. 
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Equations of Motion 

The rate of change of angular momentum of a system is equal to the 
torque that acts on the system. The torque on a magnetic moment p  in a mag- 
netic field B is p  X B, so that we have the gyroscopic equation 

M V d t = p X B ,  ; (3 )  

or 

d p f d t = y p x B , .  (6 )  

The nuclear magnetization M is the sum Zp,  over all the nuclei in a unit vol- 
ume. If only a single isotope is important, we consider only a single value of y, 
so that 

dMldt = yM X B, . (7) 

We place the nuclei in a static field B, = Bog. In thermal equilibrium at 
temperature T the magnetization will be along 4: 

where the susceptibility is ,yo and the Curie constant C = Np2/3kB, as in 
Chapter 11. 

The magnetization of a system of spins with I = 5 is related to the 
population difference ATl - N, of the lowcr and upper levels in Fig. 2: 
M, = (N, - N,)p, where the NS refer to a unit volume. The population ratio 
in thermal equilibrium is just given by the Boltzmann factor for the energy 
difference 2pBn: 

The equilibrium magnetization is M ,  = N p  tanh(~B/k,T). 
When the magnetization component M, is not in thermal equilibrium, we 

suppose that it approaches equilibrium at a ratc proportional to the departure 
from the equilibrium value M,: 

111 the standard notation T ,  is called the longitudinal relaxation time or the 
spin-lattice relaxation time. 

If at t = 0 an unmagnetized specirnen is placed in a magnetic field B,4, 
the magnetization will increase from the initial value LM, = 0 to a final value 
MZ = M,. Before and just after the specimen is placed in the field, the popula- 
tion N, will be equal to N,, as appropriate to thermal equilibrium in zero mag- 
netic field. It is necessary to reverse some spins to establish the new equilibrium 
distribution in the field B,. On integrating (10): 
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Figure 3 At time t = 0 an unmagnetized specimen M,(O) = 0 is placed in a static magnetic field 
B,. The magnetization increases with time and approaches the new equilibrium value Mo = x$,. 
This experiment defines the longitudinal relaxation time T,. The magnetic energy density -M . B 
decreases as part of the spin population moves into the lower level. The asymptotic value at t 9 TI 
is -MOB,. The energy flows from the spin system to the system of lattice vibrations; thus TI is also 
called the spin-lattice relaxation time. 

as in Fig. 3. The magnetic energy -M . B, decreases as M ,  approaches its new 
equilibrium value. 

Typical processes whereby the magnetization approaches equilibrium are 
indicated in Fig. 4. The dominant spin-lattice interaction of paramagnetic 
ions in crystals is by the phonon modulation of the crystalline electric field. 
Relaxation proceeds by three processes (Fig. 4b): direct (emission or 
absorption of a phonon); Raman (scattering of a phonon); and Orbach (inter- 
vention of a third state). 

Taking account of (lo), the z component of the equation of motion (7) 
becomes 

where (Ma - Mz)/TL is an extra term in the equation of motion, arising from 
the spin-lattice interactions not included in (7). That is, besides precessing 
about the magnetic field, M will relax to the equilibrium value Ma. 

If in a static field BOP the transverse magnetization component M, is not 
zero, then M ,  will decay to zero, and similarly for My. The decay occurs 



Insulator Metal 

Figure 4a Some important processes that contribute to longitudinal magnetization relaxation in 
an insulator and in a metal. For the insulator we show a phonon scattered inelastically by the spin 
system. The spin system moves to a lower energy state, and the emitted phonon has higher energy 
by hw, than the absorbed phonon. For the metal we show a similar inelastic scattering process in 
which a conduction electron is scattered. 

Direct 
1; a T 

Raman Orbach 
l /T1 T~ or T' l /T1 a e ~ p - ~ ~ T )  

Figure 4b Spin relaxation from 2 + 1 by phonon emission, phonon scattering, and a two-stage 
phonon process. The temperature dependence of the longitudinal relaxation time TI is shown for 
the several processes. 

because in thermal equilibrium the transverse components are zero. We can 
provide for transverse relaxation: 

dM,ldt = y(M X B,), - M,/T2 ; (13b) 

dM,ldt = y(M X B,), - M,/T, , (134 

where T2 is called the transverse relaxation time. 
The magnetic energy -M . B ,  does not change as M, or M y  changes, pro- 

vided that B ,  is along %. No energy need flow out of the spin system during 
relaxation of M ,  or M y ,  SO that the conditions that determine T2 may be less 
strict than for T , .  Sometimes the two times are nearly equal, and sometimes 
T ,  % T,, depending on local conditions. 

The time T2 is a measure of the time during which the individual moments 
that contribute to M,, M ,  remain in phase with each other. Different local 
magnetic fields at the different spins will cause them to precess at different 
frequencies. If initially the spins have a common phase, the phases will be- 
come random in the course of time and the values of M,, My will become zero. 
We can think of T2 as a dephasing time. 
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To rf supply and circuit 
for measuring inductanc IB,, (static) 

and losses. 
rf coil 

Figure 5 Schematic arrangement for magnetic resonance experiments 

The set of equations (13) are called the Bloch equations. They are not 
symmetrical in x, y, and z because we have biased the system with a static mag- 
netic field along 9 .  In experiments an rf magnetic field is usually applied along 
the f or j. axis. Our main interest is in the behavior of the magnetization in the 
combined rf and static fields, as in Fig. 5. The Bloch equations are plausible, 
but not exact; they do not describe all spin phenomena, particularly not those 
in solids. 

We determine the frequency of free precession of the spin system in a 
static field B, = B,9 and with M ,  = Ma. The Bloch equations reduce to 

We look for damped oscillatory solutions of the form 

M, = m exp(-tlT') cos wt ; My = -m exp(- t/T1) sin wt . (15) 

On substitution in (14) we have for the left-hand equation 

1 1 -w sin wt - -7 cos wt = - yBo sin wt - - cos wt , 
T T2 (16) 

so that the free precession is characterized by 

w, = yB, ; T' = T, . 
The motion (15) is similar to that of a damped harmonic oscillator in two 

dimensions. The analogy suggests correctly that the spin system will show res- 
onance absorption of energy from a driving field near the frequency w, = yB,, 
and the frequency width of the response of the system to the driving field will 
be Aw .= 1/T2. Figure 6 shows the resonance of protons in water. 

The Bloch equations may be solved to give the power absorption from a 
rotating magnetic field of amplitude B,: 

B, = B ,  cos wt ; B, = - B ,  sin wt . (18) 



Figure 6 Proton resonance absorption in water. 
(E. L. IIahn.) 

After a routine calculation one finds that the power ahsorption is 

(CGS) 

The half-width of the resonance at half-maximum power is 

(Aw), = 1/T2 . (20) 

LINE WIDTH 

The magnetic dipolar intcraction is usually the most i~rlportar~t cause of 
line broadening in a rigid lattice of magnctic dipoles. The lnaguetic field AB 
seer1 by a magnetic dipole p, due to a magnetic dipolc p, at a point r,, from 
the first dipole is 

(CGS) 

by a fundamental resillt of magnetostatics. 
The order of magnitude of the intcraction is, with B,  written for AB, 

The strong dependence on r suggests that close-neighbor interactions will be 
dominant, so that 

(CGS) B, - )(Lla3 , (23) 
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where a is the separation of' nearest neighbors. This result gives us a rrleasure 
o l  the width of the spin resonance line, assuming randorr~ orientation of the 
neighbors. For protons at 2A separation, 

To exprrss (21 ), (22), and (23) in SI, multiply the right-lland sides by gd4~r 

Motional Narrowing 

The linc width decreases for nuclei in rapid relative motiur~. Tlie effect in 
solids is illlistrated by Fig. 7: diffusion resembles a random walk as atoms jump 
from one crystal site to another. An atorr~ ranlains in one site for an avcragc 
time T that decreases markedly as the teiliperature increases. 

The motional effects 011 the line width arc cvcn more spectacular in nor- 
mal liquids, because the n~olecules arc highly mobile. The width of the proton 
resonance line in water is only 1 K 5  of the width expected for water molecules 
frozen in position. 

Thc effect of nuclear motion on T, and on the line width is subtle, but call 
he iinderstood by an elementary argument. I'e know from the Bloch equa- 
tions that T, is a measure of the time in which an individual spin becomcs 
dephased by one radiar~ because of a local perturbation in thc magnetic field 

6.0 

, 5.0 - 
i% 
F 4.0 .- 
C = 3.0 
2 
'7 - 2.0 

1.0 

0 
150 200 250 300 350 

Te~nperaturc, K 

Figure 7 Effcct of dirrusion of nuclei on the ~ i '  NMK line width in metallic lithium. At low tem- 
peratures the width agrees with the theoretical value for a rigid lattice. .4s the temperature in- 
creases, the diffusion rate increases and the line width decreases. The abrupt decrease ill liue 
width above T = 230 K occurs d l e n  the diffusion hopping time .r becomes shorter than IIyR,. 
Thus the experiment gives a direct measure of t l ~ c  Impping t i~ne lor an atom to change lattice 
sites. (hfter H. S .  Gutowsky and B. R. blcGalu-ey) 



Phase q(t) .' Phase in constant 
,' local field Bi = +I 
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Figure 8 Phase of a spin ~ I I  a constant local field, as compared with dephasing of a spin which 
after fixed time intervals T hops at random among sites having local fields il. 

intensity. Let ( A w ) ,  = yB, denote the local frequency deviation due to a 
perturbation Bi. The local field may be caused by dipolar interactions with 
other spins. 

If the atoms are in rapid relative motion, the local field Bi seen by a given 
spin will fluctuate rapidly in time. We suppose that the local field has a value 
+B, for am average time T and then changes to -B,, as in Fig. 8a. Such a ran- 
dom change could be caused by a change of the angle between /.L and r in (21). 
In the time T the spin will precess by an extra phase angle 6 9  = -+ YB$T relative 
to thc phase angle of the steady precession in the applied field Bn. 

The motional narrowing effect arises for short T such that 6 9  < 1. After n 
intervals of duration T the mean square dephasing angle in the ficld B, will be 

by analogy with a random walk process: the mean square hsplacement from the 
initial position after n steps of length e in random directions is (P) = ne2. 

The average number of steps necessary to dephase a spin by one rachan is 
n = llyZ~:?. (Spins dephased by much more than one radian do not con- 
tribute to the absorption signal.) This numbcr of steps takes place in a time 
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quite different frorr~ the rigid lattice result T2 3 l lyB,.  From (26) we obtain as 
the line width for rapid motion with a characteristic time T: 

where (Aw), is the line width in the rigid lattice. 
The argument assumes that (Aw),T < 1, as othenvisc 6p will not be < 1. 

Thus Aw < (Aw),. The shorter is 7, the narrower is the resonance line! This 
remarkable effect is known as motional narrowing.' The rotational relax- 
ation time of water moleculcs at room temperature is known from dielectric 
constant measurerncnts to he of the order of 10-"' s; if (Aw), ;= lo%-', then 
( A W ) ~ T  = 10 and Aw = (Aw)~,T - 1 S-I ,  Thus the motion narrows the proton 
resonance line to about lo-' of the static width. 

HYPERFINE SPLITTING 

The hypcrf'ine interaction is the magnetic interaction between the mag- 
nctic moment of a nucleus and the magnetic moment of an electron. To an 
observer stationed on the nucleus, the interaction is caused by the magnetic 
field produced by the magnetic ~rio~rlent of the electron and by the motion of 
the electron about the nucleus. There is an electron current about the mlcleus 
if the electron is in a state with orbital angular momentum about the nucleus. 
But even if the electron is in a statc of zero orbital angular momentum, there 
is an electron spin current ahout the nucleus, and this current gives rise to the 
contact hyperfine interaction, of particular importarlce in solids. We can 
understand the origin of the contact interaction by a qualitative physical argu- 
ment, given in CGS. 

The results of the Uirac theory or the electron suggest that the magnetic 
mo~rler~t of pg = e h / 2 ~ r ~ c  or  the electron arises from the circulation of an elec- 
tron with velocity c in a currcnt loop of radius approximately the electron 
Compton wavclcngth, X, = film - lo-" cm. The electric current associated 
with thc circ~llation is 

I - e X (turns per unit time) - ec/X, , (29) 

"The physicaI ideas are drre to N. BIoemhergen, E. M. PurceLI, and R. V Pound, Phys. Rev. 
73, 679 (1948). The result differs from the theoly of optical line width cansed by strong collisiuns 
hrtween atoms (as irr a gas disclrargc), where a short T gives a broad line. In the nuclear spin prob- 
lem the collisions are weak. In most optical pn~bblns the collisions of atoms are strong enough to 
intcrruyi the phase of the oscillation. In nuclear resonance the phase may vary snrwtl~ly in a 
collision, although the frequency may valy suddenly from one value to another nearby value. 



Figure 9 Magnetic field B prodncrd hy a charge moving in a circular loop. The contact part of 
the hyperfine interaction with a nuclear magnetic moment arises Cro~n the rcgiorr within or near to 
the current loop. The field avcragcd over a spl~erical shell that encloses the loop is 7.ero. Thus for 
an s electron (L = 0) only the contact part contributes to the interaction. 

and the magnetic field (Fig. 9) produced by the currcnt is 

The observer on the nucleus has the probability 

of finding himself insidc thc electron, that is, within a sphere of volume X, 
about the electron. Here @(O) is the value of the electron wavefunction at the 
nucleus. Thus the average value of the magnetic field seen by thc nuclcus is 

where pB = eti/2rnc = :eke is the Bohr magneton. 
The contact part of the hyperfine interaction energy is 

where I is the nuclear spin in units of fi. The contact interaction in an atom has 
the form 
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Figure 10 Energy levels in a magnetic field of a system with S = i, I = i. The diagram is drawn 
for the strong field approximation p,B P a, where a is the hyperfine coupling constant, taken to 
be positive. The four levels are labeled by the magnetic quantum numbers m,, m,. The strong 
electronic transitions have Am, = 0, Ams = 21. 

Values of the hyperfine constant a for the ground states of several free 
atoms are: 

nucleus H ' ~ i '  NaZ3 K3' K4' 
I 1 3 3 - - 3 3 - 

I 2 2 

a in gauss 507 144 310 83 85 
a in MHz 1420 402 886 231 127 

In a strong magnetic field the energy level scheme of a free atom or ion is 
dominated by the Zeeman energy splitting of the electron levels; the hyperfine 
interaction gives an additional splitting that in strong fields is U' amsm,, 
where ms, m, are the magnetic quantum numbers. 

For the energy level diagram of Fig. 10 the two electronic transitions have 
the selection rules Am, = 5 1, AmI = 0, the frequencies are w = yHo + a/2fi. The 
nuclear transitions are not marked; they have Ams = 0, so that w,,, = a/2h. The 
frequency of the nuclear transition 1 + 2 is equal to that of 3 -+ 4. 

The hyperfine interaction in a magnetic atom may split the ground energy 
level. The splitting in hydrogen is 1420 MHz, thls is the radio frequency line of 
interstellar atomic hydrogen. 

Examples: Paramagnetic Point Defects 

The hyperfine splitting of the electron spin resonance furnishes valuable 
structural information about paramagnetic point defects, such as the F centers 
in alkali halide crystals and the donor impurity atoms in semiconductor crystals. 



Figure 11 An F center is a negative ion vacancy with one 
excess electron bound at the vacancy. The distribution of the 
excess electron is largely on the positive metal ions adjacent 
to the vacant lattice site. 

F Centers in Alkali Halides. An F center is a negative ion vacancy with 
one excess electron bound at the vacancy (Fig. 11). The wavefunction of the 
trapped electron is shared chiefly among the six alkali ions adjacent to the 
vacant lattice site, with smaller amplitudes on the 12 halide ions that form 
the shell of second nearest neighbors. The counting applies to crystals with the 
NaCl structure. If ~ ( r )  is the wavefunction of the valence electron on a single 
alkali ion, then in the first (or LCAO) approximation 

where in the NaCl structure the six values of rp mark the alkali ion sites that 
bound the lattice vacancy. 

The width of the electron spin resonance line of an F center is determined 
essentially by the hyperfine interaction of the trapped electron with the nu- 
clear magnetic moments of the alkali ions adjacent to the vacant lattice site. 
The observed line width is evidence for the simple picture of the wavefunction 
of the electron. By line width we mean the width of the envelope of the possi- 
ble hyperfine structure components. 

As an example, consider an F center in KCl. Natural potassium is 93 per- 
cent K3' with nuclear spin I = ;. The total spin of the six potassium nuclei at 
the F center is I,, = 6 x = 9, so that the number of hyperfine components 
is 21,- + 1 = 19; this is the number of possible values of the quantum number 
m,. There are (21 + = 46 = 4096 independent arrangements of the six 
spins distributed into the 19 components, as in Fig. 12. Often we observe only 
the envelope of the absorption line of an F center. 

Donor Atoms in Silicon. Phosphorus is a donor when present in silicon. 
Each donor atom has five outer electrons, of which four enter diamagnetically 
into the covalent bond network of the crystal, and the fifth acts as a paramag- 
netic center of spin S = i. The experimental hyperfine splitting in the strong 
field limit is shown in Fig. 13. 

When the concentration exceeds about 1 x 10" donors ~ m - ~ ,  the split line 
is replaced by a single narrow line. This is a motional narrowing effect ( E ~ .  28) 
of the rapid hopping of the donor electrons among many donor atoms. The 
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Qnantum nu~r~ber  7n1 

Figure 12 The 4096 arrangements of the six nuclear spins of K~~ as distrihnted into I9 hyperfine 
components. Each component uill he split further into a very large number of components by 
virtue of the residual hyperfine interaction with the 12 neighboring C1 ~mclei, which may be CP5 
(75 percent) or C13' (25 percent). The envelope of the pattern is approximately gaussian in form. 

4 Phosphorus (6 x 10" cm3) - magnetic 
field 

Plrosplrorus (1  x 10" cm3); 1 = 1/2 

Figure 13 Electron spin resonance lines of P donor atoms in silicon. At the higher donor con- 
celrtration near the metal-insulator transition, a donor electron C ~ I  liop from site to site SO rapidly 
that the hyperfine structure is suppressed. (After R. C, Fletcher, W. A. Yager, G .  L. Pearson, and 
F R. Merritt.) 

rapid hopping averages out the hyperfine splitting. The hopping rate increases 
at the higher concentratior~s as the overlap of the donor electron wavefunctions 

L, 

is increased, a view supported by conductivity measnrements (Chapter 14). 

Knight Shvt 

At a fixed frequency the resonance of a nuclear spin is observed at a 
slightly different magnetic field in a metal than in a diamagnetic solid. The 
effect is known as the Knight shift or metallic shift and is vahiable as a tool 
for the study of conduction electrons. 



The interaction energy of a nucleus of spin I and magnetopic ratio 
Yr is 

where the first term is the interaction with the applied magnetic field B ,  and 
the second is the average hyperfine interaction of thc nucleus with the con- 
duction electrons. The average conduction electron spin ( S z )  is related to the 
Pauli spin susceptibility X, of the conduction electrons: Mz = gNp,(S,) = x$,, 
whence the interaction may be written as 

The Knight shift is defined as 

and simulates a fractional change in the magnetogyic ratio. By the definitio~l 
(34) of the hyperfine contact energy, the Knight shift is givcn approximately by 
K ;= x S l ~ ( 0 ) l 2 / ~ ;  that is, by the Pauli spin susceptibility increased in the ratio of 
the conduction electron concentration at the nucleus to the average conduc- 
tion electron concentration. 

Experimental values are given in Table 2. The value of the hyperfine cou- 
pling constant a is somewhat different in the ~netal than in the free at0111 be- 
cause the wave functions at the nucleus are different. From the Knight shift of 
metallic Li it is deduced that the value of 1$(0)12 in the metal is 0.44 or the 
value in the free atom; a calculated valiie of the ratio i~sing thcorctical wavc 
functions is 0.49. 

Table 2 Knight shifts in NMR in metallic elements 

(At room temperature) 

Knight shift 
in percent Nucleus 

Knight shift 
in percent 
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0 0 
(a) (b) ( 4  

Figure 14 (a) Lowest-energy orientation of a nuclear electric quadmpole moment (Q > 0) in the 
local electric field of the four ions shown. The electrons of the ion itself are not shown. (b) High- 
est energy orientation. (c) The energy level splitting for I = 1. 

NUCLEAR QUADRUPOLE RESONANCE 

Nuclei of spin I 2 1 have an electric quadrupole moment. The quadrupole 
moment Q is a measure of the ellipticity of the distribution of charge in the 
nucleus. The quantity of interest is defined classically by 

eQ = $ $ (3z2 - ?)P( r )d3~  , (39) 

where p(r) is the charge density. An egg-shaped nucleus has Q positive; a 
saucer-shaped nucleus has Q negative. The nucleus when placed in a crystal 
will see the electrostatic field of its environment, as in Fig. 14. If the symmetry 
of this field is lower than cubic, then the nuclear quadmpole moment will lead 
to a set of energy levels split by the interaction of the quadrupole moment 
with the local electric field. 

The states that are split are the 21 + 1 states of a spin I. The quadrupole 
splittings can often be observed directly because an rf magnetic field of the 
appropriate frequency can cause transitions between the levels. The term 
nuclear quadrupole resonance refers to observations of nuclear quadmpole 
splittings in the absence of a static magnetic field. The quadrupole splittings 
are particularly large in covalently bonded molecules such as Clz, Br2, and 12; 
the splittings are of the order lo7 or 10' Hz. 

FERROMAGNETIC RESONANCE 

Spin resonance at microwave frequencies in ferromagnets is similar in 
principle to nuclear spin resonance. The total electron magnetic moment of 
the specimen precesses about the direction of the static magnetic field, and 
energy is absorbed strongly from the rf transverse field when its frequency is 
equal to the precessional frequency. We may think of the macroscopic vector S 
representing the total spin of the ferromagnet as quantized in the static mag- 
netic field, with energy levels separated by the usual Zeeman frequencies; the 



magnetic selection rule Ams = i l  allows transitions only between adjacent 
levels. 

The unusual features of ferromagnetic resonance include: 

The transverse silsceptihility components and are very large because 
the magnetization of a ferromagnet in a given static field is very milch lar- 
ger than the magnetization of electronic or nuclear paramagnets in the same 
field. 
The shape of the speci~ne~i plays an irriportar~t role. Because the magnetiza- 
tion is large, the demagnetization Geld is large. 
The strong exchange coupling between the ferromagnetic electrons tends to 
suppress the dipolar contribution to the linc width, so that thc fcrromag- 
netic resonance lines can be quite sharp (<1 6) under favorable conditions. 
Saturation effects occur at low rf power levels. It is not possible, as it is with 
nuclear spin systems, to drive a ferromagnetic spin system so hard that the 
magnetization M ,  is reduced to zero or reversed. The ferromagnetic reso- 
nance excitation breaks down into spin wave modes before the magnetiza- 
tion vector can bc rotated appreciably from its initial direction. 

Shape Effects in FMR 

We treat the effects of specimen shape on the resonance frequency. Con- 
sider a specinieri of a cubic ferromagnetic insulator in the form of an ellipsoid 
with principal axes parallel to x, y, z axes of a cartesiari coordinate system. The 
demagnetization factors N,, N y ,  ATz are identical with the depolarization fac- 
tors to be defined in Chapter 16. The components of the internal magnetic 
field Bi in the ellipsoid arc rclatcd to thc applicd field by 

The Lorentz field (4d3)M and the exchange field AM do not contribute to the 
torque because their vector product with M vanishes identically. In SI we re- 
place the components of M by poM, with the appropriate redefinition of the Ws. 

The components of the spin equation of motion M = y(M X B') become, 
for an applied static field B04, 

To first order we may set dMz/dt = 0 and M; = M .  Solutions of (40) with 
time dependence cxp(-iot) cxist if 
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Applied magnetic field (in gauss) 

Figure 15 FMR in a polished sphere of the 
ferromagnet yttrium iron garnet at 3.33 GHz 
and 300 K for B,  11 [lll]. The total line 
width at half-power is only 0.2 G. (After 
R. C. LeCraw and E. Spencer.) 

so that the ferromagnetic resonance frequency in the applied field Bo is 

( C G S )  020 = ?[Bo + ( N y  - N,)MI[Bo + (Nx - NJMI ; ( 4 1 )  

The frequency wo is called the frequency of the uniform mode, in distinction 
to the frequencies of magnon and other nonuniform modes. In the uniform 
mode all the moments precess together in phase with the same amplitude. 

For a sphere N, = N,, = N,, SO that wo = yBo. A very sharp resonance 
line in this geometry is shown in Fig. 15. For a flat plate with Bo perpendicular 
to the plate N,  = Ny = 0 ;  N ,  = 47r, whence the ferromagnetic resonance 
frequency is 

(CGS)  w, = Y(B,  - 47rM) ; 

If Bo is parallel to the plane of the plate, the xz plane, then N ,  = N ,  = 0 ;  Ny  = 

47r. and ' 5" ," ?I+KE*.'..'-.' 

(CGSJ w,, = y[B,,(Bo t 4 ~ 3 l ) l '  : !SI) q, y[Bo(B, + &Im . (43) 



Figure 16 Spin wave resonance in a thin film. The plane of the film is normal to the applied mag- 
netic field B,. A cross section of the film is shown here. The internal magnetic field is B,, - 4mM. 
The spins on the surfaces of the film are assumed to be held fixed in direction by surface anisotropy 
forces. A uniform rf field will excite spin wave modes having an odd number of half-wavelengths. 
The wave shown is for n = 3 half-wavelengths. 

The experiments determine y, which is related to the spectroscopic split- 
ting factor g by - y = gpB/h. Values of g for metallic Fe, Co, Ni at room tem- 
perature are 2.10,2.18, and 2.21, respectively. 

Spin Wave Resonance 

Uniform rf magnetic fields can excite long-wavelength spin waves in thin 
ferromagnetic films if the electron spins on the surfaces of the film see differ- 
ent anisotropy fields than the spins within the films. In effect, the surface 
spins may be pinned by surface anisotropy interactions, as shown in Fig. 16. 
If the rf field is uniform, it can excite waves with an odd number of half- 
wavelengths within the thickness of the film. Waves with an even number of 
half-wavelengths have no net interaction energy with the field. 

The condition for spin wave resonance (SWR) with the applied mag- 
netic field normal to the film is obtained from (42) by adding to the right-hand 
side the exchange contribution to the frequency. The exchange contribution 
may be written as Dk2, where D is the spin wave exchange constant. The as- 
sumption ka & 1 is valid for the SWR experiments. Thus in an applied field B,  
the spin wave resonance frequencies are: 

where the wavevector for a mode of n half-wavelengths in a film of thickness L 
is k = n?r/L. An experimental spectrum is shown in Fig. 17. 
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Spin wave order number 

Figure 17 Spin wave resonance spectrum in a Pennalloy (80Ni20Fe) film at 9 GIIz. The order 
n~~mber  is tlie number of half-wavelengths in the thickness of the film. (After R. Weber.) 

ANTIFERROMAGNETIC RESONANCE 

\ve consider a uniaxial antiferromagnet with spins on two sublattices, 1 and 
2. \Zk suppose that the magnetization M, on sublattice 1 is directed along the 
+ z  direction by an anisotropy field B, i ;  the anisotropy field (Chapter 12) results 
from an anisotropy energy density C1,(OI) = K sin2 O1. Here 8, is the angle be- 
tween M, and the z axis, whence BA = 2K/M, with M = lMll = IM,I. The mag- 
netization M, is hrected along the -s direction by an anisotropy Field -BA4.  If 
+z is an easy direction of magnetization, so is -z .  If one sublattice is directed 
along +z, the other will bc directed along -z. 

The exchange interaction between M, and Mg is treated in the mean field 
approximation. The exchange fields are 

whcrc A is positive. Here B, is the field that acts on the spins of sublattice 1, 
and B, acts on sublattice 2. In the absence of an external magnetic field the 
total field acting on MI is B, = -AM, + B,?; the total field on Mp is 
Be = -AMI - B.42, as in Fig. 18. 



I B,(ex) = -AMz 

\ 

\ 
\ 
\ 

-BA \ 
\ B,(ex) S -AM1 

Figure 18 Effective fields in antiferromagnetic resonance. \ 

The magnetization MI of sublattice 1 sees a field -AM,  + f 
B,P; the magnetization M ,  sees -AM,  - B,?. Both ends of 
the crystal axis are "easy axes" of magnetization. 

In what follows we set = M ;  Mz = -M. The linearized equations of 
motion are 

dMi /d t  = y[MY(AM + B,) - M(-AM$)]  ; 

dMY/dt = y[M(-AM;)  - M;(AM + B,)] ; ( 4 6 )  

d M y d t  = y[M$(-AM - B,) - ( -M)( -AMY)]  ; 

= Y[( -MI( -AM;)  - M",(-AM - B,)] . ( 4 7 )  

We define M: = M ;  + iM;; M: = M i  + iM$.  Then (46)  and (47) bccomc, 
for time dependence e x p ( - i o t ) ,  

-iuM: = -iy[M:(BA + AM)  + M l ( A M ) ]  ; 

- i o M l  = i y [ M l ( B A  + A M )  + M:(AM)] . 

These equations have a solution if, with the exchange field BE = AM, 

Thus the antiferromagnetic resonance frequency is given by 

0; = $B*(B, + 2BE)  . (48) 

MnF, is an extensively studied antiferrornagnet. The structure is shown in 
Fig. 19. The observed variation of o, with temperature is shown in Fig. 20. 
Careful estimates were made by Keffer of B, and B E  for MnF,. He estimated 
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@ Mn2+ 
Figure 19 Chem~cal and magnetic structure of MnF2 

F- The arrows indicate the hrectlon and arrangement of the 
magnetic moments asslgned to the manganese atoms. 

Temperature in K I 

Figure 20 Antiferromagnetic resonance frequency for MnF, versus temperature. 
and Nethercot.) 

(After Johnson 

BE = 540 kG and B A  = 8.8 kG at 0 K, whence (2BABE)lI2 = 100 kG. The 
observed value is 93 kG. 

Richards has made a compilation of AFMR frequencies as extrapolated 
to 0 K: 

Crystal CoF, NiF, MnF, FeF, MnO NiO 
Frequency in  10" Hz 85.5 93.3 26.0 158. 82.8 109 



ELECTRON PARAMAGNETIC RESONANCE 

Exchange Narrowing 

We consider a pararr~agmet with an exchange interaction J among nearest- 
neighbor electron spins. The temperature is assumed to be well above any 
spin-ordering temperature T,. Under these conditions the width of the spin 
resonance line is usually much narrowcr than cxpcctcd for thc dipolc-dipolc 
interaction. The effect is called exchange narrowing; there is a close analogy 
with motional narrowing. We interpret the exchange frequency w,, =]/li as a 
hopping frequency 1 / ~ .  Then by generalization of the motional-narrowing 
result (28) we have for tlie width of tlie exdrange-narrowed line: 

where = Y(B?) is the square 01 the static dipolar width in the absence 
of exchange. 

A usefill and striking example of exchange narrowing is the paramagnetic 
organic crystal known as the g marker or DPPH, diphenyl picryl hydrazyl, often 
used for magnetic field calibration. This free radical has a 1.35 G half-width of 
the resonance line at half-power, only a few percent of the pure dipole width. 

Zero-Field Splitting 

A number of paramagnetic ions have cvstal ficld splittings of thcir magnetic 
ground state encrgy levels in the range of 10'' - lo1' Hz, conveniently accessi- 
ble by microwave techniques. The Mn" ion has been studied in many crystals as 
an additive impurity. A ground state splitting in the range lo7 - lO9Hz is 
observed, according to the environment. 

PRINCIPLE OF MASER ACTION 

Crystals can be used as microwave and light amplifiers and as sourccs of 
coherent radiation. A maser amplifies microwaves by the stimulated emission 
of radiation; a laser amplifies light hy the same method. The principle, due to 
Townes, may be understood from the two-level magnetic system of Fig. 21 rel- 
evant for masers. There are nu atoms in the upper state and ne atoms in the 
lower state. U7e immerse the system in radiation at frequency w;  tlie amplitude 
of the magnetic component of the radiation field is Brf The probability per 
atom per unit time of a transition between the upper and lower states is 

here p is the magnetic moment, and A o  is the combined width of the two 
levels. The result (50) is from a standard result of quantum mechanics, called 
Fermi's golden rule. 
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Upper state 
n" 

Figure 21 A two-level system, to explain maser op- 
eration. The populations of the upper and lower 
states are nu and n,, respectively. The frequency of 

1 the emitted radiation is w; the combined width of the 
7 states is AW = hw, + PW,. 

The net energy emitted from atoms in both upper and lower states is 

per unit time. Here 9 denotes the power out; hw is the energy per photon; 
and nu - nl is the excess of the number of atoms n, initially able to emit a pho- 
ton over the number of atoms nl able to absorb a photon. 

In thermal equilibrium nu < nl, so there is no net emission of radiation, 
but in a nonequilibrium condition with nu > nl there will be emission. If we 
start with nu > nl and reflect the emitted radiation back onto the system, we 
increase Brf and thereby stimulate a higher rate of emission. The enhanced 
stimulation continues until the population in the upper state decreases and 
becomes equal to the population in the lower state. 

We can build up the intensity of the radiation field by placing the crystal 
in an electromagnetic cavity. This is like multiple reflection from the walls of 
the cavity. There will be some power loss in the walls of the cavity: the rate of 
power loss is 

B P  w 
(CGS) 9, = -- . - ; 

8~ Q (52) 

where V is the volume and Q is the Q factor o nd B$ 
to be a volume average. 

The condition for maser action is that the emitted power 9 exceed the 
power loss 9,. Both quantities involve B:. The maser condition can now be ex- 
pressed in terms of the population excess in the upper state: 

VAB 
(CGS) nu - nl > - 

8 v Q  ' 

where /L is the magnetic moment. The line width AB is defined in terms of 
the combined line width Aw of the upper and lower states as pAB = fiAw. The 



Figure 22 Three-level maser system. Two possible modes of operation are shown, starting from 
rf saturation of the states 3 and 1 to obtain n, = n,. 

central problem of the maser or laser is to obtain a suitable excess population 
in the upper state. This is accomplished in various ways in various devices. 

Three-Level Maser 

The three-level maser system (Fig. 22) is a clever solution to the excess 
population problem. Such a system may derive its energy levels from magnetic 
ions in a crystal, as Bloembergen showed. Rf power is applied at the pump 
frequency L o p  = Eg - El in sufficient intensity to maintain the population 
of level 3 substantially equal to the population of level 1. This is called 
saturation-see Problem 6. Now consider the rate of change of the population 
n2 of level 2 owing to normal thermal relaxation processes. In terms of the 
indicated transition rates P, 

In the steady state dn2/dt = 0, and by virtue of the saturation rf power we have 
n3 = n,, whence 

The transition rates are affected by many details of the paramagnetic ion 
and its environment, but one can hardly fail with this system, for either n2 > nl 
and we get maser action between levels 2 and 1, or n2 < n, = n, and we get 
maser action between levels 3 and 2. The energy levels of the Er3+ ion are 
used in communication fiber optics amplifiers. The ion is optically pumped 
from level 1 to level 3; there is fast nonradiative decay from level 3 to level 2. 
The signal at a wavelength of 1.55 pm is amplified by stimulated emission 
from level 2 to level 1. The wavelength is favorable for long-distance propaga- 
tion in the optical fiber. The bandwidth is of the order of 4 X 1012 Hz. 
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30, Broad bands Intermediate levels , 

Figure 23 Energy level diagram of Cr3+ in rnhy, as used in laser operation. The initial excitation 
takes place to the broad hands; they decay to the intermediate levels by the emission of 
phonons, and the intermediate levels radiate photons as the ion makes the transition to the ground 
level. 

Lasers 

The same crystal, ruby, used in the microwave maser was also the first 
crystal to exhibit optical maser action, but a different set of energy levels of 
Cr3+ are involved (Fig. 23). About 15,000 cm-' above the ground state there 
lie a pair of states labeled ' E ,  spaced 29 cm-' apart. Above ' E  lie two broad 
bands of states, labeled 4 ~ 1  and 4F2. Because the bands are broad they can be 
populated efficiently by optical absorption from broadband light sources such 
as xenon flash lamps. 

In operation of a ruby laser both of the broad 4F bands are populated by 
broadband light. Atoms thus excited will decay in sec by radiationless 
processes with the emission of phonons to the states 'E.  Photon emission from 
the lower of the states ' E  to the ground state occurs slowly, in about 5 x sec, 
so that a large excited population can pile up in 'E.  For laser action this popula- 
tion must exceed that in the ground state. 

ions cm-3 are in an The stored energy in ruby is lo8 erg cm-3 if 10'' cr3+ . 
excited state. The ruby laser can emit at a very high power level if all this 
stored energy comes out in a short burst. The overall efficiency of conversion 
of a ruby laser from input electrical energy to output laser light is about one 
percent. Another popular solid state laser is the neodymium glass laser, made 
of calcium tungstate glass doped with Nd3+ ions. This operates as a four level 
system (Fig. 24). Here it is not necessary to empty out the ground state before 
laser action can occur. 



Figure 24 Four-level laser system, as in the neodymium 
glass laser. 

SUMMARY 

(In CGS Units) 

The resonance frequency of a free spin is wo = yB,, where y = p/hI is the 
magnetogyric ratio. 

The Bloch equations are 

dM,/dt = y(M X B ) ,  - MJT, ; 

dM,ldt = y (M X B ) ,  - My/T2 ; 

dMB/dt  = y(M X B),  + (M,  - M,)/T, 

The half-width of the resonance at half-power is (Am),,,  = 1/T2. 

The dipolar line width in a rigid lattice is ( A B ) ,  = d a 3 .  

If the magnetic moments are ambulatory, with a characteristic time T < 
l / (Aw) , ,  the line width is reduced by the factor ( A W ) , ~ .  In this limit 
1/T,  = 1/T2 .= ( A w ) ~ , T .  With exchange coupling in a paramagnet the line 
width becomes ==(Am)2,w,,. 

The ferromagnetic resonance frequency in an ellipsoid of demagnetization 
factors N,, N y ,  Nz is 0; = Y [ B ~  + ( N ,  - Nz)M] [BO + ( N ,  - N, )M] .  

The antiferromagnetic resonance frequency is 02, = 4 B A ( B A  + 2B,), in a 
spherical specimen with zero applied field. Here BA is the anisotropy field 
and BE is the exchange field. 

The condition for maser action is that nu - nl > VAB/BwpQ.  
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Problems 

1.  Equivalent electrical circuit. Consider an clnpty coil of inductance L, in a series 
with a resistance R,; show if the coil is co~nplctcly filled with a spin system charac- 
terized by the susceptibility components ~ ' ( w )  and x"(o) that the inductance at 
frequency w becomes L = [l + 4vx' (o) ]Lo,  in series with an effective resistance 
R = 4 ~ w ~ " ( o ) L ,  + A,. In this problem ,y = X' + i,y" is defined for a linearly polar- 
ized rf field. Hint: Consider the impedance of the circuit. (CGS units.) 

2 .  Rotating coordinate system. We define the vector F(t) = F&)f + Fy(t)f + F,(t)i. 
Let the coordinate system of the unit vectors %, y,  4 rotate with an instantaneous 
angular velocity a, so that d3dt  = - 4 3 ,  etc. (a) Show that dF/& = (dF/dt), + 
R x F, where (dF/dt), is the time derivative of F as viewed in the rotating frame R. 
(h) Shou. that (7) may be written (dMldt), = yM X (R, + a&). This is the equation 
of motion of M in a rotating coordinate system. Tlre transformation to a rotating 
systcm is extraordinarily useful; it is exploited widely in the litcrature. (c) Let 
R = - yB,i; thus in the rotating fiame there is no static magnetic field. Still in the ro- 
tating frame, we now apply a dc pulse B , i  for a time t. If the magnetization is initially 
along 9, find an expression for the pulse length t such that the magnetization will be 
directed along -4 at the end of the pulse. (Neglect relaxation effects.) (d) Decribe 
this I ~ ~ l s e  ac viewed from the laboratory frame of reference. 

3.  Hyperfine effects on ESR in metals. We suppose that the electron spin of a con- 
duction electron in a metal sees an effective magnetic field from the hyperfine 
interaction of the electron spin with the nuclear spin. Let the z component of the 
firld seer, by the conduction clcctron be written 

where I,'is equally likely to be 2;. (a) Show that (B:) = (aI2N)'N. (b) Show that 
(B$ = 3(aI2N)'N" for N * 1. 

4.  FMR in the anisotropy j e l d .  Consider a sphcrical specimen of a uniaxial ferro- 
magnetic cvstal with an anisotropy energy density of the form U, = K sin2 0, where 
0 is the angle betu~een the rnagrletization and thc z axis. We assume that K is posi- 
tive. Show that the ferromagnetic resonance frequency in an external magnetic field 
B,9 is w,, = y(B, + B,), where B, = 2K/M, .  

3 .  Exchange frequency resonance. Consider a ferrimagnct with two sublattices 
A and B of magnetizations M, and M,, where M, is opposite to Ma when the spin 
system is at rest. The gyromagnetic ratios are YA, y, and thc molecular fields are 
B, = -AMHr BE = -AMA. Show that there is a resonance at 

This is called the exchange frequency resonance. 

6. Rf saturation. Gwen, at equilibriurr~ for temperaturc 7: a two-level spin system in 
a magnetic field H , i ,  with populations N1, N ,  and transition rates !A',,, W,,. We 



apply an rf signal that giws a transition ratc Wa (a) Derive the equation for dMz/dt  
and show that ~ I I  the steady state 

where l/Tl = WIP + WP1. It will he helpful to write iV = N, + N2; n = Nl - h;,; and 
no = N(W21 - W,,)/(FVPl + WII,,). We see that as long as 2W,+T1 < 1 the absorption of 
energy from the rf field does rrot snhstantially alter thc population distribution from 
its thermal equilibrium value. (b) Using the expression for n, write down the rate at 
which energy is absorbed frurrr the rf field. W7hat happcns as W, approaches 1/2Tl? 
This effect is called saturatiori, and it.7 onset may he uscd to measure TI. 


