

Such an equilibrium is called fonte at lighten between the true and the undersoldestroistes.

A phines the law of chemical equilibre in alternation with

Substitution the values of the equivalence.

# Equilibrium-II

(Ionic Equilibrium in Solutions)

### SYLLABUS

Equilibria involving ions, various concepts of acids and bases—Arrehenius, Bronsted—Lowry and Lewis, dissociation of acids and bases, acid-base equilibria, ionization of water, pH scale, hydrolysis of salts, pH calculation of salt solutions, acid—base titration using indicator, solubility equilibria—solubility of sparingly soluble salts, solubility equilibrium and solubility product, common ion effect, elementary idea of buffer solutions.

#### 8.1. Strong and Weak Electrolytes and Ionic Equilibrium

On the basis of conduction of their solutions, Faraday in 1824 classified all substances into two categories viz electrolytes and non-electrolytes.

An electrolyte is defined as a compound whose aqueous solution or melt conducts electricity. On the other hand, a compound whose aqueous solution or melt does not conduct electricity is called a non-electrolyte.

For example, aqueous solutions of sugar, urea etc. do not conduct electricity. Hence they are non-electrolytes whereas solutions of inorganic acids, bases and salts conduct electricity. Hence, they are electrolytes.

Arrhenius in 1880 explained that the conductance by an electrolyte is due to the presence of ions produced by the dissociation of the substance. However, different electrolytes dissociate to different extents.

The fraction of the total number of molecules which dissociates into ions is called the degree of dissociation and is usually represented by  $\alpha$ . i.e.  $\alpha = \frac{\text{No. of moles dissociated}}{\text{Total no. of moles taken}}$ 

Depending upon the degree of dissociation, Faraday further classified the electrolytes into two categories, called 'strong electrolytes' and 'weak electrolytes'. A strong electrolyte is defined as a substance which dissociates almost completely into ions in aqueous solution and hence is a very good conductor of electricity. e.g. NaOH, KOH, HCL,  $H_2SO_4$ , NaCl, KNO<sub>3</sub> etc.

A weak electrolyte is defined as a substance which dissociates to a small extent in aqueous solution and hence conducts electricity also to a small extent. e.g.:  $NH_4OH$ ,  $CH_3COOH$  etc.

As strong electrolytes are completely ionised in the aqueous solution, therefore, their ionisation is represented by putting a single arrow pointing towards right *e.g.* 

$$HCl + H_2O \longrightarrow H_3O^+ + Cl^-$$

NaOH +  $aq \longrightarrow Na^+ (aq) + OH^- (aq)$  etc.

In case of weak electrolytes, as they are partly ionized, an equilibrium is set up between the ions and the unionized electrolyte. Hence their ionization is represented by putting double arrows ( $\rightleftharpoons$ ) in between *e.g.* 

 $CH_3COOH + H_2O \implies CH_1COO^- + H_1O^+$ 

$$NH_4OH + aq \implies NH_4^+ (aq) + OH^- (aq)$$
 etc.

In general, the ionisation of a weak electrolyte, AB, is represented as follows :

 $AB(s) + aq \implies A^+(aq) + B^-(aq)$ 

Pradeep's New Course Chemistry

Such an equilibrium is called ionic equilibrium between the ions and the undissociated electrolyte.

Applying the law of chemical equilibrium to the above equilibrium we get

 $\frac{[A^+][B^-]}{[AB]} = K_i$ , called ionisation constant.

Difference between 'dissociation' and 'ionization'. When an ionic compound is dissolved in water, the ions which are already present in the solid compound separate out. The process is called dissociation. On the other hand, when a neutral molecule like HCl (*i.e.* a polar covalent compound) which does not contain ions but when dissolved in water splits to produce ions in the solution, the process is called **lonization**. However, generally the two terms are used without any difference.

### 8.2. Ionisation of Weak Electrolytes---Ostwald's Dilution Law

When acetic acid (a weak electrolyte) is dissolved in water, it dissociates partly into  $H^+$  or  $H_3O^+$  and  $CH_3COO^-$  ions and the following equilibrium is obtained :

 $CH_3COOH + H_2O \implies CH_3COO^- + H_3O^+$ 

Applying law of chemical equilibrium,

$$K = \frac{[CH_3COO^-] \times [H_3O^+]}{[CH_3COOH] \times [H_2O]}$$

In dilute solution,  $[H_2O]$  is constant. The product of K and constant  $[H_2O]$  is denoted as  $K_a$ , the ionization constant or dissociation constant of the acid. Thus

$$\mathbf{K}_{a} = \frac{[\mathrm{CH}_{3} \mathrm{COO}^{-}] \times [\mathrm{H}_{3} \mathrm{O}^{+}]}{[\mathrm{CH}_{3} \mathrm{COOH}]} \quad \dots(i)$$

If 'C' represents the initial concentration of the acid in moles  $L^{-1}$  and  $\alpha$ , the degree of dissociation, then equilibrium concentration of the ions (CH<sub>3</sub>COO<sup>-</sup> and H<sub>3</sub>O<sup>+</sup>) is equal to C $\alpha$  and that of the undissociated acetic acid = C (1 -  $\alpha$ ) *i.e.* we have

$$CH_{3}COOH + H_{2}O \Longrightarrow CH_{3}COO^{-} + H_{3}O^{+}$$
  
Initial C 0 0

conc. Concs.  $C(1 - \alpha)$   $C\alpha$   $C\alpha$ at eqm.

Substituting the values of the equilibrium concentrations in equation (i), we get

$$K_a = \frac{C\alpha \cdot C\alpha}{C(1-\alpha)} = \frac{C^2 \alpha^2}{C(1-\alpha)} = \frac{C \alpha^2}{1-\alpha} \dots (ii)$$

In case of weak electrolytes, the value of  $\alpha$  is very small and can be neglected in comparison to 1 *i.e.*  $1 - \alpha = 1$ . Hence, we get

$$K_a = C\alpha^2$$
 or  $\alpha = \sqrt{\frac{K_\alpha}{C}}$  ...(iii)

The degree of dissociation,  $\alpha$  can therefore be calculated at a given concentration, C if  $K_a$  is known. Further, if V is the volume of the solution in litres containing 1 mole of the electrolyte, C = 1/V. Hence we have  $\alpha = \sqrt{K_a V}$  ....(iv)

Similarly, for a weak base like NH<sub>4</sub>OH, we have  $\alpha = \sqrt{K_b/C} = \sqrt{K_b}V$  ...( $\nu$ )

The above equationss lead to the following result :

For a weak electrolyte, the degree of ionisation is inversely proportional to the square root of molar concentration or directly proportional to the square root of volume containing one mole of the solute.

This is called Ostwald's dilution law.

#### REMEMBER

(i) The approximation  $1 - \alpha = 1$  can be applied

only if  $\alpha < 5\%$ . If on solving a problem by applying the approximate formula,  $\alpha$  comes out to be  $\geq 5\%$ , the problem may be solved again by applying exact formula and  $\alpha$  may be calculated by applying solution of a quadratic equation *i.e.* 

$$\alpha = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(*ii*) Ostwald's dilution law is applicable only to weak electrolytes because for strong electrolytes,  $\alpha \simeq 1$  *i.e.*  $K_{\alpha} \rightarrow \infty$ .

#### PROBLEMS ON CALCULATION OF DEGREE OF DISSOCIATION

install b ro

Calculate the degree of dissociation and concentration of  $H_3O^+$  ions in 0.01 M solution of formic acid.  $K_a = 2.1 \times 10^{-4}$  at 298 K. Solution. Formic acid is weak electrolyte and ionizes in water to give  $H_3O^+$  ions according to the equation

EQUILIBRIUM - II (IONIC EQUILIBRIUM IN SOLUTIONS)

 $HCOOH + H_2O \iff H_3O^+ + HCOO^-$ 

Let  $\alpha$  be the degree of ionization. Then the concentration of the various species present at equilibrium would be as under :

HCOOH + H<sub>2</sub>O  $\rightleftharpoons$  H<sub>3</sub>O<sup>+</sup> + HCOO<sup>-</sup> Initial conc. 0.01 0 0 Conc. 0.01(1- $\alpha$ ) 0.01  $\alpha$  0.01  $\alpha$ at eqm.  $\simeq$  0.01

> [ $\therefore \alpha$  is very small and can be neglected in comparison to 1]

Thus 
$$K_a = \frac{0 \cdot 01 \ \alpha \times 0 \cdot 01 \ \alpha}{0 \cdot 01}$$
  
 $= 0 \cdot 01 \times \alpha^2 = 2 \cdot 1 \times 10^{-4}$   
 $[K_a = 2 \cdot 1 \times 10^{-4}, \text{ given}]$   
or  $\alpha^2 = \frac{2 \cdot 1 \times 10^{-4}}{0 \cdot 01} = 2 \cdot 1 \times 10^{-2}$   
 $\therefore$  Degree of ionisation,  $\alpha$   
 $= \sqrt{2 \cdot 1 \times 10^{-2}} = 0 \cdot 14$   
Concentration of  $H_3O^+$  ions  
 $= C\alpha = 0 \cdot 14 \times 0 \cdot 01$   
 $= 1 \cdot 4 \times 10^{-3} \text{ mol } L^{-1}$ 

**ROBLEMS FOR PRACTICE** 

- 1. Calculate the degree of ionization and  $[H_3O^+]$  of 0.01 M CH<sub>3</sub>COOH solution. The equilibrium constant of acetic acid is  $1.8 \times 10^{-5}$
- [Ans.  $4.24 \times 10^{-2}$ ,  $4.24 \times 10^{-4}$  mol L<sup>-1</sup>] 2. A 0.01 M solution of acetic acid is 1.34% ionised (degree of dissociation = 0.0134) at 298 K. What

is the ionization constant of acetic acid ?

#### [Ans. 1.80 × 10<sup>-6</sup>]

3. What will be the percentage of dissociation in 1.0 M CH<sub>3</sub> COOH at equilibrium having dissocia-

tion constant of  $1.8 \times 10^{-5}$ ?

[Ans. 0.424]

HINTS FOR DIFFICULT PROBLEMS

2.  $CH_3COOH \implies CH_3COO^- + H^+$ Initial conc.  $C \mod L^{-1}$  0 0 At. eqm.  $C(1-\alpha)$   $C\alpha$   $C\alpha$  $K_c = \frac{C\alpha \cdot C\alpha}{C(1-\alpha)} = \frac{C\alpha^2}{1-\alpha}$   $=\frac{0.01\times(0.0134)^2}{1-0.01}=1.8\times10^{-6}$ 

3. As in Problem 2,  

$$K_c = \frac{C \alpha^2}{1 - \alpha}$$
 i.e.  $1.8 \times 10^{-5} = \frac{1 \times \alpha^2}{1 - \alpha} = \alpha^2$ 

or  $\alpha = \sqrt{1 \cdot 8 \times 10^{-5}} = 4 \cdot 24 \times 10^{-3}$ 

% dissociation =  $(4 \cdot 24 \times 10^{-3}) \times 100 = 0.424$ 

# ADD TO YOUR KNOWLEDGE

Except HgCl<sub>2</sub> and CdBr<sub>2</sub>, all salts are strong electrolytes.

If the concentration of common ions in the solutions of two electrolytes (e.g.  $OH^-$  ion concentration in Ca  $(OH)_2$  and Ba  $(OH)_2$  solutions) is same, then on mixing them there is no change in the degree of dissociation of either of the electrolytes. Such solutions are called isohydric solutions.

#### 8.3. Various Concepts of Acids and Bases

Throughout the history of chemistry, various acid-base concepts have been proposed and used. In this section, we shall briefly discuss the different concepts put forth from time to time. Each of these can be applied with advantage in appropriate circumstances. In a given situation, the chemist uses the concept that suits his purpose best.

(1) Classical Concept of Acids and Bases. The earliest classification of substances into acids and bases was based upon the characteristic properties possessed by each one of them. For example,

Acid was defined as a substance whose aqueous solution possessed the following characteristic properties :

(i) conducts electricity,

(ii) reacts with active metals like zinc, magnesium etc. to give hydrogen,

(iii) turns blue litmus red.

(iv) has a sour taste.

(v) whose acidic properties disappear on reaction with a base.

**Base** was defined as a substance whose aqueous solution possessed the following characteristic properties :

(i) conducts electricity,

(ii) turns red litmus blue,

(iii) has a bitter taste,

(iv) has a soapy (slippery) touch

(v) whose basic properties are destroyed on reaction with an acid.

The above definitions of acids and bases are called operational definitions as they are based upon certain operations (i.e. tests) to be performed on the substances. However, these have been replaced by conceptual definitions (put forward by Arrhenius, Bronsted-Lowry and Lewis) which go into the causes of the observed behaviour, based upon structure and composition of the substances.

(2) Arrhenius Concept of Acids and Bases. To explain the observed properties of electrolytes, Arrhenius in 1884 put forward a theory, popularly known as 'Arrhenius theory of ionization'. The main idea contained in this theory was that when an electrolyte is dissolved in water, it dissociates into positively and negatively charged ions.

Based upon this theory, Arrhenius gave the definitions of acids and bases as follows :

An acid is defined as a substance which contains hydrogen and which when dissolved into water gives hydrogen ions  $(H^+)$ .

**Examples.** Substances like HCl, HNO<sub>3</sub> and  $H_2SO_4$ , containing hydrogen, when dissolved in water dissociate completely into  $H^+$  ions and the negative ions as follows :

| HCl                            | Water | $H^+ + Cl^-$           |
|--------------------------------|-------|------------------------|
| HNO3                           | Water | $H^+ + NO_3^-$         |
| H <sub>2</sub> SO <sub>4</sub> | Water | $2H^{+} + SO_{4}^{2-}$ |

Such acids are called strong acids.

Substances like acetic acid (CH<sub>3</sub>COOH), carbonic acid (H<sub>2</sub>CO<sub>3</sub>), phosphoric acid (H<sub>3</sub>PO<sub>4</sub>), etc., when dissolved in water dissociate into ions to a small extent. Thus an equilibrium is set up between the ions and the undissociated molecules as follows:

| СН₃СООН                        | Water | $CH_3COO^- + H^+$  |
|--------------------------------|-------|--------------------|
| H <sub>2</sub> CO <sub>3</sub> | Water | $2H^+ + CO_3^{2-}$ |
| H <sub>3</sub> PO <sub>4</sub> | Water | $3H^+ + PO_4^{3-}$ |

Such acids are called **weak acids**. In general, we can write

HA 
$$\rightleftharpoons$$
 H<sup>+</sup> + A<sup>-</sup>  
Acid)

In fact, all the properties of an acid are due to the H<sup>+</sup> ions which it furnishes in aqueous solution.

A base is defined as a substance which contains hydroxyl groups and which when dissolved in water gives hydroxyl ions  $(OH^{-})$ .

Examples. Substances like NaOH and KOH containing the – OH groups, when dissolved into water, dissociate completely to give OH<sup>-</sup> ions as follows:

| NaOH | Water | $Na^+ + OH^-$ |
|------|-------|---------------|
| КОН  | Water | $K^+ + OH^-$  |

These are called strong bases.

Substances like  $NH_4OH$ ,  $Ca(OH)_2$ ,  $Mg(OH)_2$ ,  $Al(OH)_3$  etc. dissociate to a small extent as follows :

#### EQUILIBRIUM - II (IONIC EQUILIBRIUM IN SOLUTIONS)

| NH₄OH                | Water | $NH_4^+ + OH^-$                     |
|----------------------|-------|-------------------------------------|
| Ca (OH) <sub>2</sub> | Water | Ca <sup>2+</sup> + 2OH <sup>-</sup> |
| Al (OH)3             | Water | Al <sup>3+</sup> + 30H <sup>-</sup> |

### These are called weak bases.

Existence of H<sup>+</sup> ion and OH<sup>-</sup> ion in aqueous solution. H<sup>+</sup> ion is simply a proton which is very small in size (radius  $\sim 10^{-13}$  cm). It has a strong electric field. It takes up a lone pair of electrons

from water molecule  $\begin{bmatrix} H \\ H \end{bmatrix}$  to form

*i.e.*  $H_3O^+$ , called hydronium ion.

This ion in the aqueous solution can combine with more of  $H_2O$  molecules (a process called hydration) to form species like  $H_5O_2^+$ ,  $H_7O_3^+$  and  $H_9O_4^+$ . Hence we simply represent it as  $H_3O^+$  (*aq*). Similarly, OH<sup>-</sup> ions in aqueous solution can combine with one or more  $H_2O$  molecules to form species like  $H_3O_2^-$ ,  $H_5O_3^-$ ,  $H_7O_4^-$  etc. Hence we generally represent it as OH<sup>-</sup> (*aq*). Thus the dissociation of an acid in water may be represented as

HCl + Water  $\longrightarrow$  H<sup>+</sup>(aq) + Cl<sup>-</sup> (aq) CH<sub>3</sub>COOH+Water  $\rightleftharpoons$  H<sup>+</sup>(aq)+CH<sub>3</sub>COO<sup>-</sup>(aq) or HCl + H<sub>2</sub>O  $\longrightarrow$  H<sub>3</sub>O<sup>+</sup> (aq) + Cl<sup>-</sup> CH<sub>3</sub>COOH+H<sub>2</sub>O  $\rightleftharpoons$  H<sub>3</sub>O<sup>+</sup> (aq) + CH<sub>3</sub>COO<sup>-</sup> (aq)

Similarly, the dissociation of a base may be represented as

NaOH+Water  $\longrightarrow$  Na<sup>+</sup> (aq)+OH<sup>-</sup> (aq) NH<sub>4</sub>OH+Water  $\rightleftharpoons$  NH<sub>4</sub><sup>+</sup> (aq)+OH<sup>-</sup> (aq)

Arrhenius described neutralization as the process in which hydrogen ions and hydroxide ions combine to form unionized molecules of water.

$$NaOH \longrightarrow Na^{+} + OH^{-}$$

$$HCl \longrightarrow H^{+} + Cl^{-}$$
or 
$$Na^{+} + OH^{-} + H^{+} + Cl^{-} \longrightarrow$$

$$Na^{+} + Cl^{-} + H_{2}O$$
or 
$$H^{+} + OH^{-} \longrightarrow H_{-}O$$

As a result of this process, the characteristic properties of acids and bases are destroyed.

Utility and Limitations of Arrhenius Concept. The Arrhenius concept of acids and bases was able to explain a number of phenomena like neutralization, salt hydrolysis, strength of acids and bases etc. However, it was found to have the following limitations :

(i) Nature of  $H^+$  ions and  $OH^-$  ions : According to Arrhenius concept, acids and bases were defined as substances which gave  $H^+$  ions and  $OH^-$  ions respectively in aqueous solution. But as discussed above, these ions cannot exist as such in the aqueous solution but exist as hydrated ions, written as  $H^+$  (aq) and  $OH^-$  (aq).

(ii) Inability to explain acidic and basic character of certain substances : Arrhenius concept demands that an acid must contain hydrogen and a base must contain hydroxyl (OH<sup>-</sup>) groups. However, a number of substances like NH<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>, CaO etc. are known to be basic but do not contain any hydroxyl groups. Similarly, a number of substances like CO<sub>2</sub>, SO<sub>2</sub>, SO<sub>3</sub> etc. are known to be acidic but do not contain any hydrogen.

This limitation is, however, overcome if water is supposed to play an important role. This is clear from the following reactions :

| $NH_3(g) + H_2O \implies NH_4^+(aq) + OH^-(aq)$ |
|-------------------------------------------------|
| $Na_2 CO_3 (s) + H_2 O \rightleftharpoons$      |
| $HCO_{3}^{-}(aq) + OH^{-}(aq) + 2Na^{+}(aq)$    |
| $CaO + H_2O \implies Ca^{2+}(aq) + 2OH^-(aq)$   |
| $CO_2 + H_2O \implies CO_3^{2-}(aq) + 2H^+(aq)$ |
| $SO_3 + H_2O \implies SO_4^{2-}(aq) + 2H^+(aq)$ |

(iii) Inability to explain the reaction between an acid and base in absence of water : Two important examples are :

 $NH_{3}(g) + HCl(g) \longrightarrow NH_{4}Cl(s)$  $CaO(s) + SO_{3}(g) \longrightarrow CaSO_{4}(s)$ 

(3) Bronsted-Lowry Concept of Acids and Bases. To overcome the limitations of Arrhenius concept, Bronsted (a Danish chemist) and Lowry (an English chemist) independently and simultaneously, in the year 1923, proposed a broader concept of acids and bases. According to this concept : Pradeep's New Course Chemistry ()(1)

An acid is defined as a substance which has the tendency to give a proton  $(H^+)$  and a base is defined as a substance which has a tendency to accept a proton. In other words, an acid is a proton donor whereas a base is a proton acceptor.

The above definition may be explained with the help of the following examples :

(a) HCl + H<sub>2</sub>O  $\rightleftharpoons$  H<sub>3</sub>O<sup>+</sup> + Cl<sup>-</sup> (b) CH<sub>3</sub>COOH + H<sub>2</sub>O  $\rightleftharpoons$ H<sub>3</sub>O<sup>+</sup> + CH<sub>3</sub>COO<sup>-</sup> (c) NH<sub>3</sub> + H<sub>2</sub>O  $\rightleftharpoons$  NH<sub>4</sub><sup>+</sup> + OH<sup>-</sup> (d) CO<sub>3</sub><sup>2-</sup> + H<sub>2</sub>O  $\rightleftharpoons$  HCO<sub>3</sub><sup>-</sup> + OH<sup>-</sup>

(e)  $HCl + NH_3 \implies NH_4^+ + Cl^-$ 

The following important results may be derived from these equations :

(i) HCl and  $CH_3COOH$  are acids because they donate a proton to  $H_2O$ .

(*ii*)  $NH_3$  and  $CO_3^{2-}$  are bases because they accept a proton from water.

(*iii*) Not only molecules but even the ions can act as acids or bases *e.g.*,  $CO_3^{2-}$  ion in the above case is acting as a base.

(*iv*) In the first two reactions, water is accepting a proton and hence is base. In the next two reactions, water is donating a proton and hence is acting as an acid. Thus water acts both as an acid as well as a base and hence is called **amphoteric** or **amphiprotic**.\*

(v) The reaction (e) above indicates that Bronsted- Lowry definitions of acids and bases are not restricted to aqueous solutions. In this reaction, HCl is acid because it gives a proton and  $NH_3$  is a

base because it accepts the proton.

(vi) The presence of hydroxyl (OH<sup>-</sup>) groups is not essential for a substance to act as a base. The only requirement is that it should have a tendency to accept a proton.

(vii) The above reactions indicate that a substance acts as an acid *i.e.* gives a proton only when another substance to accept the proton, *i.e.* a base, is present. For example, acetic acid does not act as an acid in benzene solution because the latter does not accept the proton.

(viii) The reverse reactions are also acid-base reactions. For example, in reaction (a), in the reverse process,  $H_3O^+$  can give a proton and hence is an acid while  $Cl^-$  can accept the proton and hence is a base. Thus there are two acid-base pairs in reaction (a). These are  $HCl - Cl^-$  and  $H_3O^+ - H_2O$ . These acid-base pairs are called conjugate acid-base pairs. Obviously,

A conjugate pair of acid and a base differs by a proton only i.e. Conjugate acid  $\longrightarrow$  Conjugate base + H<sup>+</sup>

The conjugate acid-base pairs in reactions (a)

to (e) may be represented as follows :

| (pp) * 112 + 1    | 1001 | too and           | Conjugate Pair I  | 000,09+1                      | ale) Outs    |                                  |
|-------------------|------|-------------------|-------------------|-------------------------------|--------------|----------------------------------|
| (\$\$) HI + (\$\$ |      | 01                | Conjugate Pair II | n send a h                    |              | Similar of the a                 |
| Acid <sub>1</sub> |      | Base <sub>2</sub> |                   | Acid <sub>2</sub>             |              | Base <sub>1</sub>                |
| HCl               | +    | H <sub>2</sub> O  | <u></u>           | $H_3O^+$                      | 110/+        | Cl <sup>-</sup> O                |
| СН₃СООН           | +    | H <sub>2</sub> O  |                   | H <sub>3</sub> O <sup>+</sup> | (i.e)itereun | CH <sub>3</sub> COO <sup>-</sup> |
| H <sub>2</sub> O  | +    | NH <sub>3</sub>   |                   | NH <sup>+</sup>               | +            | OH-                              |
| H <sub>2</sub> O  | +    | $CO_{3}^{2-}$     |                   | HCO <sub>3</sub> <sup>-</sup> | +            | OH-                              |
| HCl               | +    | NH <sub>3</sub>   |                   | NH <sup>+</sup>               | +            | CI                               |

Note. According to this concept if two acids (which are acids with respect to water) are mixed, the weaker acid will act as a base with respect to the stronger acid e.g.

\*Amphoteric is a general term for a substance acting as an acid as well as a base. When acid base behaviour is restricted to proton transfer, it is called amphiprotic.

 $\begin{array}{ccc} HClO_4 &+ H_2SO_4 & \longrightarrow & H_3SO_4^+ + ClO_4^- \\ Acid_1 & Base_2 & Acid_2 & Base_1 \\ (Perchloric acid) \end{array}$ 

Thus H<sub>2</sub>SO<sub>4</sub> is a amphoteric or amphiprotic.

Advantages of Bronsted-Lowry concept over Arrhenius concept :

(i) Bronsted-Lowry concept is not limited to molecules but includes even the ionic species to act as acids or bases.

(*ii*) It can explain the basic character of the substances like  $Na_2CO_3$ ,  $NH_3$  etc. (which do not contain OH<sup>-</sup> group and hence were not bases according to Arrhenius definition) on the basis that they are proton acceptors.

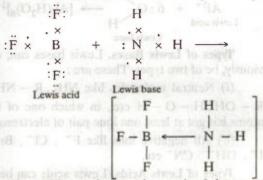
(*iii*) It can explain the acid-base reactions in the non-aqueous medium or even in the absence of a solvent (e.g. between HCl and NH<sub>3</sub>).

Limitations of Bronsted-Lowry concept. Although Bronsted-Lowry concept has a wider scope than the Arrhenius concept but it has some limitations e.g.,

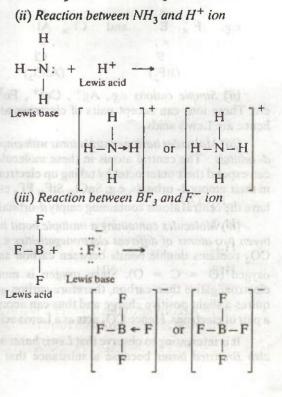
(i) It cannot explain the reactions between acidic oxides like  $CO_2$ ,  $SO_2$ ,  $SO_3$  etc. and the basic oxides like CaO, BaO, MgO etc. which take place even in the absence of the solvent, e.g.

 $CaO + SO_3 \longrightarrow CaSO_4$ 

Obviously, there is no proton transfer involved in this reaction.


(*ii*) Substances like  $BF_3$ , AlCl<sub>3</sub> etc., do not have any hydrogen and hence cannot give a proton but are known to behave as acids.

(4) Lewis Concept of Acids and Bases. Bronsted-Lowry concept of acids and bases was broader than Arrhenius concept in the sense that it could explain not only all the Arrhenius acids and bases but included many more substances as bases. However, it did not much enlarge the scope of acids as this concept also emphasized the presence of hydrogen in an acid like the Arrhenius concept.


G.N. Lewis (an American chemist) in the same year *i.e.* 1923, proposed a broader concept of acids and bases. This concept eliminated the necessity of the presence of hydrogen in an acid and this included many more substances as acids and bases. According to this concept (also called *electronic concept*): An acid is defined as substance (atom, ion or molecule) which is capable of accepting a pair of electrons and a base is defined as a substance which is capable of dorating an unshared pair of electrons. In other words, an acid is an electron pair acceptor while a base is an electron pair donor.

Obviously, the reaction between an acid and a base, according to this concept, amounts to the formation of a co-ordinate bond or dative bond between them.

**Examples.** (i) Reaction between  $BF_3$  and  $NH_3$ :



Since  $NH_3$  can donate a lone pair of electrons while  $BF_3$  (in which boron atom has only 6 electrons in the outermost orbit) can accept a pair of electrons,  $NH_3$  is a base and  $BF_3$  is an acid.



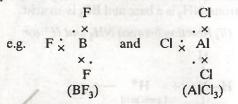
### Pradeep's New Course Chemistry (XI)

(iv) Reaction between CaO and SO<sub>3</sub>

$$Ca^{+}\begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ Lewis base \end{bmatrix}^{2^{-}} : \overset{\circ}{O} : \\ + \overset{\circ}{S} : \overset{\circ}{O} \longrightarrow Ca^{2^{+}} \\ : \overset{\circ}{O} : \\ \overset{\circ}$$

(v) Hydration of metal ions

$$Al^{3+} + 6: O \xrightarrow{H} H \longrightarrow [Al(H_2O)_6]^{3+}$$
  
Lewis acid


Types of Lewis Bases. Lewis bases can, obviously, be of two types. These are :

(*i*) Neutral molecules like  $NH_3$ ,  $R - NH_2$ , R - OH, H - O - H etc., in which one of the atoms has got at least one lone pair of electrons.

(*ii*) All negative ions like  $F^-$ ,  $CI^-$ ,  $Br^-$ ,  $I^-$ ,  $OH^-$ ,  $CN^-$  etc.

Types of Lewis Acids. Lewis acids can be of four types. These are :

(i) Molecules having a central atom with incomplete octet :



(ii) Simple cations e.g.,  $Ag^+$ ,  $Cu^{2+}$ ,  $Fe^{3+}$  etc. These ions can accept pairs of electrons and hence are Lewis acids.

(iii) Molecules having central atoms with empty d- orbitals : The central atoms in these molecules can expand their outer octet by taking up electrons in their empty d- orbitals, e.g. SnCl<sub>4</sub>, SiF<sub>4</sub>, PF<sub>5</sub> etc. have the central atoms containing empty d-orbitals.

. (fv) Molecules containing a multiple bond between two atoms of different electronegativities e.g.  $CO_2$  contains double bonds between carbon and oxygen (O = C = O). Since oxygen is more electronegative than carbon, therefore carbon acquires a slight positive charge and thus can accept a pair of electrons. Hence  $CO_2$  acts as a Lewis acid.

It is interesting to observe that Lewis bases are also Bronsted bases because a substance that is capable of giving an electron pair has the tendency to accept a proton. For example, consider the reaction

$$\begin{array}{c} H \\ H - N : + H - O - H \longrightarrow \left[ \begin{array}{c} H \\ H \\ H \end{array} \right]^{+} + O H^{-} + O H$$

Here  $NH_3$  is Lewis base as well as Bronsted base. However Bronsted acid may not be a Lewis acid. For example, in the above case,  $H_2O$  is Bronsted acid because it is giving a proton but is not a Lewis acid because it is electronically satisfied.

Usefulness and Limitations of Lewis concept. No doubt, Lewis concept is the most general out of all the concepts and can explain the acidic and basic nature of all those substances which could not be explained by the earlier concepts. Similarly, it could explain even those acid-base reactions which could not be explained by the other concepts. However, it suffered from some serious drawbacks as follows :

(i) Lewis concept is so general that it considers every reaction forming a co-ordinate bond to be acid-base reaction. This however, may not be always true. [For example, according to this concept, even some metals are acids *e.g.* nickel is acid because it forms the co-ordination compound with  $CO i.e. Ni (: C \equiv O:)_4$ , called nickel tetracarbonyl].

(ii) The necessary requirement in Lewis concept is the formation of a co-ordinate bond between the acid and base. However, the well known acids like HCl and  $H_2SO_4$  do not form any co-ordinate bond and, therefore, should not be acids according to this concept.

(*iii*) Acid-base reactions are usually fast but formation of co-ordination compound is slow. Hence it does not fit in the acid-base concept.

(iv) The catalytic activity of an acid is due to  $H^+(aq)$  ion. Since the presence of hydrogen is not an essential requirement for a Lewis acid, many Lewis acids will not have this property.

(v) Arrhenius concept and Bornsted concept can explain the strengths of acids and bases (as discussed in the next section) but Lewis concept cannot.

It may be pointed out here that, no doubt, Bronsted concept is more general than Arrhenius concept and the Lewis concept is the most general out of all but still Arrhenius concept continues to be most important in explaining a number of phenomena.

4. Dissociation of Acids and Bases

Acids like HCl, HNO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub> when dissolved in water dissociate almost completely thus producing a large number of H<sup>+</sup> ions. Hence these acids are called *strong acids*. On the other hand, acids like CH<sub>3</sub>COOH, HF, H<sub>2</sub>CO<sub>3</sub>, H<sub>3</sub>PO<sub>4</sub> etc. dissociate only to a small extent in the aqueous solution giving small amount of H<sup>+</sup> ions and hence are called *weak acids*. Similarly, bases like NaOH and KOH dissociate almost completely in the aqueous solution producing a large number of OH<sup>-</sup> ions and are called *strong bases*, whereas bases like NH<sub>4</sub>OH, Ca(OH)<sub>2</sub>, Al (OH)<sub>3</sub> etc. dissociate only to a small extent in the aqueous solution and are, therefore, called *weak bases*.

Thus the dissociation of weak acids or weak bases in water can be represented as an equilibrium process. For example,

 $CH_{3}COOH + H_{2}O \rightleftharpoons CH_{3}COO^{-}(aq) + H_{3}O^{+}(aq)$  $NH_{3} + H_{2}O \rightleftharpoons NH_{4}^{+}(aq) + OH^{-}(aq) \text{ etc.}$ 

In general, if a weak acid is represented by HA, its dissociation in water can be represented by the equilibrium

$$HA + H_2O \implies A^-(aq) + H_3O^+(aq)$$

Applying the law of chemical equilibrium, the expression for equilibrium constant will be

$$K = \frac{[A^{-}][H_{3}O^{+}]}{[HA][H_{2}O]}$$

As H<sub>2</sub>O is solvent, its concentration is large and remains almost constant (=  $55 \cdot 5 \mod L^{-1}$ )\*. We put K  $[H_2O] = K_a$ , called dissociation constant of the acid. Thus  $K_a = \frac{[A^-][H_3O^+]}{[HA]}$ Alternatively, we write

$$HA + aq \xrightarrow{} H^+ (aq) + A^- (aq)$$
$$K_a = \frac{[H^+ (aq)][A^- (aq)]}{[HA]}$$

Knowing the value of the dissociation constant of the acid,  $K_a$  and the concentration (C) of the weak acid HA taken, the concentration of  $H_3O^+$  or  $H^+$  (aq) in the solution can be calculated as follows :

 $HA + aq \longrightarrow H^{+}(aq) + A^{-}(aq)$ Initial conc.  $C \mod L^{-1}$   $0 \mod 0 \mod 0$ Concs. at eqm.  $(C \longrightarrow x) \mod x \mod x \mod x$  $\therefore K_{a} = \frac{[H^{+}(aq)([A^{-}(aq)]]}{[HA]} = \frac{x \times x}{C - x}$ 

As usually x is very small as compared to the initial concentration C, x can be neglected in comparison to C. Hence the equation is simplified to the form

$$K_a = \frac{x^2}{C}$$
 or  $x = \sqrt{K_a \times C}$ 

However, it may be pointed outer that if x is more than 5% of C, x cannot be neglected in comparison to C and the equation has to be solved as a quadratic equation to get the value of x.

Similarly, the dissociation of a weak base in water can be represented by the equilibrium

$$BOH + aq \implies B^+(aq) + OH^-(aq)$$

The dissociation constant of the weak base, represented by  $K_b$ , will be given by

$$K_b = \frac{[B^+ (aq)] [OH^- (aq)]}{[BOH]}$$

### SOLVED EXAMPLE

tion in 0.10 M acetic acid solution. Given that the dissociation constant of acetic acid in water is  $1.8 \times 10^{-5}$ .

**Solution.** Suppose at equilibrium,  $[H^+(aq)] = x \mod L^{-1}$ . Then

$$\begin{array}{c} CH_{3}COOH + aq \qquad \longrightarrow \qquad \\ CH_{3}COO^{-}(aq) + H^{+}(aq) \\ Initial \quad 0.10 \text{ M} \qquad 0 \text{ M} \qquad 0 \text{ M} \\ conc. \\ Concs. \quad (0.10 - x) \text{ M} \qquad x \text{ M} \qquad x \text{ M} \\ at eqm. \end{array}$$

\*Density of  $H_2O = 1$  g/cm<sup>3</sup>. Mass of 1 L of  $H_2O = 1000$  g. Therefore, number of moles in 1 L of  $H_2O = 1000/18$  = 55.5 moles.

### Pradeep's New Course Chemistry (XI).

 $K_{a} = \frac{[CH_{3}COO^{-} (aq)] [H^{+} (aq)]}{[CH_{3}COOH]}$ 1.8 × 10<sup>-5</sup> =  $\frac{x \times x}{0.10 - x} \approx \frac{x^{2}}{0.10}$ or  $x^{2} = (1.8 \times 10^{-5}) \times 0.10$   $= 1 \cdot 8 \times 10^{-6}$ or  $x = \sqrt{1 \cdot 8 \times 10^{-6}}$  $= 1 \cdot 34 \times 10^{-3} \text{ M}$ *i.e.*  $[\text{H}^+] = 1 \cdot 34 \times 10^{-3} \text{ M}$ 

## PROBLEMS FOR PRACTICE

Calculate the concentration of H<sup>+</sup> (aq) in 0.2 M solution of HCN. Given that the dissociation constant of HCN in water is  $4.9 \times 10^{-10}$ . [Ans.  $9.9 \times 10^{-6}$  M]

#### 8.5. Strengths of Acids and Bases

According to Arrhenius concept, an acid is defined as a substance which when dissolved in water gives  $H^+$  ions and a base is defined as a substance which when dissolved in water gives  $OH^-$  ions. Thus

Greater the number of  $H^+$  ions produced in the aqueous solution, the stronger is the acid. Similarly, greater the number of  $OH^-$  ions produced in the aqueous solution, stronger is the base.

Now, as greater is the dissociation constant of the weak acid  $(K_a)$ , greater is the amount of  $H^+(aq)$  produced, therefore stronger is the acid. Thus  $K_a$  values give a measure of the relative strengths of the weak acids. Similarly,  $K_b$  values give a measure of the relative strengths of the weak bases. The  $K_a$  values of some common weak acids are given in Table 8.1.

### TABLE 8.1. Dissociation or Ionization constants (K.) of some weak monobasic acids at 298K.

| Acid                | Formula                            | Dissociation<br>constant (K <sub>p</sub> ) |
|---------------------|------------------------------------|--------------------------------------------|
| Formic acid         | НСООН                              | $1.7 \times 10^{-4}$                       |
| Acetic acid         | СН3СООН                            | $1.8 \times 10^{-5}$                       |
| Benzoic acid        | C <sub>6</sub> H <sub>5</sub> COOH | $6.5 \times 10^{-5}$                       |
| Phenol              | C <sub>6</sub> H <sub>5</sub> OH   | $1.3 \times 10^{-10}$                      |
| Hydrofluoric acid   | HF                                 | $6.8 \times 10^{-4}$                       |
| Hydrocyanic acid    | HCN                                | $4.9 \times 10^{-10}$                      |
| I lypochlorous acid | HCIO                               | $3.2 \times 10^{-8}$                       |
| Hypobromous acid    | HBrO                               | $2.1 \times 10^{-9}$                       |
| Hypoiodous acid     | HIO                                | $2.3 \times 10^{-11}$                      |
| Nitrous acid        | HNO <sub>2</sub>                   | $4.5 \times 10^{-4}$                       |

The relative strengths of two weak acids can, however, be compared in a quantitative manner as follows:

Suppose the weak acid is represented as HA. Suppose the initial concentration of HA is C moles/litre and  $\alpha$  its degree of dissociation. Then we can write

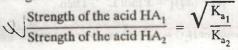
|         | HA + Water       | $\leftarrow$ | $H^+(aq)^+$ | $+A^{-}(aq)$ |
|---------|------------------|--------------|-------------|--------------|
| Initial |                  |              | liquuora na |              |
| conc.   | C                |              | 0           | 0            |
|         | $C - C\alpha$    |              | Са          | Сα           |
| at eqm. | $= C (1-\alpha)$ |              |             |              |

Applying the law of chemical equilibrium, we get

$$K_a = \frac{[H^+ (aq)] [A^- (aq)]}{[HA]}$$

where  $K_a$  is called the dissociation constant (or ionization constant) of the acid.

$$K_a = \frac{C\alpha \cdot C\alpha}{C(1-\alpha)} = \frac{\alpha^2 C}{1-\alpha}$$


As the degree of dissociation ( $\alpha$ ) of a weak acid is very small, we can take  $1 - \alpha \approx 1$ .

$$K_a = \alpha^2 C$$
 or  $\alpha = \sqrt{\frac{K_a}{C}}$ 

Thus if two acids of equimolar concentration are taken (so that C is constant),

$$\frac{\alpha_1}{\alpha_2} = \sqrt{\frac{K_{a_1}}{K_{a_2}}}$$

But degree of dissociation is a measure of the strength of an acid. Hence we can say



Thus the relative strengths of two acids of equimolar concentration can be compared by taking square root of the ratio of their dissociation constants.

e.g. 
$$K_a$$
 for CH<sub>3</sub>COOH =  $1.8 \times 10^{-5}$ 

 $K_{a}$  for HCN = 4.9 × 10<sup>-10</sup>

 $\frac{\text{Strength of CH}_3 \text{ COOH}}{\text{Strength of HCN}} = \sqrt{\frac{1 \cdot 8 \times 10^{-5}}{4 \cdot 9 \times 10^{-10}}}$  $= \sqrt{3 \cdot 67 \times 10^4} = 1 \cdot 92 \times 10^2 = 192$ 

Hence, CH<sub>3</sub>OOH is nearly 192 times stronger than HCN.

Similarly, the relative strengths of two weak bases of equimolar concentrations can be compared by taking the square root of the ratio of their dissociation constants, *i.e.*,

$$\mathcal{N} \frac{\text{Strength of base (BOH)}_1}{\text{Strength of base (BOH)}_2} = \sqrt{\frac{K}{K}}$$

where  $K_{b_1}$  and  $K_{b_2}$  are the dissociation constants of the two bases.

The dissociation constants of a few bases at 298K are given in Table 8.2 below :

# TABLE 8.2. Dissociation or Ionization constants $(\mathbf{K}_b)$ of some weak bases at 298K

| Base             | Formula                                       | Dissociation<br>constant (K <sub>b</sub> ) |
|------------------|-----------------------------------------------|--------------------------------------------|
| topytosili 22500 | Inorganic Bases                               | Sector Synthesis                           |
| Ammonia          | NH <sub>3</sub>                               | $1.77 \times 10^{-5}$                      |
| Hydroxylamine    | NH <sub>2</sub> OH                            | $1.1 \times 10^{-8}$                       |
| Hydrazine        | NH <sub>2</sub> NH <sub>2</sub>               | $1.7 \times 10^{-6}$                       |
|                  | Organic Bases                                 |                                            |
| Methyl amine     | CH <sub>3</sub> NH <sub>2</sub>               | $3.7 \times 10^{-4}$                       |
| Dimethylamine    | (CH <sub>3</sub> ) <sub>2</sub> NH            | $5.4 \times 10^{-4}$                       |
| Triethylamine    | (CH <sub>3</sub> ) <sub>3</sub> N             | $6.45 \times 10^{-5}$                      |
| Aniline          | C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub> | $4.27 \times 10^{-10}$                     |
| Pyridine         | C <sub>5</sub> H <sub>5</sub> N               | $1.77 \times 10^{-9}$                      |

It must be remembered that since the ionization of an acid or a base increases with dilution, the strength of the acid or the base increases with dilution.

Note that  $K_a$  and  $K_b$  are taken as dimensionless quantities (as already explained in unit 7) because the standard state concentration of all the species involved is taken as 1 mol  $L^{-1}$ .

Polyprotic acids and Polyacidic bases. Some acids like sulphuric acid  $(H_2SO_4)$ , carbonic acid  $(H_2CO_3)$ , oxalic acid  $((COOH)_2)$ , phosphoric acid  $(H_3PO_4)$  etc. contain more than one ionizable proton. Such acids are called polybasic or polyprotic acids. They ionize in steps. For example, the dibasic acid  $(H_2X)$  may ionize in two steps as follows :

Their ionization constants,  $K_{a_1}$  and  $K_{a_2}$  called

the first and the second ionization constant respectively, will be given by the equations

$$K_{a_1} = \frac{[H^+][HX^-]}{[H_2X]}, K_{a_2} = \frac{[H^+][X^{2-}]}{[HX^-]}$$

The overall equilibrium may be beained by adding the stepwise dissociation equilibria. Thus for the above process, the overall equilibrium will be

$$H_2X(aq) \implies 2 H^+(aq) + X^{2-}(aq)$$
  
 $K_a = \frac{[H^+]^2 [X^{2-}]}{[H_2X]}$ 

Evidently, 
$$K_a = K_{a_1} \times K_{a_2}$$

Similarly, a tribasic acid like  $H_3PO_4$  has three ionization constants. The overall ionization constant ( $K_a$ ) will be the product of the ionization constants of the three steps *i.e.* 

$$\mathbf{K}_a = \mathbf{K}_{a_1} \times \mathbf{K}_{a_2} \times \mathbf{K}_{a_3}$$

The ionization constants of some polyprotic acids are given in Table 8.3 below :

Pradeep's New Course Chemistry (AP)

| Acid                                              | K <sub>a1</sub>      | K <sub>a2</sub>           | K <sub>a3</sub>             |
|---------------------------------------------------|----------------------|---------------------------|-----------------------------|
| Sulphuric acid (H <sub>2</sub> SO <sub>4</sub> )  | very high            | $1\cdot 2 \times 10^{-2}$ | Contra Contra               |
| Sulphurous acid (H <sub>2</sub> SO <sub>3</sub> ) | $1.7 \times 10^{-2}$ | $6.4 \times 10^{-8}$      | and the second              |
| Oxalic acid (COOH)2                               | $5.9 \times 10^{-2}$ | $6.4 \times 10^{-5}$      | A                           |
| Carbonic acid (H <sub>2</sub> CO <sub>3</sub> )   | $4.3 \times 10^{-7}$ | $5.6 \times 10^{-11}$     | - shi hallan                |
| Phosphoric acid (H <sub>3</sub> PO <sub>4</sub> ) | $7.5 \times 10^{-3}$ | $6\cdot 2\times 10^{-8}$  | $4 \cdot 2 \times 10^{-13}$ |
| Arsenic acid (H <sub>3</sub> PO <sub>4</sub> )    | $5.0 \times 10^{-3}$ | $8.3 \times 10^{-8}$      | $6 \times 10^{-10}$         |
| ( он )                                            | $7.4 \times 10^{-4}$ | $1.7 \times 10^{-5}$      | $4.0 \times 10^{-7}$        |
| Citric acid HOOC.CH2-C-CH2COOH                    | - otom               | WHERE AND A STREET        | Harris , Chight             |
| соон                                              | reprint              | - Carlos and              | and an and the second       |

TABLE 8.3. Dissociation or Ionization constants of some polyprotic acids at 298K

It may be noted from the above table that  $K_{a_1} > K_{a_2} > K_{a_3}$ 

Similarly, polyacidic bases also ionize in steps with ionization constants  $K_{b_1}$ ,  $K_{b_2}$ ,  $K_{b_3}$  etc.

According to Bronsted-Lowry concept, the relative strengths of two acids are compared by comparing their tendencies to donate protons. Simiarly, the relative strengths of two bases are compared by comparing their tendencies to accept protons.

The relative strengths of the two acids or the two bases involved in the two acid-base conjugate pairs can be found out if we know whether forward reaction is favoured or backward reaction is favoured. For example, consider the reaction

| HCl               | + | H <sub>2</sub> O  | <u> </u> | H <sub>3</sub> O <sup>+</sup> | $+ Cl^{-}$        |
|-------------------|---|-------------------|----------|-------------------------------|-------------------|
| Acid <sub>1</sub> |   | Base <sub>2</sub> |          | Acid <sub>2</sub>             | Base <sub>1</sub> |

Here, the forward reaction proceeds almost to completion. We must, therefore, conclude that HCl is a stronger acid than  $H_3O^+$  (*i.e.* HCl has a stronger tendency to give proton than  $H_3O^+$ ). Similarly,  $H_2O$  is a stronger base than Cl<sup>-</sup>. Thus the strong acid (HCl) has a weak conjugate base (Cl<sup>-</sup>).

Again, consider the reaction

 $CH_{3}COOH + H_{2}O \rightleftharpoons H_{3}O^{+} + CH_{3}COO^{-}$ Acid, Base<sub>2</sub> Acid<sub>2</sub> Base<sub>1</sub>

Here, backward reaction is favoured. This shows that  $H_3O^+$  is stronger acid than  $CH_3COOH$ . Similarly,  $CH_3COO^-$  is a stronger base than  $H_2O$ . Thus we again observe that the

strong acid  $(H_3O^+)$  has the weak conjugate base  $(H_2O)$ . To sum up

# A strong acid has a weak conjugate base and vice versa.

Thus the relative strengths of some acids and their conjugate bases may be represented as follows :

Strongest  $\longrightarrow$  weakest Acid : HIO<sub>3</sub> > HNO<sub>2</sub> > HF > HCOOH>HCN>H<sub>2</sub>O Con- IO<sub>3</sub><sup>-</sup> < NO<sub>2</sub><sup>-</sup> < F<sup>-</sup> < HCOO<sup>-</sup> < CN<sup>-</sup> < OH<sup>-</sup> jugate :

Base :

Strongest

Conversely, if we know with respect to water the relative strengths of two acids or bases involved in the conjugate pair in the acid-base reaction, we can find out whether the forward reaction will be favoured or the backward reaction will be favoured.

### 8.6. Acid-base Equilibria

Weakest +

An acid when dissolved in water gives  $H^+$ ions and the corresponding *anion*. Similarly, when a base is dissolved in water, it gives  $OH^-$  ions and the corresponding *cation*. These anions or cations further interact with water. The reaction of the ion with water is called *hydrolysis*. The following three different possibilities arise :

1. The ions simply get hydrated. The cations of strong bases such a NaOH, KOH etc. and the anions of strong acids like HCl, HNO<sub>3</sub> etc. simply undergo hydration *i.e.* surrounded by water molecules attracted by intermolecular forces. This is because these ions are such weak acids or bases that they cannot react with water by splitting it into  $H^+$  and  $OH^-$  ions. Examples of some ions that simply undergo hydration in aqueous solution are

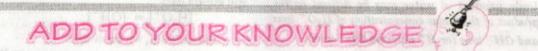
### Cl<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup>, ClO<sub>4</sub><sup>-</sup>, Na<sup>+</sup>, K<sup>+</sup> etc.

2. Negative ions of weak acids react with water molecules, setting up acid-base equilibria and giving alkaline solution. The general equation for anion hydrolysis may be written as

$$\begin{array}{c} X^{-} + H_2O \rightleftharpoons HX + OH^{-}\\ Base & Acid & Base \\ e.g. CN^{-} + H_2O \rightleftharpoons HCN + OH^{-}\\ S^{2-} + H_2O \rightleftharpoons HS^{-} + OH^{-} etc. \end{array}$$

Anions that undergo hydrolysis as above are the anions of the weak acids. In other words, they are stronger bases than water (conjugate acid-base concept). Examples of some strongly basic anions are

$$CO_3^{2-}$$
,  $HCO_3^{-}$ ,  $S^{2-}$ ,  $HS^{-}$ ,  $CN^{-}$ ,  
 $CH_3COO^{-}$ ,  $PO_4^{3-}$  etc.


3. Positive ions of weak bases react with water molecules setting up acid-base equilibria and giving acidic solution. The most common example is that of  $NH_4^+$  cation (obtained from the weak base  $NH_4OH$ ). Its hydrolysis may be represented as

$$\begin{array}{ccc} NH_4^+ + H_2O & \longrightarrow & NH_3 + H_3O^+ \\ Acid & Base & Base & Acid \end{array}$$

As only the cations obtained from weak bases undergo hydrolysis as above, it can be said that these are those cations that are stronger acids than water. A few examples of such cations are

NH4, Be2+, Zn2+, Al3+, Fe3+ etc.

Acid-base equilibria are also set up when salts are dissolved in water. The reaction of salts with water is called 'salt hydrolysis' and has been discussed in section 8.10.



- H<sup>+</sup> ion (which is barely a proton) is so small in size that it cannot exist as such in the aqueous solution. It combines with four H<sub>2</sub>O molecules surrounded tetrahedrally and exists as H<sub>9</sub> O<sub>4</sub><sup>+</sup> ion (H<sup>+</sup> + 4 H<sub>2</sub>O  $\rightarrow$  H<sub>9</sub>O<sub>4</sub><sup>+</sup>).
  - Like H<sub>2</sub>O, many other liquids also undergo auto-protolysis e.g.

$$NH_3 + NH_3 \implies NH_4^+ + NH_2^-$$

$$H_2SO_4 + H_2SO_4 \implies H_3SO_4^+ + HSO_4^-$$

3. Classification of solvents

|   |               | Name        | Characteristic                    | Examples                  |
|---|---------------|-------------|-----------------------------------|---------------------------|
| / | (i)           | Protophilic | Tendency to accept protons        | H2O, liq. NH3, CH3OH etc. |
|   | ( <i>ii</i> ) | Protogenic  | Tendency to give protons          | H2O.CH3COOH, HCI etc.     |
|   | (iii)         | Amphiprotic | Act as both (i) & (ii)            | H2O, NH3, CH3OH etc.      |
| L | ( <i>iv</i> ) | Aprotic     | Neither donate nor accept protons | Benzene                   |

8.7. Dissociation Constant and Ionic Product of Water

Pure water is poor conductor of electricity. This shows that water is a weak electrolyte *i.e.*, it is ionized to a very small extent as

$$H_2O \rightleftharpoons H^+ + OH^-$$

or more accurately, it may be written as

 $H_2O + H_2O \Longrightarrow H_3O^+ + OH^- ...(i)$ 

This ionization is called *self-ionization of water*. Applying the law of chemical equilibrium to the above equilibrium, we get

$$\frac{[\mathrm{H}^+][\mathrm{OH}^-]}{[\mathrm{H}_2\mathrm{O}]} = \mathrm{K}$$

8/13

### Pradeep's New Course Chemistry (XI)

or 
$$\frac{[H_3O^+][OH^-]}{[H_2O]^2} = K$$
 ...(*ii*)

where K is the dissociation constant of water.

Since water is ionized to a very small extent, this means that out of millions of water molecules, only a few are dissociated into  $H_3O^+$  and  $OH^$ ions. Thus the concentration of unionized water molecules *i.e.* [H<sub>2</sub>O] remains almost constant (being equal to 1000/18 = 55.55 moles per litre, because 1 litre of water = 1000 cc = 1000 g and molar mass of  $H_2O = 18 \text{ g mol}^{-1}$ ) *i.e.* 

 $[H_2O] = constant$ 

Equation (ii) may be rewritten as

 $[H_3O^+][OH^-] = K [H_2O]^2$ 

= constant  $\times$  constant =  $K_w$ , another constant,

called ionic product of water. Hence

# Ionic product of water may be defined as the product of the molar concentration of $H_3O^+$ ions and $OH^-$ ions (or $H^+$ ions and $OH^-$ ions).

The dissociation constant of water, as given by eqn. (ii), can be calculated by substituting the values of  $[H_3O^+]$ ,  $[OH^-]$  and  $[H_2O]$ . Thus, we get

$$\mathbf{K} = \frac{10^{-7} \times 10^{-7}}{55 \cdot 55} = 1 \cdot 8 \times 10^{-16}$$

Note carefully that dissociation/ionization constant of water (K) is different from ionic product of water  $(K_w)$ . The two are related as

$$K = \frac{K_w}{55 \cdot 55} \text{ or } K_w = K \times 55 \cdot 55$$

Further, it must be noted that ionic product of water is constant only at constant temperature. Its value at 25°C (298 K) is found to be  $1.008 \times 10^{-14}$ . However, for simplicity, the value of K<sub>w</sub> at 298 K is usually taken as

$$K_{..} = 1.00 \times 10^{-14}$$

Effect of temperature on  $K_{\mu}$ . The ionic product of water  $(K_{\mu})$  increases with increase of temperature (as shown by the values given in Table 8.2). This is obviously because of the fact that with increase of temperature, the degree of ionization of water increass. In other words, more of H<sub>2</sub>O molecules dissociate into H<sup>+</sup> (or H<sub>3</sub>O<sup>+</sup>) ions and OH<sup>--</sup> ions. Thus the concentration of H<sup>+</sup> (or

 $H_3O^+$ ) ions and  $OH^-$  ions increases and hence the ionic product also increases.

TABLE 8.4. Values of K<sub>w</sub> at different temps.

| Tempereature (°C) | Kw                    |
|-------------------|-----------------------|
| 0                 | $0.1 \times 10^{-14}$ |
| 10                | $0.3 \times 10^{-14}$ |
| 25                | $1.0 \times 10^{-14}$ |
| 30                | $1.5 \times 10^{-14}$ |
| 40                | $3.0 \times 10^{-14}$ |
| 50                | $5.5 \times 10^{-14}$ |
| 60                | $9.6 \times 10^{-14}$ |

 $H_3O^+$  ion and  $OH^-$  ion concentrations in pure water at 298 K : Pure water ionizes as

$$H_2O + H_2O \longrightarrow H_3O^+ + OH^-$$

Obviously, for any degree of ionization, we will always have

$$H_{3}O^{+}| = [OH^{-}]$$

But at 298 K, we know that

$$\begin{split} \mathbf{K}_{w} &= [\mathbf{H}_{3}\mathbf{O}^{+}] \ [\mathbf{O}\mathbf{H}^{-}] &= 1.0 \times 10^{-14} \\ \therefore & [\mathbf{H}_{3}\mathbf{O}^{+}] \ [\mathbf{H}_{3}\mathbf{O}^{+}] &= 1.0 \times 10^{-14} \\ \text{or} & [\mathbf{H}_{3}\mathbf{O}^{+}]^{2} &= 1.0 \times 10^{-14} \\ \text{or} & [\mathbf{H}_{3}\mathbf{O}^{+}] &= \sqrt{1 \cdot 0 \times 10^{-14}} \\ &= 1 \cdot 0 \times 10^{-7} \text{ moles/litre} \\ \text{Thus in pure water at 25°C,} \end{split}$$

$$[H_2O^+] = [OH^-] = 1.0 \times 10^{-7} M$$

8.8. H<sub>3</sub>O<sup>+</sup> Ion and OH<sup>-</sup> Ion Concentrations in Aqueous Solutions of Acids and Bases \*\*\*\*\*\*

As already explained above, for pure water at 298 K

$$H_{1}O^{+}] = [OH^{-}] = 10^{-7} M$$

Now, if some acid (say HCl) is added to the pure water, then

$$[H_{2}O^{+}] > 10^{-7} M$$

However, experiments show that the equation  $K_w = [H_3O^+] [OH^-]$  is still valid. Thus the  $[OH^-]$  decreases and may be calculated as

$$[OH^{-}] = \frac{K_{w}}{[H_{3}O^{+}]}$$

8/14

Again, if some base (say NaOH) is added to pure water, then

$$[OH^{-}] > 10^{-7} M$$

But the equation  $K_{w} = [H_3O^+] [OH^-]$  is still found to hold good. Hence  $[H_3O^+]$  decreases and may be calculated as

$$[H_3O^+] = \frac{K_w}{[OH^-]}$$

The increase or decrease of the  $H_3O^+$  ion concentration in an aqueous solution of an acid or a base may be explained qualitatively on the basis of Le Chatelier's principle (or common ion effect) as follows :

$$2H_2O \iff H_3O^+ + OH^-$$

If some acid is added to pure water,  $H_3O^+$  ion concentration increases, therefore the equilibrium shifts in the backward direction (or ionization of  $H_2O$  is suppressed). Thus the OH<sup>-</sup> ion concentration decreases. Similarly, if a base added, OH<sup>-</sup> ion concentration increases. Again, the equilibrium shifts in the backward direction (or the ionization of  $H_2O$  is suppressed) and hence the  $H_3O^+$  ion concentration decreases.

8.9. pH—A Convenient Representation of H<sub>3</sub>O<sup>++</sup> Ion Concentration

It has already been discussed above that a solution may be neutral, acidic or alkaline, the equation

$$K_w = [H_3O^+] [OH^-]$$
  
= 1.0 × 10<sup>-14</sup> at 298 F

always holds good. Thus if  $H_3O^+$  ion concentration of a solution is known,  $OH^-$  ion concentration is automatically fixed. Thus to express the acidity or alkalinity of a solution, it is sufficient to express only the  $H_3O^+$  ion concentration. Since the product of  $[H_3O^+]$  and  $[OH^-]$  is always  $1.0 \times 10^{-14}$ , the concentration of  $H_3O^+$  ions may vary from  $10^0$  *i.e.* 1 M to  $10^{-14}$  M. Thus a solution may have  $[H_3O^+]$  $= 2.5 \times 10^{-5}$  M or which may be written as 0.000025 M. Obviously, such a method of expressing the  $H_3O^+$  ion concentration is quite cumbersome. Sorensen, in 1909, suggested a convenient method of expressing the  $H_3O^+$  ion concentration in terms of pH The symbol has been taken from the Danish word *potenz de hydrogen ion* which means power of Hydrogen ions. The following different definitions of pH are used to express the  $H_3O^+$  ion concentration.

(i) pH of a solution is defined as the magnitude of the negative power to which 10 must be raised to express the hydronium ion  $(H_3O^+)$  concentration\*.

Thus if in a solution  

$$[H_3O^+] = 10^{-x} \qquad ...(i)$$
  
 $pH = x$ 

However, this definition can be used only where the  $[H_3O^+]$  can be expressed as a power of 10. In many cases, it may not be easy to do so, e.g., a solution may have  $[H_3O^+] = 2.5 \times 10^{-5}$  M.

A more general definition may be arrived at from equation (i) as follows :

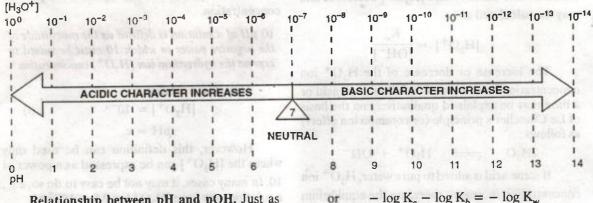
Taking logarithm of both sides of equation (i), we get

$$\log [H_3O^+] = \log 10^{-x}$$
  
= -x log 10  
or = -x (log 10 = 1)  
or x = - log [H\_3O^+]  
i.e. pH = -log [H\_3O^+] ...(ii)

This is the most common form used in numerical problems. Thus

(ii) pH may be defined as negative logarithm of hydronium ion concentration.

Equation (ii) may be rewritten as  


$$pH = \log [H_3O^+]^{-1}$$
  
or  $pH = \log \frac{1}{[H_3O^+]}$ . Hence

(iii) pH may also be defined as logarithm of the reciprocal of  $H_3O^+$  ion concentration.

pH scale : Theoretically, a solution may have any  $H_3O^+$  ion concentration and hence may have any pH value. However, practically, the solutions having  $H_3O^+$  ion or OH<sup>-</sup> ion concentration more than  $10^0$  (= 1 M) and hence OH<sup>-</sup> ion or  $H_3O^+$ 

\*Strictly seaking, in place of molar concentrations, activities of  $H^+$  ions  $(a_{H}^+)$  are used. However, at low concentrations, the two are equal.

ion conc. less than 10<sup>-14</sup> M are not common. This is because such solutions are not easy to obtain and moreover as the concentration increases, the degree of dissociation of the acid or the base decreases enormously. Hence the pH range is taken as 0 to 14 for most of the practical purposes. The acidity or the alkalinity of a solution may be represented on the pH scale as follows :



Relationship between pH and pOH. Just as  $pH = -\log [H^+]$ , similarly,  $pOH = -\log [OH^-]$ Since  $[H_3O^+]$   $[OH^-] = K_w = 10^{-14}$  at 25° C

$$\therefore \log [H_3O^+] + \log [OH^-] = \log K_w$$
  
= log 10<sup>-14</sup> = -14  
or -log [H\_3O^+] -log [OH^-]  
= -log K\_w = 14

pH + pOH = pK = 14

Relationship between  $pK_a$  and  $pK_b$  values (*i.e.* between ionization constant of a weak acid and that of its conjugate base).

Consider the weak acid HF. Its conjugate base is F<sup>-</sup>. They dissociate as follows :

$$K_{a} = \frac{[H^{+}][F^{-}]}{[HF]} \qquad \dots (i)$$

$$H^- + H_2O \iff OH^- + HF,$$
  
 $K_1 = \frac{[OH^-][HF]}{[HF]}$ 

Multiplying eqns. (i) and (ii), we get

$$\mathbf{K}_{a} \times \mathbf{K}_{b} = [\mathbf{H}^{+}] [\mathbf{O}\mathbf{H}^{-}] = \mathbf{K}_{w}$$
$$\mathbf{K}_{a} \times \mathbf{K}_{b} = \mathbf{K}_{w}$$

 $[F^{-}]$ 

F

or

HF

 $\log K_a + \log K_b = \log K_w$ 

i.e. 
$$pK_a + pK_b = pK_w.$$

#### Limitations of pH scale.

(i) The pH values of the solutions do not give the exact idea of their relative strength. For example,

(a) A solution of pH = 1 has hydrogen ion concentration 100 times than that of a solution of pH = 3, and not 3 times.

(b) A 4  $\times$  10<sup>-5</sup> N HCl solution is twice concentrated as compared to  $2 \times 10^{-5}$  N HCl solution but the pH values of these solutions are  $4 \cdot 4$  and 4.7 respectively, and not double.

(ii) pH = 0 is obtained in 1N solution of a strong acid and for concentration 2N, 3N, 10N etc. the value can be negative too. Similarly, for a concentrated solution of a strong base (> 1 M), pH can be greater than 14.

(iii) A  $10^{-8}$  M solution of acid can not have pH = 8. The value will be close to but < 7 (see solved example under 'Type VIII' page 8/26).

Measurement of pH. Though accurate measurement of pH of a solution is done with the help of an instrument, called pH-meter, approximate pH (within the range of 0.5) can be determined with the help of pH papers which show different colours when dipped in solutions of different pH.

### PROBLEMS ON CALCULATION OF [H<sub>3</sub>O<sup>+</sup>], [OH<sup>-</sup>] & pH

TYPE I. On the calculation of [H<sub>1</sub>O<sup>+</sup>] and [OH<sup>-</sup>]

ion concentrations at 25° C in (i) 0.02 N HCl solution (ii) 0.005 N NaOH solution Solution. (i) HCl completely ionizes as  $HCl + H_2O \longrightarrow H_3O^+ + Cl^ [H_{3}O^{+}] = [HCI]$ ... = 0.02 N (Given)  $= 0.02 \,\mathrm{M}$ (:: HCl is monobasic)  $= 2 \times 10^{-2} M$ Now as  $[H_3O^+]$   $[OH^-] = K_w = 10^{-14}$  $\therefore \quad [OH^-] = \frac{K_w}{[H_3O^+]} = \frac{10^{-14}}{2 \times 10^{-2}}$  $= 5 \times 10^{-13} \,\mathrm{M}$ (ii) NaOH completely ionizes as NaOH  $\longrightarrow$  Na<sup>+</sup> + OH<sup>-</sup>  $\therefore$  [OH<sup>-</sup>] = [NaOH] = 0.005 N (Given) (:: NaOH is monoacidic)  $= 5 \times 10^{-3} M$ Now as  $[H_3O^+][OH^-] = K_w = 10^{-14}$  $\therefore [H_3O^+] = \frac{K_w}{[OH^-]} = \frac{10^{-14}}{5 \times 10^{-3}}$ 

 $= 2 \times 10^{-12} M$ 

• EXAMPLE 2. Calculate the concentration of  $H_3O^+$  ions in a mixture of 0.02 M acetic acid and

0.2 M sodium acetate. Given that the ionization constant (K<sub>a</sub>) for acetic acid is  $1.8 \times 10^{-5}$ .

Solution. Acetic acid ionizes to a small extent whereas sodium acetate (being a salt) ionizes completely. Suppose acetic acid ionized at equilibrium = x moles. Then  $CH_3COOH+H_2O \rightleftharpoons CH_3COO^-+H_3O^+$ 0.02 Initial 0 moles Moles 0.02 - xx at eqm.  $CH_{1}COONa \longrightarrow CH_{1}COO^{-} + Na^{+}$ 0.2 0 0 Initial moles Moles 0 0.2 0.2at eqm. Thus in the mixture solution

 $[CH_{3}COO^{-}] = 0.2 + x \approx 0.2 M$ 

(CH<sub>3</sub>COO<sup>-</sup> are obtained mainly from CH<sub>3</sub>COONa, therefore x < < 0.2)

 $[CH_3COOH] = 0.02 - x \approx 0.02M$ 

$$K_{a} = \frac{[CH_{3}COO^{-}][H_{3}O^{+}]}{[CH_{3}COOH]}$$

$$1 \cdot 8 \times 10^{-5} = \frac{0 \cdot 2 \times [H_{3}O^{+}]}{0.02}$$
or  $[H_{3}O^{+}] = \frac{1 \cdot 8 \times 10^{-5} \times 0 \cdot 02}{0 \cdot 2}$ 

$$= 1 \cdot 8 \times 10^{-6} M$$

## PROBLEMS FOR PRACTICE

If hydrogen ion concentration in a solution is  $1 \times 10^{-5}$  moles/litre, calculate the concentration of OH<sup>-</sup> ion in this solution ( $K_{w} = 10^{-14}$  moles<sup>2</sup> / litre<sup>2</sup>) [Ans.  $10^{-9}$  moles/litre]

Note. Since the calculation of  $H_3O^+$  ion concentration is usually the first step towards the calculation of pH, therefore the numericals of this type are automatically included in the various types that follow.

Pradeep's New Course Chemistry (XI)

**TYPE II. On the calculation of** pH of completely ionized acids • EXAMPLE 1. Calculate the pH value of (i)  $10^{-2}$  molar HNO<sub>3</sub> solution (ii) 0.03 N HCl solution (iii) 0.001 NH2SOA solution. Solution. (i) HNO<sub>3</sub> completely ionizes as  $HNO_3 \div H_2O \longrightarrow H_3O^+ + NO_3^ \therefore$  [H<sub>1</sub>O<sup>+</sup>] = [HNO<sub>1</sub>] = 10<sup>-2</sup> M (Given)  $pH = -\log[H_1O^+] = -\log(10^{-2})$  $= - (-2 \log 10) = 2$ (ii) HCl completely ionizes as  $HCI + H_2O \longrightarrow H_3O^+ + CI^ \therefore$  [H<sub>3</sub>O<sup>+</sup>] = [HCl] = 0.03 N (Given)  $= 3 \times 10^{-2} \text{ N} = 3 \times 10^{-2} \text{ M}$ (HCl is monobasic)  $pH = -\log [H_3O^+]$ (Eq. mass = Mol. mass) $= - [\log 3 \times 10^{-2}]$  $= -(\log 3 + \log 10^{-2})$ = - (0.4771 - 2) = 1.5229(iii) H<sub>2</sub>SO<sub>4</sub> completely ionizes as  $H_2SO_4 + 2H_2O \longrightarrow 2H_3O^+ + SO_4^{2-}$  $[H_3O^+] = 2 \times [H_2SO_4]$  $[1 \text{ molecule of } H_2SO_4 \text{ gives } 2 H_3O^+ \text{ ions}]$ But  $H_2SO_4 = 0.001 \text{ N} = 0.001 \times 49 \text{ g/litre}$ (Eq. mass of  $H_2SO_4 = 49$ )  $= \frac{0.001 \times 49}{98}$  moles/litre

(: Mol. mass of  $H_2SO_4 = 98$ )

= 
$$0.0005 \text{ M}$$
  
 $[H_3O^+] = 2 \times [H_2SO_4]$   
=  $2 \times 0.0005 \text{ M}$   
=  $0.001 \text{ M} = 10^{-3} \text{ M}$   
 $\therefore \text{ pH} = -\log [H_3O^+]$ 

 $= -\log(10^{-3}) = 3$ 

**EXAMPLE 2.** The concentration of hydronium ions in a cup of black coffee is  $1 \cdot 3 \times 10^{-5}$  M. Find the pH of the coffee. Is this coffee acidic or alkaline?

Solution. Here we are given that  $[H_3O^+] = 1.3 \times 10^{-5}$   $pH = -\log [H_3O^+] = -\log (1.3 \times 10^{-5})$   $= -(\log 1.3 + \log 10^{-5})$  = -0.1139 + 5 = 4.8861 = 4.89As pH is less than 7, the black coffee is *acidic*.

**EXAMPLE 3.** A solution is found to contain 0.63 g of nitric acid per 100 ml of the solution. What is the pH of the solution if the acid is completely dissociated ?

**Solution.** Concentration of  $HNO_3$  solution = 0.63 g per 100 ml (*Given*)

= 6.3 g per litre = 
$$\frac{6 \cdot 3}{63}$$
 moles/litre  
=  $10^{-1}$  M  
( $\therefore$  Mol. mass of HNO<sub>3</sub> = 63)

Now, HNO<sub>3</sub> completely ionizes as

HNO<sub>3</sub> + H<sub>2</sub>O → H<sub>3</sub>O<sup>+</sup> + NO<sub>3</sub><sup>-</sup>  
∴ [H<sub>3</sub>O<sup>+</sup>] = [HNO<sub>3</sub>]  
= 10<sup>-1</sup> M  
∴ 
$$pH = -\log [H_3O^+]$$
  
=  $-\log 10^{-1} = 1$ 

# PROBLEMS FOR PRACTICE

- Calculate the pH value of 0.001 N HNO<sub>3</sub> solution
   [Ans. 3]
- 2. Calculate the pH value of  $10^{-3}$  M HCl solution [Ans. 3]
- What is the pH of a solution whose H<sup>+</sup> ion concentration is 2 × 10<sup>-5</sup> g ions/litre ? [Ans. 4.699]
   0.049 g of H<sub>2</sub>SO<sub>4</sub> is dissolved per litre of the given
- solution. Calculate the pH of the solution.

[Ans. 3.0]

### PRACTICE PROBLEMS CONTO.

5. Calculate the pH of a solution which is  $1 \times 10^{-3}$  M with respect to sulphuric acid.

[Ans. 2.699]

- 6. 13.5 g of an acid HA, of molecular mass 135 was dissolved in 10 litres of aqueous solution. Calculate the pH of the solution, assuming the acid to be completely dissociated. [Ans. 2]
- 7. Calculate the pH value of a  $4.9 \times 10^{-4}$  N monobasic acid solution assuming complete ionization. [Ans. 3.31]
- Calculate the pH of a solution obtained by diluting 25 ml of N/100 HCl to 500 ml. [Ans. 3.301]
- 1 ml of 13.6 M HCl is diluted with water to give 1 litre of the solution. Calculate pH of the resulting solution. [Ans. 1.67]

HINTS FOR DIFFICULT PROBLEMS

4. 
$$[H_2SO_4] = \frac{0.049}{98} \text{ mol } L^{-1} = 5 \times 10^{-4} \text{ M.}$$
  
As  $H_2SO_4 \longrightarrow 2 \text{ H}^+ + SO_4^{2-}$ ,  
 $[H^+] = 2 \times (5 \times 10^{-4}) = 10^{-3} \text{ M.}$   
6.  $[HA] = \frac{13 \cdot 5}{135 \times 10} \text{ mol } L^{-1} = 10^{-2} \text{ M.}$   
 $[H^+] = [HA] = 10^{-2} \text{ M.}$ 

TYPE III. On the calculation of pH of completely lonized alkalies

EXAMPLE 1. Calculate the pH of N/1000 sodium hydroxide solution assuming complete ionization ( $K_w = 1.0 \times 10^{-14}$ ).

Solution. NaOH completely ionizes as  
NaOH 
$$\longrightarrow$$
 Na<sup>+</sup> + OH<sup>-</sup>  
 $\therefore$  [OH<sup>-</sup>] = [NaOH] =  $\frac{N}{1000}$   
 $= 10^{-3} N = 10^{-3} M$   
( $\therefore$  Eq. mass = Mol. mass in case of NaOH)  
Now as [H<sub>3</sub>O<sup>+</sup>] [OH<sup>-</sup>] =  $10^{-14}$ 

$$\therefore [H_3O^+] = \frac{10^{-14}}{[OH^-]} = \frac{10^{-14}}{10^{-3}} = 10^{-11}$$

 $\therefore pH = -\log [H_3O^+]c = -\log 10^{-11} = 11$ 

**EXAMPLE 2.** 4.0 g of NaOH are dissolved per litre. Find (i) molarity of the solution (ii)  $OH^-$  ion concentration (iii) pH value of the solution (At. masses : Na = 23, O = 16, H = 1).

N<sub>1</sub>V<sub>1</sub> = N<sub>2</sub>V<sub>2</sub>, 25 × 1 / 100 = N<sub>2</sub> × 500  
or N<sub>2</sub> = 5 × 10<sup>-4</sup> N  
[H<sup>+</sup>] = [HCl] = 5 × 10<sup>-4</sup> M  
$$pH = -\log (5 \times 10^{-4})$$
  
= 4 - log 5 = 4 - 0.6990 = 3.301.

Solution. (i) Calculation of molarity : Mass of NaOH dissolved = 4.0 g/litre Mol. mass of NaOH = 40... Molarity of the solution  $\frac{\text{Strength in g/litre}}{\text{Mol. mass}} = \frac{4 \cdot 0}{40} = 0 \cdot 1 \text{ M}$ (ii) Calculation of the OH<sup>-</sup> ion conc. NaOH completely ionizes as  $NaOH \longrightarrow Na^+ + OH^ \therefore$  [OH<sup>-</sup>] = [NaOH] = 0.1 M = 10<sup>-1</sup> M (iii) Calculation of pH: We know that  $[H_3O^+]$   $[OH^-] = K_w = 1.0 \times 10^{-14}$  $\therefore [H_3O^+] = \frac{K_w}{[OH^-]} = \frac{1 \cdot 0 \times 10^{-14}}{10^{-1}}$  $= 10^{-13} M$  $pH = -\log [H_1O^+]$  $= -\log 10^{-13} = 13.$ 

# PROBLEMS FOR PRACTICE

- 1. Calculate the pH value of (a) 0.0001 M NaOH (b) 0.01 M NaOH and (c) 0.04 M NaOH solution at 25°C. [Ans. (a) 10 (b) 12 (c) 12.60]
- 2. Calculate the pH of a solution containing 2 g caustic soda/litre of water. [Ans. 12.699]
- 3. How many grams of sodium hydroxide must be dissolved in one litre of water to prepare its N/10 solution ? What will be its pH value ?

[Ans. 4 g, 13]

### Pradeep's New Course Chemistry (XI)

4. Calculate the pH of the following solutions :

| Base        | Amount dissolved | Volume of sol. made |  |
|-------------|------------------|---------------------|--|
| (a) TIOH    | 2 g              | 2 L                 |  |
| (b) Ca(OH)2 | 0.3g             | 500 mL              |  |
| (c) NaOH    | 0.30             | 200 mL              |  |

(Atomic masses : TI = 204, Ca = 40, Na = 23) (N.C.E.R.T.) [Ans. (a) 11.70 (b) 12.21 (c) 12.57]

5. The solubility of  $Sr(OH)_2$  at 298K is 19.23 g/L of solution. Calculate the concentrations of strontium

and hydroxyl ions and the pH of the solution. (Atomic mass of  $Sr = 87 \operatorname{cdot} 6$ ) (*N.C.E.R.T.*)

 $[Ans. |Sr^{2+}] = 0.1581 \text{ M}, [OH^-] = 0.3162 \text{ M}, pH = 13.50]$ 

If 0.561 g KOH is dissolved in water to give 200 mL of solution at 298 K, calculate the concentration of potassium, hydrogen and hydroxyl ions. What is its pH ? (N.C.E.R.T.)

[Ans.  $[K^+] = [OH^-] = 0.05 \text{ M},$  $[H^+] = 2.0 \times 10^{-13} \text{ M}]$ 

HINTS FOR DIFFICULT PROBLEMS

2. [NaOH] =  $\frac{2}{40}$  mol L<sup>-1</sup> = 5 × 10<sup>-2</sup> M

*i.e.* 
$$[OH^-] = 5 \times 10^{-2} M$$

$$[H_3O^+] = \frac{10^{-14}}{5 \times 10^{-2}} = 2 \times 10^{-13}.$$

 $pH = -\log(2 \times 10^{-13})$ 

- 3. For 1 L of 1 N NaOH solution, NaOH dissolved = 1 g eq. = 40 g
  - ... For 1 L of N/10 NaOH sol., NaOH dissolved

 $= 40 \times \frac{1}{10} = 4 g$ [OH<sup>-</sup>] = 10<sup>-1</sup> M ∴ [H<sub>3</sub>O<sup>+</sup>] = 10<sup>-13</sup> M.  $pH = -\log 10^{-13} = 13$ 

TYPE IV. On the calculation of pH of acids and bases not completely lonized

**EXAMPLE 1.** Calculate the pH of a 0.01 N solution of acetic acid.  $K_a$  for CH<sub>3</sub>COOH is  $1.8 \times 10^{-5}$  at 25°C.

Solution. CH<sub>3</sub>COOH ionizes as

get

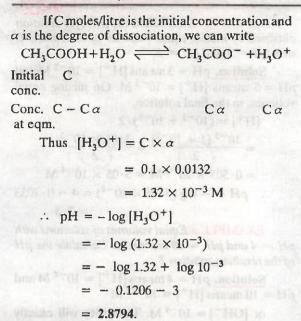
 $CH_3COOH + H_2O \implies CH_3COO^- + H_3O^+$ 

Applying the law of chemical equilibrium, we [CH<sub>3</sub>COO<sup>-</sup>] [H<sub>3</sub>O<sup>+</sup>]

$$K_a = \frac{1}{1 \text{ (CH-COOH)}}$$

But  $[CH_3COO^-] = [H_3O^+]$  $\therefore \qquad K_a = \frac{[H_3O^+]^2}{[CH_3COOH]}$ 

one molecule of  $CH_3COOH$  gives one  $CH_3COO^-$  ion and one  $H^+$  ion or  $H_3O^+$  ion 4. (b) Molarity of Ca(OH)<sub>2</sub> sol.  $= \frac{0 \cdot 3}{74} \times \frac{1000}{500} = 8 \cdot 11 \times 10^{-3}$ [OH<sup>-</sup>] = 2 × [Ca(OH)<sub>2</sub>] = 16 \cdot 22 × 10<sup>-3</sup>  $\therefore pOH = -\log (16 \cdot 22 \times 10^{-3})$   $= 3 - 1 \cdot 2101 = 1 \cdot 79$   $\therefore pH = 14 - pOH = 14 - 1 \cdot 79 = 12 \cdot 21.$ 6. [KOH] =  $\frac{0 \cdot 561}{56} \times \frac{1000}{200}$  M = 0 \cdot 050 M As KOH  $\longrightarrow$  K<sup>+</sup> + OH<sup>-</sup>,  $\therefore$  [K<sup>+</sup>] = [OH<sup>-</sup>] = 0 \cdot 05 M [H<sup>+</sup>] = K<sub>w</sub>/[OH<sup>-</sup>]  $= 10^{-14}/(0 \cdot 05) = 10^{-14}/(5 \times 10^{-2})$  $= 2 \cdot 0 \times 10^{-13}$  M.


or  $[H_3O^+] = \sqrt{K_a [CH_3 COOH]}$ But  $K_a = 1.8 \times 10^{-5}$ and  $[CH_3COOH] = 0.01 M = 10^{-2} M$   $\therefore [H_3O^+] = \sqrt{(1.8 \times 10^{-5}) \times (10^{-2})}$   $= \sqrt{1.8 \times 10^{-7}} = \sqrt{18 \times 10^{-8}}$   $= \sqrt{18} \times 10^{-4} \text{ g ions/litre}$   $= 4.242 \times 10^{-4} \text{ g ions/litre}$   $\therefore pH = -\log [H_3O^+]$   $= -\log (4.242 \times 10^{-4})$ = -(0.6276-4) = 3.3727 = 3.37.

• EXAMPLE 2. Calculate the pH of 0.1 M solution of acetic acid if the degree of dissociation of the acid is 0.0132.

Solution. Acetic acid dissociates as

 $CH_3COOH + H_2O \iff CH_3COO^- + H_3O^+$ 

#### EQUILIBRIUM - II (IONIC EQUILIBRIUM IN SOLUTIONS)



**EXAMPLE 3.** Calculate the pH of  $10^{-3}$  M aniline solution. Given that its ionization constant,  $K_b = 4 \cdot 27 \times 10^{-10}$ . Also calculate its degree of ionization and ionization constant of its conjugate acid.

#### Solution.

 $C_6H_5NH_2 + H_2O \implies C_6H_5NH_3^+ + OH^ C \mod L^{-1}$ Initial After disso.  $C - x \simeq C$  $K_b = \frac{x^2}{C}$ or  $x = \sqrt{K_b \times C} = \sqrt{(4 \cdot 27 \times 10^{-10}) (10^{-3})}$  $= 6.53 \times 10^{-7}$ *i.e.*  $[OH^-] = 6.53 \times 10^{-7} M$  $\therefore [H^+] = K_{\omega} / [OH^-] = 10^{-14} / (6 \cdot 53 \times 10^{-7})$  $= 1.53 \times 10^{-8} M$  $pH = -\log[H^+]$  $= -\log(1.53 \times 10^{-8}) = 7.81$ Degree of ionization ( $\alpha$ ) =  $\sqrt{K_b \times C}$  $= \sqrt{(4 \cdot 27 \times 10^{-10}) \times 10^{-3}}$  $= 6.53 \times 10^{-4}$  $\left(\text{or directly } \alpha = \frac{x}{C} = \frac{6 \cdot 53 \times 10^{-7}}{10^{-3}} = 6 \cdot 53 \times 10^{-4}\right)$  $K_a = K_w/K_b = 10^{-14}/(4 \cdot 27 \times 10^{-10})$  $= 2 \cdot 34 \times 10^{-5}$ .

### PROBLEMS FOR PRACTICE

- 1. Acetic acid has a dissociation constant of  $1.8 \times 10^{-5}$ . Calculate the pH value of the decinormal solution of acetic acid. [Ans. 2.87]
- A 0.05 N solution of acetic acid is found to be 1.9% ionized at 25°C. Calculate (i) K<sub>a</sub> for acetic acid and (ii) the pH of the solution.

 $[Ans.(i) 1.8 \times 10^{-5} (ii) 3.0223]$ 

- 3. Calculate the pH value of a solution of 0.1 M NH<sub>3</sub> ( $K_b = 1.8 \times 10^{-5}$ ) [Aus.11.12]
- 4. A sample of sour milk was found to be 0.1 M solution of lactic acid CH<sub>3</sub>CH (OH) COOH. What is the pH of the sample of milk ?  $K_a$  for lactic acid at 25°C is 1.37 × 10<sup>-4</sup>.

[Aas. 2.43]

5. Calculate the pH of 0.15 M solution of hypochlorous acid HClO ( $K_a = 9.6 \times 10^{-7}$ ).

[Ans. 3.42]

2. Amount of acetic acid dissociated
 = 0.05 × 1.9 / 100 = 0.00095
 ∴ Concs. at equilibrium :
 [CH<sub>3</sub>COOH] = 0.05-0.00095 M.
 [CH<sub>3</sub>COO<sup>-</sup>] = [H<sup>+</sup>] = 0.00095 M
 3. NH<sub>3</sub> +H<sub>2</sub>O → NH<sub>4</sub><sup>+</sup> +OH<sup>-</sup>

 $K_{b} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]} = \frac{[OH^{-}]^{2}}{[NH_{3}]}$ : [OH^{-}] =  $\sqrt{K_{b} \times [NH_{3}]}$ [H^{+}] =  $\frac{K_{w}}{[OH^{-}]}$ , pH = -log [H^{+}] Pradeep's New Course Chemistry (XI)

TYPE V. On the calculation of pH of mixtures of acids and bases

• EXAMPLE 1. What would be the pH of a solution obtained by mixing 100 ml of 0.1 NHCl and 9.9 ml of 1.0 N NaOH solution ?

Solution. Vol. of 0.1 N HCl taken = 100 miVol. of NaOH mixed = 9.9 ml of 1.0 N= 99 ml of 0.1 N

: Amount of HCl left unneutralized

= (100 - 99) ml of 1.0 N = 1 ml of 0.1 N

As the total volume of the solution after mixing = 100 + 9.9 ml = 109.9 ml = 110 ml, it means

that 1 ml of 0.1 N HCl has been diluted 110 times

.: Conc. of HCl in the solution after mixing

 $= 0.1/110 = 9.09 \times 10^{-4} \text{ M}$ 

As HCl completely ionizes as

$$HCl + H_2O \longrightarrow H_3O^+ + Cl^-$$

- $\therefore$  [H<sub>3</sub>O<sup>+</sup>] = [HCl] = 9.09 × 10<sup>-4</sup> M
  - $pH = -\log[H_3O^+]$ 
    - $= -\log(9.09 \times 10^{-4})$ 
      - $= [\log 9.09 + \log 10^{-4}]$
      - = [0.9546 4]
      - = 3.0454 = 3.05

Alternatively, 100 ml of 0 · 1 N HCl

=  $100 \times 0.1$  milli eq. = 10 milli eq.

9.9 ml of 1 N NaOH

 $= 9.9 \times 1$  milli eq. = 9.9 milli eq.

: HCl left unneutralized

 $= 10 - 9 \cdot 9 = 0 \cdot 1$  milli eq. Volume of solution  $= 100 + 9 \cdot 9 = 109 \cdot 9$  ml

- ... Normality of HCl in resulting solution
  - $= \frac{0 \cdot 1}{109 \cdot 9} \approx \frac{0 \cdot 1}{110} = 0 \cdot 09 \times 10^{-4} \text{ N}$  $= 9 \cdot 09 \times 10^{-4} \text{ M}$

• EXAMPLE 2. Calculate the pH of a solution obtained by mixing equal volumes of the solutions with pH = 3 and pH = 5.

Solution.  $pH = 3 \text{ means } [H^+] = 10^{-3} \text{ M}$  and  $pH = 5 \text{ means } [H^+] = 10^{-5} \text{ M}$ . On mixing equal volumes, in the final solution,

$$[H^+] = (10^{-3} + 10^{-5})/2$$
  
=  $\frac{10^{-3} (1 + 10^{-2})}{2} = \frac{1 \cdot 01 \times 10^{-3}}{2}$   
=  $0 \cdot 505 \times 10^{-3} M = 5 \cdot 05 \times 10^{-4} M$   
 $\therefore pH = -\log (5 \cdot 05 \times 10^{-4}) = 4 - 0 \cdot 7033$   
 $\approx 3 \cdot 3$ 

**EXAMPLE 3.** Equal volumes of solutions with pH = 4 and pH = 10 are mixed. Calculate the pH of the resulting solution ?

Solution.  $pH = 4 \text{ means} [H^+] = 10^{-4} \text{ M}$  and  $pH = 10 \text{ means} [H^+] = 10^{-10} \text{ M}$ 

or  $[OH^-] = 10^{-4}$  M. Thus they will exactly neutralise each other and pH of the resulting solution will be = 7.

• EXAMPLE 4. Calculate the pH of the solution obtained by mixing 100 cm<sup>3</sup> of solution with pH = 3 with 400 cm<sup>3</sup> of solution with pH = 4.

Solution. 100 cm<sup>3</sup> of solution with pH = 3 contains H<sup>+</sup> =  $\frac{10^{-3}}{1000} \times 100 = 10^{-4}$  mole 400 cm<sup>3</sup> of solution with pH = 4 contains H<sup>+</sup> =  $\frac{10^{-4}}{1000} \times 400 = 4 \times 10^{-5}$  mole Total H<sup>+</sup> =  $10^{-4} + 4 \times 10^{-5}$ =  $10^{-4} (1 + 0.4) = 1.4 \times 10^{4}$ . Total volume = 500 cm<sup>3</sup>  $\therefore$  [H<sup>+</sup>] =  $\frac{1.4 \times 10^{-4}}{500} \times 1000$  M =  $2.8 \times 10^{-4}$  M pH =  $-\log (2.8 \times 10^{-4})$ =  $4 - 0.4472 \approx 3.55$ 

- PROBLEMS FOR PRACTICE
- Calculate the pH of a solution obtained by mixing 50 ml of 0.2 M HCl with 49.9 ml of 0.2 M NaOH solution

[Ans. 3.699]

 Calculate the pH of a solution obtained by mixing equal volumes of N/10 NaOH and N/20 HCl.

[Ans. 12.398]

 Calculate the pH value of a mixture containing 50 ml of 1 N HCl and 30 ml of 1 N NaOH solution, assuming both to be completely dissociated.

[Ans. 0.6021]

4. A 50 ml solution of pH = 1 is mixed with 50 ml solution of pH = 2. What will be the pH of the mixture? [Ans. 1.26]

## HINTS FOR DIFFICULT PROBLEMS

1. 49.9 ml of 0.2 M NaOH will neutralise 49.9 ml of 0.2 M HCl. Hence HCl left unneutralised = 0.1 ml of 0.2 M. Volume after mixing = 99.9 ml = 100 ml. Hence applying  $N_1V_1 = N_2V_2$ ,

 $0.1 \times 0.2 = N_2 \times 100$  or  $N_2 = 2 \times 10^{-4}$ . In the

final solution,  $[HCl] = 2 \times 10^{-4} M$ 

*i.e.*  $[H_3O^+] = 2 \times 10^{-4} M.$ 

2. Suppose 1 L of N/10 NaOH is mixed with 1 L of N/20 HCl.

1 L of N/10 NaOH contains NaOH

 $=\frac{1}{10}$  g eq. = 0.1 g eq.

1 L of N/20 HCl contains HCl

$$=\frac{1}{20}$$
 g eq. = 0.05 g eq.

# TYPE VI. On the calculation of pH of water from its ionic product

• EXAMPLE. The value of  $K_w$  is  $9.55 \times 10^{-14}$  at a certain temperature. Calculate the pH of water at this temperature.

Solution. Here we are given  $K_{w} = 9.55 \times 10^{-14}$ Now, as for water  $[H_3O^+] = [OH^-]$ ∴  $K_{w} = [H_3O^+] [OH^-]$  $= [H_3O^+] [H_3O^+] = [H_3O^+]^2$  0.05 g eq. of HCl will neutralise 0.05 g eq. of NaOH.

 $\therefore \text{ NaOH left unneutralised} = 0.05 \text{ g eq.}$ Volume of solution = 2 L

: Concentration of NaOH in the final solution

$$= \frac{0.05}{2} g eq L^{-1} = 0.025 N$$

[NaOH] = [OH<sup>-</sup>] = 0.025 M = 2.5 × 10<sup>-2</sup> ∴ [H<sub>3</sub>O<sup>+</sup>] = 10<sup>-14</sup> / (2.5 × 10<sup>-2</sup>) = 4 × 10<sup>-13</sup> M 4. In the mixture, [H<sup>+</sup>] = (10<sup>-1</sup> + 10<sup>-2</sup>) / 2 =  $\frac{0.11}{2} = 0.055 = 5.5 \times 10^{-2}$ pH = - log (5.5 × 10<sup>-2</sup>) = 2 - 0.74 = 1.26

| i.e. | $[H_3O^+]^2 = 9.55 \times 10^{-14}$                 |
|------|-----------------------------------------------------|
| or   | $[H_3O^+] = \sqrt{9.55 \times 10^{-14}}$            |
|      | $= [H_3O^+] [OH^-]$                                 |
|      | $= [H_3O^+][H_3O^+] = [H_3O^+]^2$                   |
|      | $= 3.09 \times 10^{-7} \mathrm{M}$                  |
|      | $pH = -\log [H_3O^+]$                               |
|      | $= -\log(3 \cdot 09 \times 10^{-7})$                |
|      | $= - \left[ \log 3 \cdot 09 + \log 10^{-7} \right]$ |
|      | $= - [0 \cdot 49 - 7] = 6 \cdot 51.$                |

PROBLEMS FOR PRACTICE

1. The value of  $K_{w}$  at a certain temperature is 6.25 × 10<sup>-14</sup>. Calculate the pH of water.

[ Ans 6.6021]

TYPE VII. On the calculation of  $H^+$  ion conc. or OH<sup>-</sup> ion conc. or ionization constant  $(K_a \text{ or } K_b)$  from given value of pH.

**EXAMPLE 1.** Calculate the  $H_3O^+$  ion concentration of a solution having pH 6.58. Solution.  $pH = -\log [H_3O^+]$  $\therefore \log [H_3O^+] = -pH$  2. The ionic product of water at 310 K is  $2.7 \times 10^{-14}$ . What is the pH of neutral water at this temperature ? (N.C.E.R.T.) [Ans. 6.78]

=  $-6.58 \{ pH = 6.58, given \}$   $\therefore [H_3O^+] = antilog (-6.58)$ =  $antilog \overline{7.42}$ 

=  $2.63 \times 10^{-7}$  g ions/litre

**EXAMPLE 2.** Calculate the mass of HCl to be dissolved per litre of the solution so that its pH value is 1.301.

Solution.  $pH = -\log[H_3O^+]$ 

Pradeep's New Course Chemistry

:  $\log [H_3O^+] = -pH = -1.301$  $[H_3O^+] = antilog (-1.301)$  $= antilog (\overline{2.699})$ 

=  $5.0 \times 10^{-2}$  g ions/litre

But  $[H_3O^+]$  ions are obtained from HCl by its

complete ionization as

$$HCI + H_2O \longrightarrow H_3O + CI$$

$$HCI = [H_3O^+] = 5.0 \times 10^{-1} M$$

Molar mass of HCl  $\Rightarrow$  36.5 g mol<sup>-1</sup>

 $\therefore 5.0 \times 10^{-2} \text{ M HCl}$ 

=  $(5.0 \times 10^{-2}) \times 36.5$  g of HCl/lire = 1.825 g/litre

**EXAMPLE 3.** How many grams of NaOH must be dissolved in one litre of the solution to give it a pH value of 12 ?

Solution. 
$$pH = -\log [H_3O^+]$$
  
 $\therefore \log [H_3O^+] = -pH = -12$   
 $\therefore [H_3O^+] = antilog (-12)$   
 $= antilog (12)$   
 $= 10^{-12} g ions/litre$ 

But we know that

$$[H_{3}O^{+}] [OH^{-}] = K_{w} = 10^{-14}$$
  
$$(OH^{-}] = \frac{K_{w}}{[H_{3}O^{+}]} = \frac{10^{-14}}{10^{-12}}$$

 $= 10^{-2}$  g ions/litre

Since NaOH is a strong electrolyte, it undergoes complete ionization as NaOH  $\longrightarrow$  Na<sup>+</sup> + OH<sup>-</sup>  $\therefore$  [OH<sup>-</sup>] = [NaOH] = 10<sup>-2</sup> M Mo. mass of NaOH = 40  $\therefore$  Amount of NaOH dissolved per litre = 10<sup>-2</sup> × 40 = 0.4 g

• EXAMPLE 4. The pH of a solution obtained by dissolving 0.1 mole of an acid HA in 100 ml of the aqueous solution was found to be 3.0. Calculate the dissociation constant of the acid.

Solution.  $pH = -\log[H_3O^+]$ 

$$\therefore \log [H_3O^+] = -pH$$

$$= -3.0 [pH = 3.0, given]$$

$$r \qquad [H_3O^+] = antilog(-3)$$

 $= 10^{-3}$  g ions/litre

= 0.001 g ion/litre

Original conc. of the acid HA = 0.1 mole in 100 ml. = 1 mole/litre

HA dissociates as

$$HA + H_2O \rightleftharpoons H_3O^+ + A^-$$
  
nc.: 1M 0 0

Conc. at

Initial co

0

equilibrium : 1-0.001M 0.001M 0.001M .: Dissociation constant (K) will be given by

$$\begin{aligned} \zeta &= \frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{A}^{-}]}{[\mathrm{H}\mathrm{A}]} \\ &= \frac{0 \cdot 001 \times 0 \cdot 001}{1 - 0 \cdot 001} = \frac{10^{-6}}{1} = 10^{-6} \end{aligned}$$

(Neglecting 0.001 in comparison to 1)



- 1. Calculate the  $H_3O^+$  ion concentration of a solution having a pH of 10.6. [Ans. 2.512 × 10<sup>11</sup> M]
- 2. The pH of blood serum is 7.4. What is the hydrogen ion concentration of blood serum ?

[Ans. 4 × 10<sup>-8</sup> M]

3. Urine has a pH of 6.0. If a patient eliminates 1300 ml of urine per day, how many gram equivalents of the acid he eliminates per day ?

[Ans. 1.3 × 10<sup>-6</sup> g equivalents]

- 4. A sample of fresh apple juice has a pH of 3.76. Calculate [H<sup>+</sup>]. [Ans. 1.74 × 10<sup>-4</sup>]
- 5. Lemon juice has a pH = 2.1. If all the acid in lemon is citric acid (H Cit.  $\longrightarrow$  H<sup>+</sup> + Cit<sup>-1</sup>) and K<sub>g</sub> for citric acid is 8.4 × 10<sup>-4</sup> mole/litre, what is the concentration of citric acid in lemon juice ?

[Ans. 7.5 × 10<sup>-2</sup> M]

6. Calculate the dissociation constant of an acid, 1 M solution of which has a pH value of 4.

[Ans. 10<sup>-8</sup>]

7. The pH of 0.1 M solution of an organic acid is 3.0. Calculate the dissociation constant of the acid.

[Ans. 10<sup>-5</sup>]

#### PRACTICE PROBLEMS CONTO.

8. 0.01 M solution of an organic acid is found to have a pH of 4.15. Calculate the concentration of the anion, the ionization constant of the acid and its  $PK_a$ .

 $[Ans, [A^-] = 7.08 \times 10^{-5} \text{ M},$  $K_a = 5.08 \times 10^{-7}, pK_a = 6.29]$ 

 The pH of 0.005 M codeine (C<sub>18</sub>H<sub>21</sub>NO<sub>3</sub>) solution is 9.95. Calculate its ionization constant and pK<sub>b</sub>.

$$[Ans.K_{b} = 1.6 \times 10^{-6}, pK_{b} = 5.8]$$

10. The pH of 0.1 M solution of cyanic acid (HCNO) is 2.34. Calculate the ionization constant of the acid

and its degree of ionization in the solution.

$$[Ans.K_{a} = 2.09 \times 10^{-4}, \alpha = 0.0457]$$

- Calculate the hydrogen ion concentration in the following biological fluids whose pH are given below :
  - (a) Human muscle-fluid, 6.83
  - (b) Human stomach fluid, 1.2
  - (c) Human blood, 7.38
  - (d) Human saliva, 6.4 (N.C.E.R.T.)

 $[Ans.(a) 1.48 \times 10^{-7} \text{ M} (b) 0.063 (c) 4.17 \times 10^{-8} \text{ M}$ (d) 3.98 × 10<sup>-7</sup>]

FOR DIFFICULT PROBLEMS

3. pH = 6.0 means  $[H_3O^+] = 10^{-6}$  M *i.e.*  $[Acid] = 10^{-6} M = 10^{-6} N$ Thus 1000 ml of the urine contain acid  $= 10^{-6} g \, \text{eq}.$ : 1300 ml of the urine will contain acid  $= 1.3 \times 10^{-6}$  g eq. 5.  $pH = 2 \cdot 1 i.e. - \log [H^+] = 2 \cdot 1$ or  $\log [H^+] = -2 \cdot 1 = \overline{3} \cdot 9$  $[H^+] = 7.943 \times 10^{-3}$ OF HCit  $\implies$  H<sup>+</sup> + Cit<sup>-1</sup>  $K_a = \frac{[H^+][Cit^{-1}]}{[HCit]}$  $8.4 \times 10^{-4} = \frac{(7.943 \times 10^{-3}) (7.943 \times 10^{-3})}{[\text{H Cit}]}$ or  $[H Cit] = 7.5 \times 10^{-2} M$ 6. pH = 4 means  $[H^+] = 10^{-4}$  M  $HA \iff H^+ + A^-$ At eqm  $1 - 10^{-4} - 1 M$   $10^{-4} M$   $10^{-4} M$  $K_a = \frac{10^{-4} \times 10^{-4}}{10^{-4}} = 10^{-8}$ 7. RCOOH → RCOO<sup>-</sup> + H<sup>+</sup>  $[H^+] = [RCOO^-] = 10^{-3} M$  (:: pH = 3)  $[\text{RCOOH}] = 0.1 - 10^{-3} = 0.1 \text{ M}$  $K_{y} = \frac{[RCOO^{-}][H^{+}]}{[RCOOH]} = \frac{10^{-3} \times 10^{-3}}{0 \cdot 1} = 10^{-5}.$ 8. pH =  $4 \cdot 15$  means — log [H<sup>+</sup>] =  $4 \cdot 15$  $\log [H^+] = -4.15 = 5.85$ or

 $[H^+] = 7.08 \times 10^{-5} M$ OF  $HA \implies H^+ + A^-$ Hence at equilibrium  $[H^+] = [A^-] = 7.08 \times 10^{-5} M$  $-7.1 \times 10^{-5}$  M  $[HA] = (0.01 - 7.1 \times 10^{-5})$ = (0.01 - 0.000071) M = 0.009929 M $K_a = \frac{[H^+][A^-]}{[HA]}$  $=\frac{(7\cdot1\times10^{-5})^2}{9.929\times10^{-3}}=5\cdot08\times10^{-7}$  $pK_n = -\log K_n = -\log (5.08 \times 10^{-7}) = 6.29.$ 9. Codeine + water \_\_\_\_ codenium ion + OH -From given pH,  $[H^+] = 1.12 \times 10^{-10} M$ :  $[OH^-] = K_w / [H^+] = 8.93 \times 10^{-5} M$  $K_b = \frac{[B^+][OH^+]}{[BOH]}$  $=\frac{(8.93\times10^{-5})^2}{0.005}=1.6\times10^{-6}.$ 10. HCNO  $\implies$  H<sup>+</sup> + CNO<sup>-</sup> pH = 2.34 means  $-\log [H^+] = 2.34$ or  $\log [H^+] = -2.34 = \overline{3.66}$  $[H^+] = Antilog 3.66 = 4.57 \times 10^{-3} M$ or  $[CNO^{-}] = [H^{+}] = 4.57 \times 10^{-3} M$  $K_a = \frac{(4.57 \times 10^{-3})(4.57 \times 10^{-3})}{0.1} = 2.09 \times 10^{-4}$  $\alpha = \sqrt{K_a/C} = \sqrt{2.09 \times 10^{-4}/0.1} = 0.0457.$ 

TYPE VIII. pH of very dilute acid or alkali solutions

# EXAMPLE 1. Calculate the pH of $10^{-8}$ M acid solution.

Solution. Note. At the first instance, it appears that as  $[H^+] = 10^{-8}$ , therefore pH should be 8. But pH cannot be 8 but should be less than 7 because the solution is acidic. The reason is that from H<sub>2</sub>O,  $[H^+] = 10^{-7}$  M which cannot be neglected in comparison to  $10^{-8}$  M. The pH can be calculated as follows :-

From acid,  $[H^+] = 10^{-8} M$ 

From  $H_2O$ ,  $[H^+] = 10^{-7} M$ 

. Total 
$$[H^+] = 10^{-8} + 10^{-7}$$

$$= 10^{-6} (1 + 10)$$

$$11 \times 10^{-8}$$
 N

: 
$$pH = -\log [H^+] = -\log (11 \times 10^{-8})$$

$$= -[\log 11 + \log 10^{-8}]$$

$$= - [1.0414 - 8]$$

**EXAMPLE 2.** Calculate the pH of  $10^{-10} M$ NaOH solution.

Solution.  $[OH^-]$  from NaOH =  $10^{-10}$  M

 $[OH^{-}]$  from H<sub>2</sub>O =  $10^{-7}$  M

Total  $[OH^-] = 10^{-10} + 10^{-7}$ 

 $= 10^{-7} (10^{-3} + 1) = 1 \cdot 001 \times 10^{-7} M$   $\therefore pOH = -\log (1 \cdot 001 \times 10^{-7})$   $= 7 - \log 1 \cdot 001 = 7 - 0 \cdot 0004 = 6 \cdot 9986$ or pH = 14 - 6 \cdot 9996 = 7 \cdot 0004

TYPE IX. pH on dilution

**EXAMPLE 1.** An acid having pH = 6 is diluted 1000 times. What will be the pH of the final solution ?

**Solution.** pH = 6 means  $[H_3O^+] = 10^{-6}$ .

After diluting 1000 times,

$$[H_3O^+] = 10^{-6}/1000 \text{ M} = 10^{-9} \text{ M}.$$

 $\therefore$  [H<sub>3</sub>O<sup>+</sup>] from H<sub>2</sub>O cannot be neglected.

Total  $[H_3O^+] = 10^{-9} + 10^{-7}$ 

$$= 10^{-7} (10^{-2} + 1) = 10^{-7} (1.01)$$

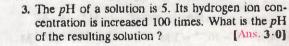
 $\therefore pH = -\log(1 \cdot 01 \times 10^{-7}) = 7 - 0 \cdot 0043$  $= 6 \cdot 9957.$ 

• EXAMPLE 2. 1 cm<sup>3</sup> of  $0 \cdot 01$  N HCl is added to one litre of sodium chloride solution. What will be the pH of the resulting solution ?

Solution. As NaCl solution is neutral, it simply dilutes the HCl solution from 1 cc to 1000 cc.

Now  $[H^+] = 0.01/1000 = 10^{-5} M$ 

$$pH = 5.$$


: pH = 2

PROBLEMS FOR PRACTICE

 10<sup>-6</sup> M NaOH solution is diluted 1000 times. Calculate the pH of the diluted base.

[Aus. 7.0454]

2. What will be the pH of the resulting solution if to a 100 ml of HCl solution of pH = 1.0, 900 ml of distilled water is added? [Ans. 2.0]





- 1. After dilution,  $[OH^-] = 10^{-8}$  M. Hence  $[OH^-]$ from H<sub>2</sub>O cannot be neglected.
- 2. 100 ml has been diluted to 1000 ml. Hence dilution = 10 times. Now  $[H^+] = 10^{-1} / 10 = 10^{-2} M$

3. pH = 5 means  $[H^+] = 10^{-5}$  M. On increasing 100 times, new  $[H^+] = 10^{-3}$  M. So pH = 3.



For a neutral solution, pH = 7 at 298 K (25°C). With increase in temperature, as dissociation of H<sub>2</sub>O molecules increases *i.e.* [H<sup>+</sup>] and [OH<sup>-</sup>] increase, so the ionic product increases with increase of temperature. Further, as [H<sup>+</sup>] increases, pH decreases with increase of temperature.

A few interesting results are given below :

(i) At 273 K (0°C),  $K_w = 10^{-15}$  so that pH of neutral solution at this temperature = 7.5 and pH scale is 0 to 15.

(ii) At 333 K (60°C),  $K_w = 10^{-13}$ , pH of neutral solution = 6.5 and pH range is 0 to 13.

(iii) At the temperature of the human body which is nearly  $37^{\circ}$ C, pH of neutral solution = 6.8.

pH values of a few common substances are given below :

| Saturated NaOH sol.             | ~ 15 | Black coffee            | 5.0   |
|---------------------------------|------|-------------------------|-------|
| 0-1 M NaOH sol.                 | 13   | Tomato juice            | ~ 4.2 |
| Lime water, Ca(OH) <sub>2</sub> | 10.5 | Vinegar and Soft drinks | ~ 3   |
| Milk of magnesia, Mg(OH)2       | 10   | Lemon juice             | - 2.2 |
| Sea water and white of egg      | 7.8  | Gastric juice           | ~ 1.2 |
| Human blood and Tears           | 7.4  | 1 M HCl sol.            | ~ 0   |
| Milk                            | 6.8  | Conc. HCl               | 1.0   |
| Human saliva                    | 6.4  |                         |       |

pH is inversely related to the acidity of a solution. As acidity increases, pH decreases.

pH of the solution of a weak acid or a weak base depends upon its degree of ionization (a). The relationship may be derived as follows taking the example of weak acid HA

HA  $H^+ + A^-$ Initial conc. C Conc. at eqm. C(1- $\alpha$ ) C $\alpha$  C $\alpha$ [H<sup>+</sup>] = C $\alpha$   $\therefore$  pH = -log [H<sup>+</sup>] = -log C $\alpha$ . But  $K_a = C\alpha^2$  or C =  $K_a/\alpha^2$  $pH = -log (K_a/\alpha)$ 

### 8.10.1. Definition and Examples

Salt hydrolysis is defined as the process in which a salt reacts with water to give back the acid and the base.

8.10. Salt Hydrolysis

Salt + Water  $\longrightarrow$  Acid + Base BA + H<sub>2</sub>O  $\longrightarrow$  HA + BOH Salt Water Acid Base

Thus salt hydrolysis may be considered as reverse of neutralization.

OF

All salts are strong electrolytes and thus ionize completely in the aqueous solution. If the acid (HA) produced is strong and the base (BOH) produced is weak, we can write the above equation as

$$B^+ + A^- + H_2O \longrightarrow H^+ + A^- + BOH$$

or  $B^+ + H_2O \longrightarrow H^+ + BOH$ 

Thus, in this case the cation reacts with water to give an acidic solution. This is called **cationic** hydrolysis.

6

Again, if the acid produced is weak and the base produced is strong, we can write

$$B^+ + A^- + H_2O \longrightarrow HA + B^+ + OH^-$$
  
or  $A^- + H_2O \longrightarrow HA + OH^-$ 

Here, the anion reacts with water to give the basic solution. This is called **anionic hydrolysis**.

Hence salt hydrolysis may be defined as the reaction of the cation or the anion of the salt with water to produce acidic or basic solution.

Thus depending upon the relative strengths of the acid and the base produced, the resulting solution is acidic, basic or neutral. On this basis, the salts are divided into four categories :

I. Salts of strong acids and strong bases : Examples are :

As an illustration, let us discuss the hydrolysis of NaCl. We may write :

$$NaCl + H_2O \longrightarrow NaOH + HCl$$

or  $Na^+ + Cl^- + H_2O \longrightarrow$ 

 $Na^{+} + OH^{-} + H^{+} + Cl^{-}$ 

or  $H_2O \longrightarrow H^+ + OH^-$ 

Thus it involves only ionization and no hydrolysis. Further in the resulting solution,  $[H^+] = [OH^-]$ . So the solution is neutral. Hence it can be generalized that the salts of strong acids and strong bases do not undergo hydrolysis and the resulting solution is neutral.

II. Salts of weak acids and strong bases : Examples are :

As an illustration, the hydrolysis of sodium acetate (CH<sub>3</sub>COONa) may be represented as follows:

 $CH_3COON_a + H_2O \Longrightarrow CH_3COOH + NaOH$ 

or 
$$CH_3COO^- + Na^+ + H_2O \rightleftharpoons$$

$$CH_3COOH + Na^+ + OH^-$$

or  $CH_3COO^- + H_2O \longrightarrow$ 

 $CH_3COOH + OH^-$ 

get

As it produces OH<sup>-</sup> ions, the solution of such a salt is alkaline in nature. III. Salts of strong acids and weak bases : Examples are :

NH4Cl, CuSO4, NH4NO3, AlCl3, CaCl2 etc.

As an illustration, the hydrolysis of NH<sub>4</sub>Cl may be represented as follows :

 $\begin{array}{rcl} \mathrm{NH}_4\mathrm{Cl} + \mathrm{H}_2\mathrm{O} & & & \mathrm{NH}_4\mathrm{OH} + \mathrm{HCl} \\ \mathrm{or} & \mathrm{NH}_4^+ + \mathrm{Cl}^- + \mathrm{H}_2\mathrm{O} & & & \\ & & & \mathrm{NH}_4\mathrm{OH} + \mathrm{H}^+ + \mathrm{Cl}^- \end{array}$ 

or 
$$NH_4^+ + H_2O \longrightarrow NH_4OH + H^+$$

As it produces H<sup>+</sup> ions, the solution of such a salt is acidic in character.

IV. Salts of weak acids and weak bases : Examples are :

CH<sub>3</sub>COONH<sub>4</sub>, (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>, AlPO<sub>4</sub> etc.

As an illustration, the hydrolysis of ammonium acetate may be represented as follows :

$$CH_3COONH_4 + H_2O$$

CH3COOH + NH4OH

or  $CH_3COO^- + NH_4^+ + H_2O \longrightarrow$ 

 $CH_3COOH + NH_4OH$ 

Thus it involves both anionic and cationic hydrolysis.

The resulting solution may be neutral or slightly acidic or basic depending upon the relative degrees of ionization of the weak acid and the weak base produced. In the present example, the acid  $(CH_3COOH)$  and the base  $(NH_4OH)$  formed are almost equally weak. Hence the resulting solution is **almost neutral**.

**8.10.2. Hydrolysis constant.** The general equation for the hydrolysis of a salt (BA) may be written as

 $BA + H_2O \implies HA + BOH$ 

Applying the law of chemical equilibrium, we

$$\frac{[\text{HA}] [\text{BOH}]}{[\text{BA}] [\text{H}_2\text{O}]} = \text{K}, \text{ the equilibrium constant}.$$

Since water is present in very large excess in the aqueous solution, its concentration  $[H_2O]$  may be regarded as constant so that we have

[HA] [BOH]

$$\frac{[BA]}{[BA]} = K [H_2 O] = K_h$$

where  $K_h$  is called the hydrolysis constant.

EQUILIBRIUM - II (IONIC EQUILIBRIUM IN SOLUTIONS)

**8.10.3. Degree of Hydrolysis.** The degree of hydrolysis of a salt is defined as the fraction (or percentage) of the total salt which is hydrolysed.

*i.e.*  $h = \frac{\text{No. of moles of the salt hydrolysed}}{\text{Total no. of moles of the salt taken}}$ 

8.11. Calculation of Hydrolysis Constant, Degree of Hydrolysis and pH of Salt Solutions

As already explained, salts of strong acid and strong base do not undergo hydrolysis, therefore to talk of  $K_h$  or h of such salts is meaningless. The cases of the other three types of salts are discussed below :

I. Salts of weak acid and strong base :

(a) Hydrolysis constant. Representing the salt by BA as usual, the hydrolysis may be represented as follows:

i.e. it is a case of anion hydrolysis.

The hydrolysis constant  $K_h$  for the above reaction will be given by

$$K_h = \frac{[OH^-][HA]}{[A^-]}$$
 ...(i)

For the weak acid HA, the dissociation equilibrium is

$$HA \iff H^+ + A^-$$

 $\therefore$  The dissociation constant  $K_a$  of the acid HA will be given by

$$K_a = \frac{[H^+] [A^-]}{[HA]} ...(ii)$$

Further the ionic product of water,  $K_w$  is given by

$$K_w = [H^+][OH^-]$$
 ...(*iii*)

Multiplying equation (i) with (ii) and dividing by (iii), we get

$$\frac{K_{h} \cdot K_{a}}{K_{w}} = \frac{[OH^{-}][HA]}{[A^{-}]} \times \frac{[H^{+}][A^{-}]}{[HA]} \times \frac{1}{[H^{+}][OH^{-}]} = 1$$

or 
$$K_h = \frac{K_w}{K_a}$$
 ...(*iv*)

(b) Degree of Hydrolysis. Suppose the original concentration of the salt in the solution is c moles/litre and h is its degree of hydrolysis at this concentration. Then we have

| 100                           | $A^- + H_2O$ | <del></del> | OH- | + HA |
|-------------------------------|--------------|-------------|-----|------|
| Original                      |              |             |     |      |
| molar conc.                   | C            |             | 0   | 0    |
| Molar conc.<br>at equilibrium | c(1-h)       |             | ch  | ch   |

The hydrolysis constant  $(K_h)$  will, therefore, be given by

$$K_{h} = \frac{[OH^{-}][HA]}{[A^{-}]} = \frac{ch \cdot ch}{c(1-h)} = \frac{ch^{2}}{1-h}$$

If h is very small as compared to 1, we can take 1 - h = 1 so that the above expression becomes

$$ch^2 = K_h$$
 or  $h^2 = \frac{K_h}{c}$   
 $h = \sqrt{\frac{K_h}{c}}$ 

Substituting the value of  $K_a$  from equation (*iv*), we get

$$a = \sqrt{\frac{K_w}{K_a \cdot c}} \qquad \dots (\nu)$$

(c) pH. In the present case, we have

or

....

 $A^{-} + H_2O \implies OH^{-} + HA$ Original conc.:  $c \qquad 0 \quad 0$ Conc. at eqm.:  $c(1-h) \qquad ch \qquad ch$  *i.e.*,  $[OH^{-}] = ch$ 

$$[\mathrm{H}^+] = \frac{\mathrm{K}_{\mathrm{w}}}{[\mathrm{OH}^-]} = \frac{\mathrm{K}_{\mathrm{w}}}{ch}$$

Substituting the value of h from equation (v), we get

$$[H^+] = \frac{K_w}{c} \sqrt{\frac{K_w \cdot c}{K_w}}$$
  
or 
$$[H^+] = \sqrt{\frac{K_w \cdot K_w}{c}}$$

$$pH = -\log [H^+] = -\log \sqrt{\frac{K_w K_a}{c}}$$
$$= -\log \left(\frac{K_w K_a}{c}\right)^{1/2}$$

8/29

### Pradeep's New Course Chemistry

or 
$$pH = -\frac{1}{2} [\log K_w + \log K_a - \log c]$$

This equation may be rewritten as

$$pH = \frac{1}{2} \left[ -\log K_w - \log K_a + \log c \right]$$

$$pH = \frac{1}{2} \left[ pK_w + pK_a + \log c \right]$$

At 298 K, pK, = 14. Hence at 298 K, we have

$$pH = 7 + \frac{1}{2} \left[ pK_a + \log c \right]$$

Thus knowing the molar concentration c of the solution and the dissociation constant K<sub>a</sub> of the weak acid involved, the pH of the solution can be calculated.

### II. Salts of strong acid and weak base :

(a) Hydrolysis constant. For the salt BA, the hydrolysis may be represented as

 $BA + H_2O \implies BOH + HA$ salt Weak Strong Strong or  $B^+ + A^- + H_2O \Longrightarrow BOH + H^+ + A^-$ 

or

 $B^+ + H_2O \implies BOH + H^+$ 

i.e., it is a case of cation hydrolysis.

The hydrolysis constant K<sub>h</sub> will be given by

$$K_h = \frac{[BOH] [H^+]}{[B^+]}$$
 ...(vii)

For the weak base BOH, the dissociation equilibrium is

BOH 
$$\implies$$
 B<sup>+</sup> + OH<sup>-</sup>

... The dissociation constant K<sub>b</sub> of the weak base BOH will be given by

$$K_b = \frac{[B^+][OH^-]}{[BOH]}$$
 ...(viii)

The ionic product of water, K,, is given by

$$K_{u} = [H^+][OH^-]$$
 ...(ir)

Multiplying equation (vii) with (viii) and dividing by (ix), we get

$$\frac{\frac{K_h K_b}{K_w} = 1}{K_h = \frac{K_w}{K_b}}$$

(b) Degree of Hydrolysis. Proceeding as in the earlier case, we get the same relationship viz.

$$h = \sqrt{\frac{K_{\rm b}}{c}}$$

Substituting the value of  $K_{k}$  from equation (x),

we get

$$h = \sqrt{\frac{K_w}{K_b c}} \qquad \dots (xi)$$

(c) pH. In this case we have

$$B^{+} + H_2O \longrightarrow BOH + H^{+}$$
Driginal conc:  $c \qquad 0 \qquad 0$ 
Conc. at eqm:  $c(1-h) \qquad ch \qquad ch$ 

$$e_{\cdot}, \qquad [H^{+}] = ch$$

Substituting the value of h from equation (xi), we get

$$[H^+] = c. \sqrt{\frac{K_w}{K_b \cdot c}} = \sqrt{\frac{K_w \cdot c}{K_b}} = \left(\frac{K_w \cdot c}{K_b}\right)^{1/2}$$

$$\therefore pH = -\log [H^+] = -\log \left(\frac{K_w \cdot c}{K_b}\right)^{1/2}$$

or 
$$pH = -\frac{1}{2} [\log K_w - \log K_b + \log c] ...(xii)$$

As before, this equation can be rewritten as

$$pH = \frac{1}{2} \left[ pK_w + pK_b + \log c \right]$$

At 298 K,  $pK_w = 14$ . Hence at 298 K, we have

$$p\mathbf{H} = 7 - \frac{1}{2} \left[ p\mathbf{K}_b + \log c \right]$$

### III. Salts of weak acid and weak base

(a) Hydrolysis constant. Representing the salt by BA as before, we have

$$BA + H_2O \implies BOH + HA$$

$$Veak \qquad Weak$$

$$B^+ + A^- + H_2O \implies BOH + HA$$

i.e., it involves both anion hydrolysis as well as cation hydrolysis. Writing the various equations as before, we have

#### EQUILIBRIUM --- II (IONIC EQUILIBRIUM IN SOLUTIONS)

$$K_{h} = \frac{[BOH] [HA]}{[B^{+}] [A^{-}]} \qquad \dots (xiii)$$
  
For the weak acid,

$$K_{g} = \frac{[H^{+}][A^{-}]}{[HA]} \qquad \dots (xiv)$$

For the weak base.

or

BOH 
$$\rightleftharpoons$$
 B' + OH, so that  

$$K_b = \frac{[B^+][OH^-]}{[BOH]} \dots (xv)$$

Also, we know that

$$\mathbf{K}_{w} = [\mathbf{H}^{+}] [\mathbf{O}\mathbf{H}^{-}] \qquad \dots (xvi)$$

Multiplying equations (xiii), (xiv), (xv) and dividing by equation (xvi), we get

$$\frac{K_h \cdot K_a \cdot K_b}{K_w} = 1$$

$$K_h = \frac{K_w}{K_a K_b} \qquad \dots (xvii)$$

(b) Degree of Hydrolysis. In this case, we have

 $B^+ + A^- + H_2O \implies BOH + HA$ Original c c 0 0 conc. :

Conc. c(1-h) c(1-h)ch ch at. eqm. :

$$K_{h} = \frac{|BOH| [HA]}{|B^{+}| [A^{-}]}$$
$$= \frac{ch \cdot ch}{c(1-h) \cdot c(1-h)} = \frac{h^{2}}{(1-h^{2})} \dots (xviii)$$

Here, the relationship between K, and h does not involve c. Thus the degree of hydrolysis of such a salt is independent of the concentration of the solution.

If h is very small in comaprison to 1, we can take 1 - h = 1 so that equation (xviii) becomes

### PROBLEMS ON THE CALCULATION OF pH OF SALT SOLUTIONS

At

EXAMPLE 1. Calculate the hydrolysis constant, degree of hydrolysis and pH of 0.10 M KCN solution at 25°C. For HCN,  $K_n = 6.2 \times 10^{-10}$ .

Solution. As KCN is a salt of strong base and weak acid,

Hydrolysis constant,

$$K_{h} = \frac{K_{w}}{K_{a}} = \frac{10^{-14}}{6 \cdot 2 \times 10^{-10}} = 1 \cdot 6 \times 10^{-6}$$

or 
$$K_{h} = h^{2}$$
$$h = \sqrt{K_{h}} = \sqrt{\frac{K_{w}}{K_{h} \cdot K_{h}}} \qquad \dots (xix)$$

(c) pH. For the weak acid HA,  
HA 
$$\rightleftharpoons$$
 H<sup>+</sup> + A<sup>-</sup>  
 $\therefore$   $K_a = \frac{[H^+][A^-]}{[HA]}$   
or  $[H^+] = K_a \frac{[HA]}{[A^-]} = K_a \frac{ch}{c(1-h)}$   
 $= K_a \frac{h}{1-h}$ 

But from equation (xviii),

$$\frac{h}{1-h} = \sqrt{K_h} \text{ so that we have}$$

$$[H^+] = K_a \sqrt{K_h} = K_a \sqrt{\frac{K_w}{K_a \cdot K_b}}$$

$$= \sqrt{\frac{K_a K_w}{K_b}}$$

$$pH = -\log [H^+] = -\log \sqrt{\frac{K_a K_w}{K_b}}$$

$$= -\log \left(\frac{K_a K_w}{K_b}\right)^{1/2}$$
or  $pH = -\frac{1}{2} [\log K_a + \log K_w - \log K_b]$ 

or this equation may be written as

$$p\mathbf{H} = \frac{1}{2} [p\mathbf{K}_w + p\mathbf{K}_a - p\mathbf{K}_b]$$

or at 298 K, we have

$$p\mathbf{H} = 7 + \frac{1}{2} \left[ p\mathbf{K}_a - p\mathbf{K}_b \right]$$

Degree of hydrolysis,

$$h = \sqrt{\frac{K_h}{c}} = \sqrt{\frac{1 \cdot 6 \times 10^{-5}}{0 \cdot 1}} = 1 \cdot 26 \times 10^{-2}$$
  
The hydrolysis reaction will be  
$$CN^- + H_2O \implies HCN + OH^-$$
  
Initial c M 0 0  
At eqm. c -x x x  
(x = No. of moles of CN<sup>-</sup> reacted)

8/31

Pradeep's New Course Chemistry (XI)

$$K_{h} = \frac{[\text{HCN}] [\text{OH}^{-}]}{[\text{CN}^{-}]} = \frac{x \times x}{c - x} \approx \frac{x^{2}}{c}$$
  
or  $x = \sqrt{K_{h} \times c} = \sqrt{(1 \cdot 6 \times 10^{-5}) (0 \cdot 1)}$   
 $= 1 \cdot 26 \times 10^{-3}$   
*i.e.*  $[\text{OH}^{-}] = 1 \cdot 26 \times 10^{-3}$   
 $\therefore [\text{H}^{+}] = \frac{K_{w}}{[\text{OH}^{-}]} = \frac{10^{-14}}{1 \cdot 26 \times 10^{-3}}$   
 $= 7 \cdot 94 \times 10^{-12}$   
 $p\text{H} = -\log[\text{H}^{+}] = -\log(7 \cdot 94 \times 10^{-12})$   
 $= 12 - 0 \cdot 90 = 11 \cdot 1$ 

**EXAMPLE 2.** Calculate the pH of 0.10 M solution of  $NH_4Cl$ . The dissociation constant  $(K_b)$  of  $NH_4$  is  $1.6 \times 10^{-5}$ .

Solution. As  $NH_4Cl$  is a salt of weak base and strong acid,

$$K_h = \frac{K_w}{K_b} = \frac{10^{-14}}{1.6 \times 10^{-5}} = 6.25 \times 10^{-10}$$

The hydrolysis reaction will be

 $NH_4^+ + H_2O \implies NH_3 + H_3O^+$ or  $NH_4^+ \implies NH_3 + H^+$ Initial conc. c M At eqm. c -x x x

$$K_{h} = \frac{[NH_{3}][H^{+}]}{[NH_{4}^{+}]} = \frac{x \times x}{c - x} \approx \frac{x^{2}}{c}$$
  
or  $x = \sqrt{K_{h} \times c} = \sqrt{(6 \cdot 25 \times 10^{-10}) \times 0.1}$   
 $= 7.9 \times 10^{-6} M$ 

*i.e.* 
$$[H^+] = 7.9 \times 10^{-6} \text{ M}$$
  
 $\therefore pH = -\log [H^+] = -\log (7.9 \times 10^{-6})$   
 $= 6 - 0.90 = 5.10$ 

Alternatively, applying the formula directly

$$pH = 7 - \frac{1}{2} [pK_b + \log c]$$
  
= 7 -  $\frac{1}{2} [-\log K_b + \log c]$ 

$$= 7 - \frac{1}{2} \left[ -\log \left( 1 \cdot 6 \times 10^{-5} \right) + \log 0 \cdot 1 \right]$$
$$= 7 - \frac{1}{2} \left[ (5 - 0 \cdot 02041) - 1 \right]$$
$$= 5 \cdot 10$$

• EXAMPLE 3. Calculate the pH of 0.01 M solution of  $NH_4CN$ . Given that the dissociation constants are :  $K_a$  for  $HCN = 6.2 \times 10^{-10}$  and  $K_b$  for  $NH_3 = 1.6 \times 10^{-5}$ .

Solution. As NH4CN is a salt of weak acid and weak base

$$h = \frac{K_w}{K_a K_b} = \frac{10^{-14}}{(6 \cdot 2 \times 10^{-10}) (1 \cdot 6 \times 10^{-5})} = 1 \cdot 0$$
  
For such a salt,  

$$[H^+] = \sqrt{\frac{K_a K_w}{K_b}}$$

$$= \sqrt{\frac{(6 \cdot 2 \times 10^{-10}) (10^{-14})}{1 \cdot 6 \times 10^{-5}}}$$

$$= \sqrt{3 \cdot 875 \times 10^{-19}}$$

$$= 6 \cdot 22 \times 10^{-10}$$

$$\therefore pH = -\log [H^+] = -\log (6 \cdot 22 \times 10^{-10})$$

$$= 10 - 0 \cdot 79 = 9 \cdot 21$$
Alternatively, applying the formula directly.

Alternatively, applying the formula directly

$$pH = 7 + \frac{1}{2} [pK_a - pK_b]$$
  
= 7 +  $\frac{1}{2} [-\log K_a + \log K_b]$   
= 7 +  $\frac{1}{2} [-\log (6 \cdot 2 \times 10^{-10}) + \log (1 \cdot 6 \times 10^{-5})]$   
= 7 +  $\frac{1}{2} [(10 - 0 \cdot 7924) + (-5 + 0 \cdot 2041)]$   
= 9 · 21

PROBLEMS FOR PRACTICE

K

- 1. What would be the pH of 0.1 molar sodium acetate solution, given that the dissociation constant of acetic acid is  $1.8 \times 10^{-5}$  [Ans. 8.87]
- 2. The dissociation constant of aniline  $(C_6H_5NH_2)$  as

a base is  $5.93 \times 10^{-10}$ . The ionic product of water at 25°C is  $1.02 \times 10^{-14}$ . Calculate the percentage hydrolysis of aniline hydrochloride in  $1 \cdot 0$  N solution at 25°C. Also calculate the pH of the solution.

### Ans. 0.415%, 2.38]

3. At 25°C, the ionisation constant of anilinium hydroxide is  $4 \cdot 6 \times 10^{-10}$ . Taking ionic product of water as  $1 \times 10^{-14}$ , calculate (a) hydrolysis con-

### PRACTICE PROBLEMS CONTO.

stant of anilinium chloride (b) the degree of hydrolysis and (c) pH value of 0.2 molar solution of the salt. [Ans. (a)  $2.17 \times 10^{-5}$ 

(b) 
$$3 \cdot 29 \times 10^{-2}$$
 (c)  $3 \cdot 181$ 

4. The ionization constant of nitrous acid is  $4.5 \times 10^{-4}$ . Calculate the pH of 0.04 M sodium nitrite solution and also its degree of hydrolysis.

$$(N.C.E.R.T.)$$
 [Ans. pH = 7.97, a = 2.36 × 10<sup>-5</sup>]

5. A 0.02 M solution of pyridine hydrochloric has pH = 3.44. Calculate the ionization constant of pyridine. (N.C.E.R.T.) [Ans.  $1.5 \times 10^{-9}$ ]

6. The ionization constant of chloroacetic acid is  $1.35 \times 10^{-3}$ . What will be the *p*H of 0.1 M acid and its 0.1 M sodium salt solution? (*N.C.E.R.T.*)

[Ans. 1.94, 7.94]

- 7. Calculate the pH of 0.05 M sodium acetate solution if the  $pK_a$  of acetic acid is 4.74. [Ans. 8.72]
- 8. The  $pK_a$  of acetic acid and  $pK_b$  of ammonium hydroxide are 4.76 and 4.75 respectively. Calculate the hydrolysis constant of ammonium acetate at 298K and also the degree of hydrolysis and pH of (a) 0.01 M and (b) 0.04 M solutions.

[Ans.  $K_h = 3.25 \times 10^{-5}, h = 5.7 \times 10^{-3}$ and pH = 7.005 (same in both cases)]

HINTS FOR DIFFICULT PROBLEMS

1. 
$$K_h = \frac{K_w}{K_a} = \frac{10^{-14}}{1.8 \times 10^{-5}} = 5.56 \times 10^{-10}$$
  
 $CH_3COO^- + H_2O \implies CH_3COOH + OH^-$   
 $[OH^-] = \sqrt{K_h \times c}$   
 $= \sqrt{(5.56 \times 10^{-10}) \times 0.1} = 7.46 \times 10^{-6}$   
 $[H^+] = \frac{10^{-14}}{7.4 \times 10^{-6}} = 1.34 \times 10^{-9}$   
 $pH = -\log(1.34 \times 10^{-9}) = 9 - 0.127$   
 $= 8.872 - 8.87$ 

 Aniline hydrochloride (C<sub>6</sub>H<sub>5</sub>NH<sub>3</sub>Cl<sup>-</sup>) is a salt of weak base (C<sub>6</sub>H<sub>5</sub>NH<sub>2</sub>) and strong acid (HCl).

$$K_{h} = \frac{K_{w}}{K_{b}} = \frac{1 \cdot 02 \times 10^{-14}}{5 \cdot 93 \times 10^{-10}} = 1 \cdot 72 \times 10^{-5}$$

$$C_{6}H_{5}NH_{3}^{+} + H_{2}O \rightleftharpoons C_{6}H_{5}NH_{2} + H_{3}O^{+}$$
or
$$C_{6}H_{5}NH_{3}^{+} \rightleftharpoons CH_{5}NH_{2} + H^{+}$$

$$h = \sqrt{\frac{K_{h}}{c}} = \sqrt{\frac{1 \cdot 72 \times 10^{-5}}{1 \cdot 0}} = 4 \cdot 15 \times 10^{-3}$$
or
$$4 \cdot 15 \times 10^{-3} \times 100\% = 0 \cdot 415\%$$

$$[H^{+}] = \sqrt{K_{h} \times c} = \sqrt{1 \cdot 72 \times 10^{-5} \times 1 \cdot 0}$$

$$= 4 \cdot 15 \times 10^{-3} M$$

$$pH = -\log (4 \cdot 15 \times 10^{-3}) = 3 - 0 \cdot 618$$

$$= 2 \cdot 382 = 2 \cdot 38$$

$$K_{h} = K_{w}/K_{a} = 10^{-14} / (4 \cdot 5 \times 10^{-4})$$

$$= 2 \cdot 22 \times 10^{-11}$$

$$h = \sqrt{K_h/c} = \sqrt{2 \cdot 22 \times 10^{-11}/0.04}$$
  
=  $\sqrt{5.5 \times 10^{-10}} = 2.36 \times 10^{-5}$   
[OH<sup>-</sup>] =  $\sqrt{K_h/c} = \sqrt{(2 \cdot 22 \times 10^{-11})(0.04)}$   
=  $\sqrt{8 \cdot 88 \times 10^{-13}} = 9.42 \times 10^{-7}$   
pOH =  $-\log(9.42 \times 10^{-7})$   
=  $7 - 0.9741 = 6.03$   
pH =  $14 - p$ OH =  $14 - 6.03 = 7.97$ .  
Puriding hydrosplaside is a set of the formula of the for

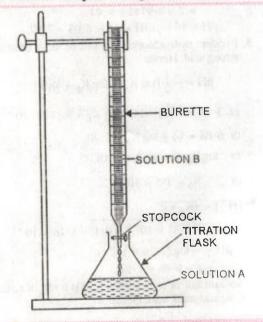
5. Pyridine hydrochloride is a salt of weak base and strong acid. Hence

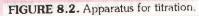
$$pH = -\frac{1}{2} [\log K_w - \log K_b + \log c].$$
  
*i.e.*  $3 \cdot 44 = -\frac{1}{2} [-14 - \log K_b + \log (2 \times 10^{-2})]$   
or  $6 \cdot 88 = 14 + \log K_b + 1 \cdot 70$   
or  $\log K_b = -8 \cdot 82 = 9 \cdot 18$   
or  $K_b = 1 \cdot 5 \times 10^{-9}.$   
*i.e.*  $[H^+] = \sqrt{K_a \times c}$   
 $= \sqrt{1 \cdot 35 \times 10^{-3} \times 0.1} = 1 \cdot 16 \times 10^{-2}$   
 $pH = -\log (1 \cdot 16 \times 10^{-2})$   
 $= 2 - 0 \cdot 06 = 1 \cdot 94$ 

Sodium salt of chloroacetic acid is a salt of strong base and weak acid. Hence

$$pH = -\frac{1}{2} \left[ \log K_w + \log K_a - \log c \right].$$

8. First calculate Ka and Kb. Then


$$K_b = K_w / (K_a K_b)$$
 and  $h = \sqrt{K_b}$ 


Pradeep's New Course Chemistry (XI)

### 8.12. Acid-base Titration Using Indicator

### 8.12.1. Definitions

Titration is the measurement of the volume of a solution of one reactant that is required to react completely with a measured amount of another reactant. As both the reactants are taken in the form of solutions and the titration is the measurement of volume of one solution that must be added to another solution till the reaction is complete, this method of quantitative analysis is, therefore, called volumetric analysis. Usually the concentration of one of the solutions is known, (called standard solution) and it is desired to find the concentration of the other by titration. The apparatus used is shown in Fig. 8.2. A known volume of the solution is taken in the titration flask (with the help of a pipette) and the other solution is taken in the burette which is graduated in cc's and has a stopclock at the bottom to control the amount of flow into the flask. The solution to be titrated (taken in the flask) is called titrate and the solution with which the titration is to be done (taken in the burette) is called the titrant. The point at which the required volume of one solution has been added to the other to exactly complete the reaction between the two is called end point or equivalence point.





There are many types of titrations such as redox titrations (involving oxidation and reduction), acid-base titrations (involving neutraisa-

tion), precipitation titrations (e.g. NaCl vs AgNO<sub>3</sub>), complexometric titrations (involving formation of complexes) but here we shall take up a brief discussion of acid-base titrations in aqueous solutions only.

The substance usually added into the solution taken in the titration flask to detect the equivalence point is called an indicator.

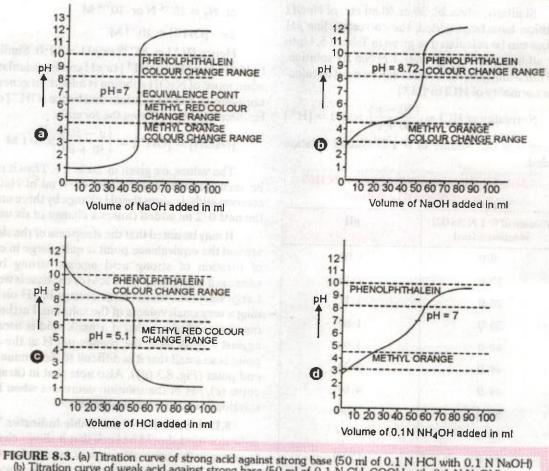
8.12.2. Theory of Acid-Base Indicators (Ostwald's theory). According to this theory

(1) Acid-base indicators are mostly complex organic molecules which are either weak acids or weak bases. For example, phenolphthalein is a weak organic acid which may be represented in a simple way as HPh and methyl orange is a weak organic base which may be represented as MeOH.

(2) They dissociate in aqueous solution as follows:

| / HPh         | <br>H+       | + Ph <sup>-</sup> | (i)  |
|---------------|--------------|-------------------|------|
| ((Colourless) | (Colourless) | ) (Pink)          |      |
| MeOH          | <br>$Me^+ +$ | OH-               | (ii) |
| (Yellow)      | (Red)        | (Colourles        | 5)   |

The unionized form has one colour and the ions have different colour. For example, HPh is colourless while Ph ions have pink colour. Similarly MeOH has yellow colour while Me<sup>+</sup> ions have red colour.


(3) As the medium changes from acidic to basic or vice versa, the equilibrium shifts either towards right or towards left and so the colour changes. For example, in acidic medium (i.e. in presence of excess of H<sup>+</sup> ions), equilibrium (i) is towards left and the solution is colourless. While in basic medium, OH- ions will combine with the H+ ions to form unionized H2O molecules, the equilibrium shifts towards right and the solution has pink colour. Similarly, in case of methyl orange, in basic medium (i.e. in presence of excess of OH- ions) the equilibrium (ii) is towards left and the colour is yellow while in acidic medium, H+ ions combine with the OH- ions and the equilibrium (ii) shifts towards right and the colour is red.

Phenolphthalein cannot be used as indicator if the base is weak e.g.  $NH_4OH$ . This is because the  $OH^-$  ions produced from the weak base are insufficient to shift the equilibrium (i) towards right substantially. Similarly, methyl orange is not a suitable indicator if the acid is weak like acetic acid

### EQUILIBRIUM - II (IONIC EQUILIBRIUM IN SOLUTIONS)

(CH<sub>3</sub>COOH). This is because the  $H^+$  ions produced are insufficient to combine with the OH<sup>-</sup> ions and shift the equilibrium (*ii*) towards right significantly.

8.12.3. pH at the End-Point of Acid-Base Titrations. One often assumes that the pH at the end point of an acid-base titration must be 7. However, we must remember that what we have at the end point is an aqueous solution of a salt formed as a result of neutralisation of the acid by the base. If strong acid has been titrated with a strong base, the pH at the end point is, of course, 7. But it a weak acid or a weak base is involved in the titration, pH at the end point depends upon the hydrolysis of the salt formed. However, in any type of acid-base titration, it is found that there is a sudden change in the pH value at the end point. As the titration proceeds, if the pH values of the solution are measured (say with the help of a pH meter) or calculated theoretically and then plotted against the volume of the solution added, the curve obtained is called titration curve. The titration curves of strong acid against strong base (e.g. HCl versus NaOH), weak acid against strong base (e.g. CH<sub>3</sub>COOH versus NaOH), weak base against strong acid (e.g. NH<sub>4</sub>OH versus HCl) and weak acid against a weak base (e.g. CH<sub>3</sub>COOH versus NH<sub>4</sub>OH) are shown in Fig. 8.3(a), (b), (c) and (d) respectively. The point at which there is a sudden change in pH when a very small amount of the titrant is added to the titrate is called point of inflection.



(b) Titration curve of weak acid against strong base (50 ml of 0.1 N HCl with 0.1 N NaOH)
(c) Titration curve of weak base with against strong base (50 ml of 0.1 N CH<sub>3</sub>COOH with 0.1 N NaOH)
(c) Titration curve of weak base with against strong acid (50 ml of 0.1 N NH<sub>4</sub>OH with 0.1 N HCl)
(d) Titration curve of a weak acid against weak base (50 ml of 0.1 N CH<sub>3</sub>COOH with 0.1 N HCl)

To understand how pH changes during acidbase titration, let us consider the titration of 50.0 ml of 0 · 1 N HCl against 0 · 1 N NaOH solution. The pH at different additions of NaOH solution may be calculated theoretically as follows :

Initially, as the solution taken in the flask is  $0.1 \text{ M HCl}, [\text{H}^+] = 10^{-1}, p\text{H} = 1.0$ . After 10 ml of 0.1 N NaOH has been added, it will neutralize 10 ml of 0.1 N HCl so that HCl left in the solution = 40 ml of 0.1 N and total volume of solution = 60 ml. To calculate normality of HCl in the final solution, apply  $N_1 \times V_1 = N_2 \times V_2$  i.e.  $0.1 \times 40 = N_2 \times 60$ or  $N_2 = 0.0667 \text{ N} \text{ or } 0.0667 \text{ M}$ 

*i.e.* 
$$[H^+] = 6 \cdot 67 \times 10^{-2} \text{ M}.$$
  
Hence  $pH = 1 \cdot 18.$ 

Similarly, when 20, 30 or 40 ml etc. of NaOH solution have been added, the corresponding pH values can be calculated as given in Table 8.5. Upto the addition of 49.9 ml of 0.1 N NaOH solution, the following general formula can be used to calculate normality of HCl or [H<sup>+</sup>]

Normality of HCl = 
$$\left(\frac{50 - v}{50 + v}\right) \times 0.1 = [H^+]$$

where v is the volume of 0.1 N NaOH solution added.

### TABLE 8.5. Titration 50-0 ml of 0-1 N HCl with 0 1 N NaOH solution

| Volume of 0 · 1 N NaOH<br>solution added | рН     | 282211 |
|------------------------------------------|--------|--------|
| 0.0                                      | 1.00   |        |
| 10.0                                     | 1 · 18 |        |
| 20.0                                     | 1.37   |        |
| 30.0                                     | 1.60   |        |
| 40.0                                     | 1.96   |        |
| 49.0                                     | 3.00   |        |
| 49.9                                     | 4.00   |        |
| 50.0                                     | 7-00   |        |
| 50.1                                     | 10.00  |        |
| 51.0                                     | 11.00  |        |
| 60.0                                     | 11.96  |        |
| 70.0                                     | 12-22  |        |

When 50 ml of 0 · 1 N NaOH solution has been added, the end point of the titration is reached. All the acid is neutralized. The solution contains NaCl only. Hence  $pH = 7 \cdot 0$ . Thus pH of the solution has suddenly increased from 4.0 to 7.0.

Further addition of even a very small amount of NaOH solution (say 0.1 ml) increases the pH of the solution very rapidly. This may be seen as follows : -

Now, volume of the solution

 $= 50 + 50 \cdot 1 = 100 \cdot 1 \text{ ml}$ 

0.1 N NaOH solution left unneutralized

= 0.1 ml

To calculate normality of NaOH in the final solution, apply

$$N_1V_1 = N_2V_2$$
 *i.e.*  $0 \cdot 1 \times 0 \cdot 1 = N_2 \times 100 \cdot 1$   
or  $N_2 = 10^{-4}$  N or  $10^{-4}$  M

*i.e.*  $[OH^{-}] = 10^{-4} M.$ 

Hence  $[H^+] = 10^{-10}$  or  $pH = 10 \cdot 0$ . Similarly, [OH<sup>-</sup>] and hence [H<sup>+</sup>] or pH can be calculated when more of NaOH solution is added. In general, normality of NaOH solution and hence [OH-] can be calculated by applying the formula

$$[\text{NaOH}] = [\text{OH}^-] = \left(\frac{v - 50}{50 + v}\right) \times 0.1 \text{ M}$$

The values are given in Table 8.5. Thus it may be seen that whereas the first 49.9 ml of NaOH solution added causes the pH change by three units, the next 0.2 ml added causes a change of six units.

It may be noted that the steepness of the slope around the equivalence point is quite large in case of titration of strong acid against strong base whereas it is less steep if the acid or the base is weak. Large steepness means large change in pH on adding a very small volume of the solution. Further, it may be pointed out that if a weak acid is titrated against a weak base, the change in pH at the end point is so small that it is difficult to determine the end point (Fig. 8.3 (d)). Also note that in titration curve (c), pH of the solution decreases when HCl solution is added from the burette.

8.12.4. Selection of a suitable indicator. The indicator used should be such that it shows change in colour in the same pH range as required around the equivalence point. A number of indicators are available for the entire pH range. These are given in Table 8.6, below.

| Indicator            | pH-range  | Acidic<br>colour | Alkaline<br>colour |  |
|----------------------|-----------|------------------|--------------------|--|
| Methyl violet        | 0-2       | Yellow           | Violet             |  |
| Methyl yellow        | 1.2-2.3   | Red              | Yellow             |  |
| Methyl orange        | 3.1-4.5   | Red              | Yellow             |  |
| Bromocresol<br>green | 3.8-4.6   | Yellow           | Blue               |  |
| Methyl red           | 4.2-6.2   | Red              | Yellow             |  |
| Litmus               | 4.5-8.3   | Red              | Blue               |  |
| Bromothymol blue     | 6.0-7.5   | Огапде           | Blue               |  |
| Phenol red           | 6.4-8.2   | Yellow           | Red                |  |
| Cresol red           | 7.2-8.8   | Yellow           | Red                |  |
| Thymol blue          | 8.0-9.6   | Yellow           | Blue               |  |
| Phenolphthalein      | 8.3-10.0  | Colourless       | Red                |  |
| Thymolphthalein      | 9.3-10.5  | Colourless       | Blue               |  |
| Alizarin yellow      | 10.1-12.0 | Yellow           | Violet             |  |
| Trinitrobenzene      | 12.0-14.0 | Colourless       | Orange             |  |

TABLE 8.6. Common acid-base indicators and their colour changes

From the titration curves, it may be observed that

(i) For titration of a strong acid against a strong base, any indicator out of methyl orange, methyl red and phenolphthalein can be used to determine the end point.

(ii) For titration of weak acid like acetic acid against a strong base like NaOH solution, only phenolphthalein is a suitable indicator.

(iii) For titration of weak base like  $NH_4OH$  against strong acid like HCl, only methyl red can be used as an indicator.

8.12.5. To prove that for the colour change  $pK_{indleator} = pH$  at the equivalence point

As already mentioned, acid-base indicators are weak organic acids or weak organic bases. Suppose we consider an indicator which is a weak organic acid. Let it be represented by HIn. In aqueous solution, it dissociates as

$$Hln(aq) \implies H^+(aq) + ln^-(aq)$$

HIn and In<sup>-</sup> have different colours. The equilibrium constant for the above reaction is

$$K_{ln} = \frac{[H^+][ln^-]}{[HIn]}$$

The exact point of the colour change will be at the pH when  $[HIn] = [In^{-}]$ . Substituting this value, we get

$$K_{In} = [H^+] \text{ or } -\log K_{In} = -\log [H^+]$$
  
i.e.  $pK_{In} = pH$ 

Thus for a particular, tittration, the indicator selected should be such for which  $pK_{In} = pH$  of the solution at the equivalence point. For example, in the titration of HF with NaOH, pH at the equivalence point is 8.1.  $pK_{In}$  for cresol red is 8.1. Hence cresol red should be used as indicator in this titration.

8.12.6. Explanation of the pH range of 2 units of indicators. From Table 8.6, it may be seen that most of the indicators have a useful colour change over a pH range of 2 units. For example, the most common indicator, phenolphthalein, changes from colourless to pink in the pH range from 8.3 to 10.0. This solves the problem for the fact that we may not have an indicator for which  $pK_{In}$  is exactly equal to

the pH at the equivalence point. The explanation for the pH range of 2 units is as follows :

For the indicator HIn,

 $HIn(aq) \rightleftharpoons H^+(aq) + In^-(aq)$ 

HIn and In<sup>-</sup> have different colours. The equilibrium constant is

$$K_{In} = \frac{[H^+][In^-]}{[HIn]}$$
 ...(i)

Our eye can detect the change in colour if the concentration of one of the coloured form is at least 10 times greater than the concentration of the other. Thus to see the acidic colour

$$\frac{[\text{In}^-]}{[\text{HIn}]} = \frac{1}{10}$$

and to see the alkaline colour

$$\frac{\ln^{-}}{H\ln} = \frac{10}{1}$$

Rearranging eqn. (i), we get

$$[\mathrm{H^+}] = \frac{[\mathrm{H\,In}]}{[\mathrm{In^-}]} \,\mathrm{K_{In}}$$

... For acidic colour to be visible  

$$[H^+] = 10 K_{In}$$
  
or  $-\log [H^+] = -\log 10 - \log K_{In}$   
*i.e.*  $pH = pK_{In} - 1$ 

i.e.

For alkaline colour to be visible

$$[H^+] = \frac{1}{10} K_{In}$$

or 
$$-\log [H^+] = \log 10 - \log K_{In}$$

*i.e.*  $pH = pK_{In} + 1$ 

Thus for colour change of an indicator

$$pH = pK_{In} \pm 1$$

i.e. pH range for colour change is from  $pK_{In} - 1 to pK_{In} + 1 i.e. a pH range of 2 units.$ 

8.12.7. Calculation of pK, or pK, values from pH of equivalence point. The pK of a weak acid or weak base can be determined from the measurement of pH at the equivalence point from the titration curve. For example, for a weak acid, HA

HA 
$$\rightleftharpoons$$
 H<sup>+</sup> + A<sup>-</sup>  
 $K_a = \frac{[H^+][A^-]}{[HA]}$   
 $[H^+] = \frac{[HA]}{[A^-]} K_a$ 

or

or  $-\log[H^+] = -\log K_a - \log \frac{|HA|}{|A^-|}$  $pH = pK_a - \log \frac{[HA]}{[A^-]}$ 

The half-equivalence point is the point in the neutralisation at which one half of HA has been neutralised in the reaction

$$HA + OH^- \rightleftharpoons H_2O + A^-$$
  
t this point. [HA] = [A^-]

$$pH = pK_{a} - \log 1 = pK_{a}$$

Thus at the half-equivalence point (halfneutralisation)

 $pH = pK_a$ 

8.12.8. Formula for calculation of volumetric analysis. The basic principle is that the reactants react with each other in equivalent amounts.

Suppose the two reactants involved are A and B. Further suppose  $V_1$  cc of the solution of reactant A having normality N1 react exactly with V2 cc of the solution of reactant B having normality N2.

Number of gram equivalents of A reacted

$$=\frac{N_1}{1000}\times V_1$$

Number of gram equivalents of B reacted

$$=\frac{N_2}{1000}\times V_2$$

As the reactants react in equivalent amounts,

$$\frac{N_1 \times V_1}{1000} = \frac{N_2 \times V_2}{1000}$$

$$N_1 \times V_1 = N_2 \times V_2$$
...(*i*)

This is called normality equation. In terms of molarities, as Normality of an acid  $(N_a)$ 

= Molarity  $(M_a) \times Basicity of the acid <math>(n_n)$ 

and Normality of a base  $(N_b)$ 

or

tł

= Molarity 
$$(M_b) \times Acidity of the base  $(n_b)$   
and equation  $N_a \times V_a = N_b \times V_b$  can be written as$$

$$n_a \mathbf{M}_a \mathbf{V}_a = n_b \mathbf{M}_b \mathbf{V}_b \qquad \dots (ii)$$

Thus if both acid and base have same basicity and acidity *i.e.*  $n_a = n_b$ , we can write

$$M_a V_a = M_b V_b \qquad \dots (iii)$$

Equation (ii) and (iii) are called molarity equations. These equations may also be written as

$$n_1 M_1 V_1 = n_2 M_2 V_2$$

 $\mathbf{M}_1 \mathbf{V}_1 = \mathbf{M}_2 \mathbf{V}_2.$ and

## ADD TO YOUR KNOWLEDGE

| 1. Indie    | cators used in different titratio  | ns                                   |                                    |                 |                   |       |
|-------------|------------------------------------|--------------------------------------|------------------------------------|-----------------|-------------------|-------|
| nus u 13    | Type of titration                  | Indicator used                       |                                    |                 |                   |       |
| (i)         | Strong acid vs strong base         | Phenolphthalein o<br>Bromothymol and | or Methyl orang<br>I thymolphthale | e or Methyl rec | l,                |       |
| <i>(ii)</i> | Weak acid vs strong base           | Phenolphthalein                      | and Thymolpht                      | halein          |                   |       |
| (iii)       | Strong acid vs weak base           | Methyl orange or                     | Methyl red and                     | Bromocresol g   | reen              |       |
| 2. Univ     | ersal indicator. It is a mixture e | of a number of indic                 | ators which sho                    | ws colour chan  | ges over differen | nt pH |
| pH          | : 2 4                              | 6                                    | 8                                  | 10              | 12                |       |

Yellow

Green

#### 8.13. Solubility Equilibrium and Solubility Product

Red Orange

Colour

If a sparingly soluble salt like AgCl is stirred with water, only a small amount of it goes into solution (and makes the solution saturated) while most of the salt remains undissolved. But whatever little amount of the salt dissolves, it gets completely dissociated into ions. In other words, when a sparingly soluble salt is added to water, there exists a *dynamic equilibrium* between the undissolved solid salt and the ions which it furnishes in solution.

At equilibrium the solid AgCl continues to dissolve at the same rate at which the opposite process of precipitation takes place. Thus, the equilibrium can be represented by a reversible equation as shown below :

$$gCl(s) \xrightarrow{\text{Dissolution}}_{\text{Precipitation}} AgCl(aq) \rightleftharpoons$$

 $\operatorname{Ag}^+(aq) + \operatorname{Cl}^-(aq)$ 

or we may write directly as

Ag Cl (s)  $\rightleftharpoons$  Ag<sup>+</sup> (aq) + Cl<sup>-</sup> (aq) Applying law of chemical equilibrium, we have

$$K = \frac{[Ag^+] [Cl^-]}{[AgCl]}$$

Since concentration of the undissociated solid remains almost constant, we may write

 $[Ag^+][Cl^-] = K \times [AgCl] = K_{SD}$ 

where  $K_{sp}$  is called solubility product and is equal to ionic product  $[Ag^+]$  [Cl<sup>-</sup>] for a saturated solution.

Similarly, the solubility products of  $BaSO_4$ , Al (OH)<sub>3</sub> and  $Ca_3(PO)_4$  may be represented as

Blue

Purple

$$BaSO_{4}(s) \iff Ba^{2+} + SO_{4}^{2-};$$

$$K_{sp} = [Ba^{2+}] [SO_{4}^{2-}]$$

$$Al (OH)_{3}(s) \iff Al^{3+} + 3OH^{-};$$

$$K_{sp} = [Al^{3+}] [OH^{-}]^{3}$$

$$Ca_{3} (PO_{4})_{2}(s) \iff 3Ca^{2+} + 2PO_{4}^{3-};$$

$$K_{sp} = [Ca^{2+}]^{3} [PO_{4}^{3-}]^{2}$$

In general, for any electrolyte  $A_x B_y$ , the equilibrium may be represented as

$$A_x B_y \implies xA^{y+} + yB^{x-}$$

Thus the solubility product for  $A_x B_y$  may be written as  $K_{sp} = [A^{y+}]^x \times [B^{x-}]^y$ 

where x and y represent the number of ions in the formula of the electrolyte. Thus

Solubility product of an electrolyte at a specified temperature may be defined as the product of the molar concentrations of its ions in a saturated solution, each concentration raised to the power equal to the number of ions produced on dissociation of one molecule of the electrolyte.

The values of solubility products of some common sparingly soluble salts are listed in the following table :

| moi                              | n sparingly sol             | uble salts                      | at 298 K              |
|----------------------------------|-----------------------------|---------------------------------|-----------------------|
| Salt                             | K <sub>sp</sub>             | Salt                            | K <sub>sp</sub>       |
| AgCl                             | $1.8 \times 10^{-10}$       | SrSO <sub>4</sub>               | $3.2 \times 10^{-7}$  |
| AgBr                             | $5.0 \times 10^{-13}$       | SrF <sub>2</sub>                | $2.5 \times 10^{-9}$  |
| AgI                              | $8.3 \times 10^{-17}$       | SrCO <sub>3</sub>               | $1.1 \times 10^{-10}$ |
| Ag <sub>2</sub> CrO <sub>4</sub> | $1 \cdot 1 \times 10^{-12}$ | CdS                             | $8.0 \times 10^{-27}$ |
| Ag <sub>2</sub> SO <sub>4</sub>  | $1.4 \times 10^{-5}$        | CuS                             | $6.3 \times 10^{-36}$ |
| Ag <sub>2</sub> CO <sub>3</sub>  | $8.1 \times 10^{-12}$       | HgS                             | $4.0 \times 10^{-53}$ |
| BaSO <sub>4</sub>                | $1 \cdot 1 \times 10^{-10}$ | MnS                             | $2.5 \times 10^{-13}$ |
| BaCrO <sub>4</sub>               | $1.2 \times 10^{-10}$       | NiS                             | $4.7 \times 10^{-5}$  |
| BaF <sub>2</sub>                 | $1.0 \times 10^{-6}$        | PbS                             | $8.0 \times 10^{-28}$ |
| CaSO <sub>4</sub>                | $9.1 \times 10^{-6}$        | SnS                             | $1.0 \times 10^{-25}$ |
| CaC <sub>2</sub> O <sub>4</sub>  | $4.0 \times 10^{-9}$        | ZnS                             | $1.6 \times 10^{-24}$ |
| CaF <sub>2</sub>                 | $5.3 \times 10^{-9}$        | FeS                             | $6.3 \times 10^{-18}$ |
| CaCO3                            | $2.8 \times 10^{-9}$        | CuCl                            | $1.7 \times 10^{-6}$  |
| Ca(OH) <sub>2</sub>              | $5.5 \times 10^{-6}$        | Hg <sub>2</sub> Cl <sub>2</sub> | $1.3 \times 10^{-18}$ |
| Cu(OH) <sub>2</sub>              | $2.2 \times 10^{-20}$       | PbClz                           | $1.6 \times 10^{-5}$  |
| Al(OH)3                          | 1.3 × 10 <sup>-33</sup>     | PbF <sub>2</sub>                | $7.7 \times 10^{-8}$  |
| Fe(OH)3                          | $1.0 \times 10^{-38}$       | PbBr <sub>2</sub>               | $4.0 \times 10^{-5}$  |
| Mg(OH) <sub>2</sub>              | $1.8 \times 10^{-11}$       | PbI <sub>2</sub>                | $7.1 \times 10^{-9}$  |

TABLE 8.7. Solubility products of some com-

14 4 400 T

Difference between Solubility Product and Ionic Product. Both ionic product and solubility product represent the product of the concentrations of the ions in the solution, each raised to the power equal to the number of ions as represented by the dissociation of one molecule of the substance. However, they differ in the following two aspects :

 $Pb(OH)_2 = 1.2 \times 10^{-15}$ 

PbSO4

 $1.6 \times 10^{-8}$ 

(i) The term **ionic product** has a broad meaning since it is applicable to all types of solutions, may be unsaturated or saturated. On the other hand, the solubility product has restricted meaning since it applies only to a saturated solution in which there exists a dynamic equilibrium between the undissolved salt and the ions present in solution. Thus the solubility product is in fact the ionic product for a saturated solution.

(*ii*) The solubility product of a salt is constant at constant temperature whereas ionic product depends upon the concentrations of ions in the solution. Pradeep's New Course Chemistry ()(1)

Determination of Solubility Product. The solubility product of a sparingly soluble salt at a particular temperature can be calculated from a knowledge of the solubility of the salt in water at that particular temperature. This is illustrated with the help of the following examples :

**EXAMPLE 1.** The solubility of AgCl in water at 25°C is found to be  $1.06 \times 10^{-5}$  moles per litre. Calculate the solubility product of AgCl at this temperature.

Solution. AgCl ionizes completely in the solution as

$$AgCl \longrightarrow Ag^+ + Cl^-$$

*i.e.* 1 mole of AgCl in the solution gives 1 mole of Ag<sup>+</sup> ions and 1 mole of Cl<sup>-</sup> ions.

Now, as the solubility of AgCl

=  $1.06 \times 10^{-5}$  moles per litre

:.  $[Ag^+] = 1.06 \times 10^{-5}$  moles/litre

and  $[Cl^-] = 1.06 \times 10^{-5}$  moles/litre

 $K_{sp}$  for AgCl = [Ag<sup>+</sup>] [Cl<sup>-</sup>]

$$= 1.06 \times 10^{-5} \times 1.06 \times 10^{-5}$$
$$= 1.1 \times 10^{-10}$$

EXAMPLE 2. The solubility of  $Mg(OH)_2$  is 8.352 × 10<sup>-3</sup> g/litre at 290°C. Find out its  $K_{sp}$  at this temperature.

Solution. Mg  $(OH)_2$  ionizes completely in the solution as

 $Mg(OH)_2 \longrightarrow Mg^{+2} + 2OH^-$ 

 $[Mg^{2+}] = [Mg(OH)_2]$ 

1

and  $[OH^-] = 2 \times [Mg(OH)_2]$ 

But Molar mass of  $Mg(OH)_2 = 58 \text{ g mol}^{-1}$ 

 $\therefore [Mg (OH)_2] = \frac{\text{Strength in g/litre}}{\text{Molar mass}}$  $= \frac{8 \cdot 352 \times 10^{-2}}{58}$ 

 $= 1.44 \times 10^{-4}$  moles/litre

 $\therefore [Mg^{2+}] = 1.44 \times 10^{-4} \text{ moles/litre}$ and  $[OH^{-}] = 2 \times 1.44 \times 10^{-4}$ 

 $= 2.88 \times 10^{-4}$  moles/litre

:  $K_{so}$  for Mg (OH)<sub>2</sub> = [Mg<sup>2+</sup>] [OH<sup>-</sup>]<sup>2</sup>

(By definition)

 $= (1.44 \times 10^{-4}) \times (2.88 \times 10^{-4})^2$ = 1.194 × 10<sup>-11</sup> ROBLEMS FOR PRACTICE

- 1. Calculate the solubility product of silver bromide if the solubility of the salt in saturated solution is  $5.7 \times 10^{-7}$  moles/litre. [Ans.  $3.25 \times 10^{-13}$ ]
- 2. A saturated solution of sparingly soluble lead chloride on analysis was found to contain 11.84 g/litre of the salt at room temperature. Calculate

the solubility product constant at room temperature. (At. wt. : Pb = 207, Cl = 35.5)

#### [Ans. 3.09 × 10<sup>-4</sup>]

3. The solubility of lead iodide in water is 0.63 g/litre. Calculate the solubility product of lead iodide. (At mass of Pb = 207, I = 127) [Ans.  $10^{-8}$ ]

## NTS FOR DIFFICULT PROBLEMS

2. Solubility of PbCl<sub>2</sub>

$$= \frac{11 \cdot 84}{207 + 2 \times 35 \cdot 5} \mod L^{-1}$$
$$= 4 \cdot 259 \times 10^{-2} \mod L^{-1}$$

 $PbCh \rightarrow Pb^{2+} + 2 Cl^{-}$ 

#### 8.14. Common Ion Effect

If to an ionic equilibrium,  $AB \rightleftharpoons A^+ + B^-$ , a salt containing a common ion (e.g. AC or BD) is added, the equilibrium shifts in the backward direction. This is called common ion effect.

The results can be easily explained on the basis of Le Chatelier's principle.

**Examples.** (*i*) Acetic acid, being a weak acid, ionizes to a small extent as follows :

CH<sub>3</sub>COOH  $\rightleftharpoons$  CH<sub>3</sub>COO<sup>-</sup> + H<sup>+</sup>...(*i*) To this solution suppose the salt of this weak

acid with a strong base (e.g.  $CH_3COONa$ ) is added. It ionizes almost completely in the solution as follows and provides the common acetate ions

 $CH_3COONa \longrightarrow CH_3COO^- + Na^+$ 

As a result, the concentration of  $CH_3COO^$ ions increases and by Le Chatelier's principle, the dissociation equilibrium (*i*) shifts backwards *i.e.* dissociation of acetic acid is further suppressed.

(*ii*) To the solution of the weak base,  $NH_4OH$ , if  $NH_4Cl$  is added which provides the common  $NH_4^+$  ions, dissociation of  $NH_4OH$  is suppressed

$$NH_4OH \implies NH_4^+ + OH^-$$
  
 $NH_4CI \longrightarrow NH_4^+ + CI^-$ 

(*iii*) To the solution of silver chloride in water, (being a saturated solution because solubility of

$$K_{sp} = [Pb^{2+}] [Cl^{-}]^{2}$$
  
= (4.259 × 10<sup>-2</sup>) (2 × 4.259 × 10<sup>-2</sup>)<sup>2</sup>  
= 3.09 × 10<sup>-4</sup>

AgCl in water is very small), if NaCl is added which provides the common Cl<sup>--</sup> ions, the solubility of AgCl decreases.

$$\begin{array}{ccc} \operatorname{AgCl}(s) & \longrightarrow & \operatorname{Ag^+}(aq) + \operatorname{Cl^-}(aq) \\ \operatorname{NaCl} & \longrightarrow & \operatorname{Na^+} + \operatorname{Cl^-} \end{array}$$

This is again because by Le Chatelier's principle, increase in the concentration of  $CI^-$  ions shifts the equilibrium in the backward direction *i.e.* some solid AgCl separates out. Similarly, solubility of lead iodide (PbI<sub>2</sub>) in water decreases if KI is added to it.

Thus 'common ion effect' may also be defined as follows :

If to the solution of a weak electrolyte (e.g. acetic acid or ammonia), which ionizes to a small extent, a strong electrolyte having a common ion is added which ionizes almost completely, the ionization of the weak electrolyte is further suppressed. Similarly, if to the solution of a sparingly soluble salt (like AgCl,  $PbI_2$  etc.), if a soluble salt having a common ion is added, the solubility of the sparingly soluble salt further decreases.

Remembering that the solubility product of a salt is constant irrespective of the source of the ions, the solubility of a sparingly soluble salt in the presence of a soluble salt having common ion can be calculated. (See solved example 3 on page of 8/44).

## PROBLEMS ON INFLUENCE OF COMMON ION EFFECT ON DEGREE OF IONISATION OF ACIDS AND BASES

Basic Principle. The ionization constant of an acid HX (HX  $\implies$  H<sup>+</sup> + X<sup>-</sup>) which is given by

$$K_{a} = \frac{[H^{+}][X^{-}]}{[HX]}$$

is constant at constant temperature irrespective of the source of  $H^+$  or  $X^-$  ions. The degree of ionization is given by

 $\alpha = \sqrt{K_a/c}$  (*Refer to page 8/10*) where c is the molar concentration of HX. However, degree of ionization is affected if extra H<sup>+</sup> or X<sup>-</sup> (from any other source) are present.

Similarly, for a base MOH (MOH  $\longrightarrow$  M<sup>+</sup> + OH<sup>-</sup>) the ionization constant K<sub>b</sub> is constant at constant temperature irrespective of the source of M<sup>+</sup> or OH<sup>-</sup> ions. The degree of ionization is given by

 $\alpha = \sqrt{K_b/c}$ 

However, degree of ionization is affected if extra  $M^+$  or  $OH^-$  (from any other source) are also present.

**EXAMPLE 1.** The ionization constant of propionic acid is  $1 \cdot 32 \times 10^{-5}$ . Calculate the degree of ionization if its solution is  $0 \cdot 05$  M. What will be its degree of ionization if the solution is  $0 \cdot 01$  M in HCl also? (N.C.E.R.T.)

Solution. As already discussed on page 8/10  $\overline{\alpha} = \sqrt{K_a/c}$   $= \sqrt{(1.32 \times 10^{-5}) \times 0.05} = 1.62 \times 10^{-2}$ 

$$CH_3CH_2COOH \longrightarrow CH_3CH_2COO^- + H^+$$

In presence of HCl, equilibrium will shift in the backward direction *i.e.* concentration of  $CH_3CH_2COOH$  will decrease. If c is the initial concentration and x is the amount now dissociated, then at equilibrium

$$[CH_{3}CH_{2}COOH] = c - x,$$
  

$$[CH_{3}CH_{2}COO^{-}] = x, [H^{+}] = 0 \cdot 01 + x$$
  

$$\therefore K_{a} = \frac{x (0 \cdot 01 + x)}{c - x} \simeq \frac{x (0 \cdot 01)}{c}$$
  
or  $\frac{x}{c} = \frac{K_{a}}{0 \cdot 01} = \frac{1 \cdot 32 \times 10^{-5}}{10^{-2}} = 1 \cdot 32 \times 10^{-3}$   
 $\alpha = 1 \cdot 32 \times 10^{-3}.$ 

• EXAMPLE 2. The ionization constant of phenol is  $1.0 \times 10^{-10}$ . What is the concentration of phenate ion in 0.05 M solution of phenol? What will be its degree of ionization if the solution is also 0.01M in sodium phenate? (N.C.E.R.T.)

Solution.

 $\begin{array}{c|c} C_6H_5OH & \longrightarrow & C_6H_5O^- + H^+ \\ \hline \text{Initial} & 0.05 \text{ M} \\ \hline \text{After disso.} & 0.05-x & x & x \\ \end{array}$ 

$$\therefore \quad K_a = \frac{x \times x}{0.05 - x} = 1.0 \times 10^{-10} (Given)$$
  
or  $\frac{x^2}{0.05} = 1.0 \times 10^{-10}$ 

(Taking 0.05 - x = 0.05)

or 
$$x^2 = 5 \times 10^{-12}$$
 or  $x = 2 \cdot 2 \times 10^{-6}$  M

In presence of  $0.01 \text{ C}_6\text{H}_5\text{ONa}$ , suppose y is the amount of phenol dissociated, then at equilibrium

$$[C_{6}H_{5}OH] = 0.05 - y \simeq 0.05,$$
  

$$[C_{6}H_{5}O^{-}] = 0.01 + y \simeq 0.01 \text{ M}, [H^{+}] = y \text{ M}$$
  

$$\therefore K_{a} = \frac{(0.01)(y)}{0.05} = 1.0 \times 10^{-10} \text{ (Given)}$$
  
or  $y = 5 \times 10^{-10}$   

$$\therefore \alpha = \frac{y}{c} = \frac{5 \times 10^{-10}}{5 \times 10^{-2}} = 10^{-8}.$$

• EXAMPLE 3. The first ionization constant of  $H_2S$  is  $9 \cdot 1 \times 10^{-8}$ . Calculate the concentration of  $HS^-$  ions in its  $0 \cdot 1$  M solution and how will this concentration be affected if the solution is  $0 \cdot 1$  M in HCl also ? If the second dissociation constant of  $H_2S$  is  $1 \cdot 2 \times 10^{-13}$ , calculate the concentration of  $S^{2-}$  under both conditions. (N.C.E.R.T.)

Solution. To calculate [HS<sup>-</sup>]

$$H_{2}S \implies H^{+} + HS^{-}$$

Initial 0.1 MAfter disso. 0.1 - x x x= 0.1

$$K_a = \frac{x \times x}{0 \cdot 1} = 9 \cdot 1 \times 10^{-8}$$
  
or  $x^2 = 9 \cdot 1 \times 10^{-9}$  or  $x = 9 \cdot 54 \times 10^{-5}$ .

#### EQUILIBRIUM - II (IONIC EQUILIBRIUM IN SOLUTIONS)

S

In presence of 
$$0 \cdot 1$$
 M HCl, suppose H<sub>2</sub>S dis  
ociated is y. Then at equilibrium  
 $[H_2S] = 0 \cdot 1 - y = 0 \cdot 1$ ,  
 $[H^+] = 0 \cdot 1 + y = 0 \cdot 1$ ,  $[HS^-] = y$  M  
 $K_a = \frac{0 \cdot 1 \times y}{0 \cdot 1} = 9 \cdot 1 \times 10^{-8}$  (Given)  
or  $y = 9 \cdot 1 \times 10^{-8}$  M  
To calculate [S<sup>2-</sup>]  
 $H_2S \rightleftharpoons H^+ + HS^-$   
 $HS^- \rightleftharpoons H^+ + S^{2-}$   
For the overall reaction,  
 $H_2S \rightleftharpoons 2H^+ + S^{2-}$   
 $K_a = K_{a_1} \times K_{a_2} = 9 \cdot 1 \times 10^{-8} \times 1 \cdot 2 \times 10^{-13}$   
 $= 1 \cdot 092 \times 10^{-20}$   
 $K_a = \frac{[H^+]^2 [S^2-]}{[H_2S]}$ 

In the absence of 0.1 M HCl,  $[H^+] = 2[S^{2-}]$ Hence if  $|S^{2-}| = x$ ,  $|H^+| = 2x$  $\frac{(2x)^2x}{0\cdot 1} = 1\cdot 092 \times 10^{-20}$ · .  $4x^3 = 1.092 \times 10^{-21}$ or  $x^3 = 0.273 \times 10^{-21} = 273 \times 10^{-24}$ or  $3 \log x = \log 273 - 24 = 2 \cdot 4362 - 24$  $\log x = 0.8127 - 8 = 8.8127$ or x = Antilog 8.8127 $= 6.497 \times 10^{-8} = 6.5 \times 10^{-8} M.$ In presence of 0 · 1 M HCl, suppose  $[S^{2^{-}}] = y$ , then  $[H_{2}S] = 0 \cdot 1 - y \simeq 0 \cdot 1 M,$  $[H^+] = 0 \cdot 1 + y = 0 \cdot 1 M$  $K_a = \frac{(0 \cdot 1)^2 \times y}{0 \cdot 1} = 1 \cdot 09 \times 10^{-20}$  $y = 1.09 \times 10^{-19}$  M. or

## PROBLEMS FOR PRACTICE

- 1. The  $pK_a$  value of acetic acid is 4.74. Calculate degree of ionization of 0.05 M acetic acid solution. How is the degree of ionization affected if its solution is also (a) 0.01 M (b) 0.1 M in HCl?
  - [Ans. 0.019, (a) 0.0018 (b) 0.00018 i.e. each case, it decreases by a factor of 10]
- 2. Calculate the degree of ionization of 0.02 M dimethyl amine solution. Given that its ionization constant is  $5.4 \times 10^{-4}$ . What percentage of dimethyl amine is ionized if the solution is also 0.1 M in NaOH? [Ans. 0.164, 0.0054]

HINTS FOR DIFFICULT PROBLEMS

1. 
$$pK_a = 4.74$$
 means  $-\log K_a = 4.74$ 

or 
$$\log K_a = 5.26$$

or

$$K_a = 1.8 \times 10^{-5}$$
.

$$\alpha = \sqrt{K_a/c} = \sqrt{1.8 \times 10^{-5}/0.05}$$

$$= 1.9 \times 10^{-2} = 0.019.$$

Further proceed as in solved example 1.

<sup>2</sup>. 
$$a = \sqrt{K_b/c} = \sqrt{5.4 \times 10^{-4}/0.02} = 0.164$$

#### 8.15. Applications of Solubility Product and Common Ion Effect

Some of the important applications are discussed below : In presence of 0.1 M NaOH, if x is the amount of dimethyl amine dissociated.

[MOH] = 0.02 - x = 0.02 M,

$$[OH^{-}] = 0.1 + x = 0.1, [M^{+}] = x M$$

: 
$$K_b = \frac{x \times (0.1)}{0.02} = 5.4 \times 10^{-4}$$
 (Given)

or 
$$x = 1.08 \times 10^{-4} \text{ M}$$

$$a = \frac{x}{c} = \frac{1 \cdot 08 \times 10^{-4}}{0 \cdot 02} = 0 \cdot 0054.$$

(1) Calculation of solubility of sparingly soluble salts. Knowing the solubility product of a sparingly soluble salt at any given temperature, we can very easily calculate its solubility.

The relationship between solubility (s) in mol  $L^{-1}$  and solubility product  $(K_{sp})$  depends upon the nature of the salt. For example,

(i) For salts of the type AB (e.g. AgCl, BaSO<sub>4</sub>, PbSO<sub>4</sub>, AlPO<sub>4</sub> etc.)

$$AB \xrightarrow{s} A^{+} + B^{-}$$

$$s \xrightarrow{s} s$$

$$(A^{+})[B^{-}] = s \times s = s^{2}$$

(*ii*) For salts of the type  $AB_2$  (e.g. PbCl<sub>2</sub>, CaF<sub>2</sub> etc.)

$$AB_2 \xrightarrow{2+} A + 2B^-$$

$$K_{sn} = [A^+] [B^-]^2 = s \times (2s)^2 = 4s^3$$

Similarly for salts of the type  $A_2B$  (e.g.  $Ag_2CrO_4$ ,  $Ag_2SO_4$  etc.) also,  $K_{sp} = 4s^3$ .

(*iii*) For salts of the type  $AB_3$  (e.g. Fe(OH)<sub>3</sub>, Al(OH)<sub>3</sub> etc.)

 $K_{cn} = s \times (3s)^3 = 27s^4$  and so on.

**EXAMPLE 1.** The solubility product for silver chloride is  $1.2 \times 10^{-10}$  at 298 K. Calculate the solubility of silver chloride at 298 K.

Solution. Silver chloride dissociates according to the equation

$$\operatorname{AgCl}(s) \rightleftharpoons \operatorname{AgCl}(aq) \rightleftharpoons \operatorname{Ag^+}(aq) + \operatorname{Cl^-}(aq)$$

Let s be the solubility of AgCl in moles per litre.

Consequently, the molar concentration of  $Ag^+$  and  $Cl^-$  will also be *x* each. Substituting in the expression for solubility product of AgCl

$$K_{sp} = [Ag^{+}] [Cl^{-}]$$
  
=  $s \times s = s^{2}$   
$$K_{sp} = 1.2 \times 10^{-10} \qquad (Given)$$
  
 $x^{2} = 1.2 \times 10^{-10}$ 

.:. or

But

 $s = \sqrt{1 \cdot 2 \times 10^{-19}}$ 

 $= 1 \cdot 1 \times 10^{-5} \text{ mol } L^{-1}$ 

• EXAMPLE 2. Lead chloride has a solubility product of  $1.7 \times 10^{-5}$  at 298 K. Calculate its solubility at this temperature.

Solution. The solubility equilibrium for PbCl, may be represented as :

$$PbCl_2(s) \longrightarrow Pb^{2+}(aq)+2Cl^{-}(aq)$$

Let the solubility of  $PbCl_2$  be *s* moles/litre. Then the solution will contain *s* moles of  $Pb^{2+}$  ions and 2*s* moles of  $Cl^-$  ions respectively per litre. Hence, the solubility product,  $K_{sp}$  of  $PbCl_2$ , would be given by the expression.

$$K_{sp} = [Pb^{2+}] [Cl^{-}]^{2}$$

$$= s \times (2s)^{2} = 4s^{3}$$
But the vlaue of  $K_{sp} = 1.7 \times 10^{-5}$  (Given)  
 $4s^{3} = 1.7 \times 10^{-5}$   
or  $s^{3} = \frac{1 \cdot 7 \times 10^{-5}}{4} = 0.425 \times 10^{-5}$   
or  $s = (0.425 \times 10^{-5})^{1/3}$   
 $= (4.25 \times 10^{-6})^{1/3}$   
Let  $x = (4.25)^{1/3}$   
 $\therefore \log x = 1/3 \log 4.25 = 1/3 (0.6284)$   
 $= 0.2095$   
 $x = Antilog 0.2095 = 1.620$   
Hence  $s = 1.620 \times 10^{-2} \text{ mol L}^{-1}$ 

EXAMPLE 3. The solubility product of AgCl in water is  $1.5 \times 10^{-10}$ . Calculate its solubility in 0.01 M NaCl aqueous solution. (Roorkee 1995)

Solution. As NaCl dissociates completely, therefore in 0.01 M NaCl solution, [Cl<sup>-</sup>] = 0.01 M

If solubility of AgCl in 0.01 M NaCl solution is s mol  $L^{-1}$ , then from AgCl that dissolves,

$$[Ag^+] = [Cl^-] = s \mod L^-$$

 $\therefore \text{ Total } [\text{Cl}^-] = 0.01 + s \approx 0.01 \text{ M}$ 

$$K_{sp} \text{ for } AgCl = [Ag^+] [Cl^-]$$
  
=  $s \times 0.01 = 0.01 s$   
 $0.01 s = 1.5 \times 10^{-10}$   
or  $s = 1.5 \times 10^{-8} \text{ M}$ 

• EXAMPLE 4. What is the minimum volume of water required to dissolve 1 g of calcium sulphate at 298K. For calcium sulphate,  $K_{sn} = 9 \cdot 1 \times 10^{-6}$ .

Solution.

then

$$CaSO_4(s) \rightleftharpoons Ca^{2+}(aq) + SO_4^{2-}(aq)$$
  
If s is the solubility of CaSO<sub>4</sub> in moles L<sup>-1</sup>

rs in the solutionity of Outog

$$K_{sp} = [Ca^{2+}] \times [SO_4^{2-}] = s^2$$
  
or  $s = \sqrt{K_{sp}} = \sqrt{9 \cdot 1 \times 10^{-6}}$ 

- $= 3 \cdot 02 \times 10^{-3} \text{ mol } \text{L}^{-1}$
- $= 3.02 \times 10^{-3} \times 136 \text{ g L}^{-1}$
- $= 0.411 \,\mathrm{g}\,\mathrm{L}^{-1}$

(Molar mass of  $CaSO_4 = 136 \text{ g mol}^{-1}$ )

- Thus for dissolving 0.411 g, water required = 1 L
  - ... For dissolving 1 g, water required

$$=\frac{1}{0.411}$$
L = 2.43 L.

## PROBLEMS FOR PRACTICE V

1. Calculate the solubility of silver chloride in water at room temperature if the solubility product of AgCl is  $1.6 \times 10^{-10}$ 

[Aus. 1.26  $\times 10^{-5}$  mol L<sup>-1</sup>]

2. If solubility product for CaF<sub>2</sub> is  $1.7 \times 10^{-10}$  at 298 K, calculate the solubility in mol L<sup>-1</sup>.

[Ans. 3.5×10<sup>-4</sup>]

- <sup>3</sup> How many moles of AgBr ( $K_{sp} = 5 \times 10^{-13}$ 
  - $mol^{-2}L^{-2}$ ) will dissolve in 0.01 M NaBr solution?

 $[Ans.5 \times 10^{-11} \text{ mol } L^{-1}]$ 

4. Calculate the solubilities of silver chromate and mercurous iodide in water at 298K. Given that their solubility products are  $1.1 \times 10^{-12}$  and

 $4.5 \times 10^{-29}$  respectively. Also calculate the molarities of their individual ions.

[Ans. Solubility of  $Ag_2CrO_4 = 6.5 \times 10^{-5} M$ 

Molarity of  $Ag^+ = 1.30 \times 10^{-4} M$ 

- Molarity of  $CrO_4^{2-} = 6.5 \times 10^{-5} M$
- Solubility of Hg<sub>2</sub>I<sub>2</sub> =  $2 \cdot 24 \times 10^{-10}$  M

Molarity of  $Hg_2^{2+} = 2 \cdot 24 \times 10^{-10} M$ 

Molarity of  $I^- = 4.48 \times 10^{-10}$  M]

5. The solubility of product constants of Ag<sub>2</sub>CrO<sub>4</sub> and

AgBr are  $1 \cdot 1 \times 10^{-12}$  and  $5 \cdot 0 \times 10^{-13}$  respectively. Calculate the ratio of molarities of their saturated solutions, (*N.C.E.R.T.*)

[Ans. 9 · 15]

## HINTS FOR DIFFICULT PROBLEMS

3. Suppose solubility of AgBr in 0.01 M NaBr =  $s \mod L^{-1}$ . Then as AgBr  $\longrightarrow$  Ag<sup>+</sup> + Br<sup>-</sup> [Ag<sup>+</sup>] =  $s \mod L^{-1}$  and Total [Br<sup>-</sup>] =  $0.01 + s \approx 0.01$  M  $K_{sp} = [Ag^+] [Br^-]$  *i.e.*  $5 \times 10^{-13} = s \times 0.01$ or  $s = 5 \times 10^{-11} \mod L^{-1}$ 

(2) Predicting ionic or precipitation reaction. The solubility product represents the upper limit for ionic product in a saturated solution of any sparingly soluble salt. In other words,

If the ionic product i.e., the product of the concentration of ions in the solution exceeds the value of the solubility product of a sparingly soluble salt, the excess ions will combine resulting in the formation of precipitate.

Thus, having a knowledge of solubility product of any sparingly soluble salt, we can predict

4.  $Hg_2I_2 \longrightarrow Hg_2^2 + 2I^$   $s \qquad 2s$   $K_{sp} = s \times (2s)^2 = 4s^3 \text{ or } s^3 = 4.5 \times 10^{-29}/4$ or  $3 \log s = \log 4.5 - 29 - \log 4 = -28.9489$ or  $\log s = -9.6496 = \overline{10.3504}$ 

or  $s = \text{Antilog } \overline{10} \cdot 3504 = 2 \cdot 24 \times 10^{-10}$ .

5. Calculate their solubilities separately and then calculate the ratio.

whether the salt will precipitate out or not when two solutions containing a known concentration of its ions are mixed together. This is illustrated by the following example.

• EXAMPLE. 1. Given that the solubility product of  $BaSO_4$  is  $1 \times 10^{-10}$ . Will a precipitate form when

(i) Equal volumes of  $2 \times 10^{-3}$  M BaCl<sub>2</sub> solution and  $2 \times 10^{-4}$  M Na<sub>2</sub> SO<sub>4</sub> solution are mixed ?

(ii) Equal volumes of  $2 \times 10^{-8}$  M BaCl<sub>2</sub> solution and  $2 \times 10^{-3}$  M Na<sub>2</sub> SO<sub>4</sub> solution are mixed ?

Solution. (i)  $BaCl_2$  ionizes completely in the solution as

 $BaCl_2 \longrightarrow Ba^{2+} + 2Cl^{-}$ 

 $[Ba^{2+}] = [BaCl_2] = 2 \times 10^{-3} M$  (Given)

Na2SO4 ionizes completely in the solution as

$$Na_2SO_4 \longrightarrow 2Na^+ + SO_4^{2-}$$

$$(SO_4^{2-}] = [Na_2 SO_4] = 2 \times 10^{-4} M$$
 (Given)

Since equal volumes of the two solutions are mixed together, therefore, the concentrations of  $Ba^{2+}$  ions and  $SO_4^{2-}$  ions after mixing will be

$$[Ba^{2+}] = \frac{2 \times 10^{-3}}{2} = 10^{-3} M$$
  
and 
$$[SO_4^{2-}] = \frac{2 \times 10^{-4}}{2} = 10^{-4} M$$

: Ionic product of  $BaSO_4 = [Ba^{2+}][SO_4^{2-}]$ 

$$= 10^{-3} \times 10^{-4} = 10^{-7}$$

which is greater than the solubility product  $(1 \times 10^{-10})$  of BaSO<sub>4</sub>. Hence a precipitate of BaSO<sub>4</sub> will be formed.

(ii) Here, the concentrations before mixing are :

 $[Ba^{2+}] = [BaCl_2] = 2 \times 10^{-8} \text{ M} \text{ (Given)}$  $[SO_4^{2-}] = [Na_2SO_4] = 2 \times 10^{-3} \text{ M} \text{ (Given)}$ 

... Concentrations after mixing equal volumes

will be

$$[Ba^{2+}] = \frac{2 \times 10^{-8}}{2} = 10^{-8} M$$

and  $[SO_4^{2-}] = \frac{2 \times 10^{-4}}{2} = 10^{-3} \text{ M}$ 

 $\therefore$  Ionic product of BaSO<sub>4</sub> = [Ba<sup>2+</sup>] [SO<sub>4</sub><sup>2-</sup>]

$$= 10^{-8} \times 10^{-3} = 10^{-11}$$

which is less than the solubility product  $(1 \times 10^{-10})$ . Hence no ppt. will be formed in this case.

EXAMPLE 2. What is the maximum concentration of equimolar solutions of ferrous sulphate and sodium sulphide so that when mixed in equal volumes, there is no precipitation of iron sulphide? For iron sulphide,  $K_{sp} = 6.3 \times 10^{-18}$ . (N.C.E.R.T.)

Solution. Suppose the concentration of each of  $FeSO_4$  and  $Na_2S$  is x mol  $L^{-1}$ . Then after mixing

equal volumes,  $[FeSO_4] = [Na_2S] = \frac{x}{2} M$ 

*i.e.* 
$$[Fe^{2+}] = [S^{2-}] = \frac{x}{2}M$$
  
 $K_{sp}$  for  $FeS = [Fe^{2+}][S^{2-}]$   
*i.e.*  $6 \cdot 3 \times 10^{-18} = \frac{x}{2} \times \frac{x}{2}$   
or  $x^2 = 25 \cdot 2 \times 10^{-18}$   
or  $x = 5 \cdot 02 \times 10^{-9} M$ .

• EXAMPLE 3. The concentration of sulphide ion in  $0 \cdot 1$  M HCl solution saturated with hydrogen sulphide is  $1 \cdot 0 \times 10^{-19}$  M. If 10 mL of this solution is added to 5 mL of  $0 \cdot 04$  M solution of FeSO<sub>4</sub>, MnCl<sub>2</sub>, ZnCl<sub>2</sub> and CaCl<sub>2</sub> in which solutions precipitation will take place ? Given  $K_{sp}$  for FeS =  $6 \cdot 3 \times 10^{-18}$ , MnS =  $2 \cdot 5 \times 10^{-13}$ , ZnS =  $1 \cdot 6 \times 10^{-24}$  and CdS =  $8 \cdot 0 \times 10^{-27}$ . (N.C.E.R.T.)

Solution. Precipitation will take place in the solution for which ionic product is greater than solubility product. As 10 mL of solution containing  $S^{2-}$  ion is mixed with 5 mL of metal salt solution, after mixing

$$[S^{2-}] = 1 \cdot 0 \times 10^{-19} \times \frac{10}{15} = 6 \cdot 67 \times 10^{-20},$$
  

$$[Fe^{2+}] = [Mn^{2+}] = [Zn^{2+}] = [Cd^{2+}]$$
  

$$= \frac{5}{15} \times 0 \cdot 04 = 1 \cdot 33 \times 10^{-2} M$$

... Ionic product for each of these will be

= 
$$[M^{2+}] [S^{2-}]$$
  
=  $(1 \cdot 33 \times 10^{-2}) (6 \cdot 67 \times 10^{-20})$   
=  $8 \cdot 87 \times 10^{-22}$ 

As this is greater than the solubility product of ZnS and CdS, therefore,  $ZnCl_2$  and  $CdCl_2$  solutions wil be precipitated.

## PROBLEMS FOR PRACTICE

- Predict whether a precipitate will be formed or not on mixing 20 ml of 0.001 N NaCl solution with 80 ml of 0.01 N AgNO<sub>3</sub> solution. K<sub>sp</sub> for AgCl
- =  $1.5 \times 10^{-10}$  [Ans. Yes, ppt. will be formed] 2. If 20 ml of  $2 \times 10^{-5}$  BaCl<sub>2</sub> solution is mixed with 20 ml of  $1 \times 10^{-5}$  M Na<sub>2</sub> SO<sub>4</sub> solution, will a ppt. form ? (K<sub>s,p.</sub> for BaSO<sub>4</sub> is  $1.0 \times 10^{-10}$ ) [Ans. No]
- 3. 0.03 mole of Ca<sup>2+</sup> ions is added to a litre of 0.01 M  $SO_4^{2-}$  solution. Will it cause precipitation of

 $CaSO_4$ ? K<sub>sp</sub> for  $CaSO_4 = 2.4 \times 10^{-5}$ 

[ Ans.Precipitation of CaSO4 will occur]

4. PbCl<sub>2</sub> has a solubility product of  $1.7 \times 10^{-8}$ . Will a precipitate of PbCl<sub>2</sub> form, when 0.010 mole of lead nitrate and 0.010 mole of potassium chloride are mixed and water added upto 1 litre?

[Ans.Yes]

5. Equal volumes of 0.002 M solutions of sodium iodate and copper chlorate are mixed together. Will it lead to precipitation of copper iodate ?

For copper iodate,  $K_{sp} = 7.4 \times 10^{-8}$ .

(N.C.E.R.T.) [ Ans.No precipitation]

HINTS FOR DIFFICULT PROBLEMS

1. After mixing, total volume of the solution = 100 ml20 ml of  $10^{-3}$  M NaCl sol = 100 ml of ? M Molarity of NaCl solution in the final solution

$$=\frac{20\times10^{-3}}{100}=2\times10^{-4}\,\mathrm{M}$$

or  $[CI^-] = 2 \times 10^{-4} M$ 

80 ml of  $10^{-2}$  M AgNO<sub>3</sub> sol = 100 ml of ? M Molarity of AgNO<sub>3</sub> solution in the final solution

$$=\frac{80\times10^{-2}}{100}=8\times10^{-3}\,\mathrm{M}$$

or  $[Ag^+] = 8 \times 10^{-3}$ 

: Ionic product =  $[Ag^+][Cl^-] = 16 \times 10^{-7}$ 

=  $1.6 \times 10^{-8}$  which is greater than the solubility product. Hence ppt. will be formed.

3. In the final solution,  $[Ca^{2+}] = 0.03 \text{ M}$  and  $[SO_4^{2-}] = 0.01 \text{ M}$ . Hence ionic product of CaSO<sub>4</sub>

=  $(0.03 (0.01) = 3 \times 10^{-4}$  which is greater than  $K_{sp}$ . Hence precipitation will occur.

(3) In explaining salting out or precipitation of soluble salts. For example, on passing hydrochloric acid gas through a saturated solution of sodium chloride, the concentration of chloride ions will be increased. This increases the ionic product of NaCl and the solid salt will be precipitated.

Similarly, soap (which is sodium salt of higher fatty acids) is precipitated out from its solution by

4. As final volume of the solution = 1 L, therefore  $[Pb^{2+}] = 0.01 \text{ M} = 10^{-2} \text{ M}$ 

 $[Cl^{-}] = 0.01 \text{ M} = 10^{-2} \text{ M}.$ 

Ionic product of  $PbCl_2 = [Pb^{2+}] [Cl^-]^2$ 

$$(10^{-2})(10^{-2})^2 = 10^{-6}$$

which is greater than  $K_{sp}$ . Hence ppt. of PbCl<sub>2</sub> will be formed.

5. 2 NaIO<sub>3</sub> + CuCrO<sub>4</sub>  $\rightarrow$  Na<sub>2</sub>CrO<sub>4</sub> + Cu(IO<sub>3</sub>)<sub>2</sub>

After mixing,  $[NaIO_3] = [IO_3^-]$ 

$$=\frac{2\times10^{-3}}{2}=10^{-3}\,\mathrm{M}$$

 $[CuCrO_4] = [Cu^{2+}] = \frac{2 \times 10^{-3}}{2} = 10^{-3} M$ 

Ionic product of  $Cu(IO_3)_2 = [Cu^{2+}][IO_3^-]^2$ 

$$=(10^{-3})(10^{-3})^2=10^{-9}$$

As ionic product is less than  $K_{sp}$ , no precipitation will occur.

stirring with sodium chloride. The process is called 'salting out'.

Alternatively, it may be pointed out that  $K_{sp}$  is for the concentrations in equilibrium (in the saturated solution). It is constant for a particular salt at a particular temperature irrespective of the source of ions. Thus in the presence of some common ion produced from any other substance in the solutions, the concentration of ions are disturbed

and in place of  $K_{sp}$ , we use the symbol  $Q_{sp}$  (just as we use  $Q_c$  in place of  $K_c$ ). The concept is applicable even to soluble salts like NaCl except that we use activities in place of molar concentrations (due to high concentration of their ions). Thus in case of NaCl.

NaCl (s) 
$$\underset{sp}{\longleftarrow}$$
 Na<sup>+</sup> (aq) + Cl<sup>-</sup> (aq)  
K<sub>sp</sub> = [Na<sup>+</sup> (aq)] [Cl<sup>-</sup> (aq)]

If HCl gas is passed through the saturated solution of NaCl, Cl<sup>-</sup> ion concentration will increase so that  $Q_{sp} > K_{sp}$ . In order that  $Q_{sp}$  may become equal to  $K_{sp}$ , equilibrium will shift in the backward direction *i.e.* pure solid NaCl will precipitate out.

(4) In Qualitative Analysis. The separation and identification of various basic radicals into different groups is based upon

(a) Solubility product principle, according to which 'a precipitate is formed if ionic product is greater than the solubility product'.

(b) Common ion effect, according to which 'if to the solution of a weak electrolyte (like  $NH_4OH$ ), a strong electrolyte having a common ion (like  $NH_4$  Cl) is added, the ionization of the weak electrolyte is further suppressed.

A brief description of the separation of basic radicals into different groups is given below :

(i) Precipitation of sulphides of group II. Sulphides of group II are precipitated by passing  $H_2S$  gas through the solution of these cations in presence of dil HCl.

 $H_2S$  being a weak electrolyte ionizes only slightly, while HCl being a strong electrolyte is almost completely ionized.

 $H_2S \longrightarrow 2H^+ + S^{2-}$ HCl  $\longrightarrow H^+ + Cl^-$ 

Thus the common ion effect takes place. As a result, the degree of dissociation of  $H_2S$  decreases sufficiently and the concentration of  $S^{2-}$  ions in the solution becomes very small. But with this low concentration of  $S^{2-}$  ions, the ionic product of the cations of second group and the sulphide ions exceeds the very low solubility products of their corresponding sulphides. Therefore, the cations of group II get precipitated as their insoluble sulphides.

On the other hand, the sulphides of the cations of the other groups (III, IV, V and Mg) are not precipitated under these conditions because their solubility products are quite high.

(ii) Precipitation of the hydroxides of group III. Hydroxides of group III are precipitated by adding an excess of solid  $NH_4Cl$  to the solutions of these cations followed by the addition of excess of  $NH_4OH$ . Being a weak electrolyte,  $NH_4OH$  is only slightly ionised, whereas  $NH_4Cl$ , being a strong electrolyte, ionizes almost completely to give a large concentration of  $NH_4^+$  ions.

 $\begin{array}{ccc} \text{NH}_4 \text{ OH} & \longrightarrow & \text{NH}_4^+ + \text{OH}^- \\ \\ \text{NH}_4 \text{Cl} & \longrightarrow & \text{NH}_4^+ + \text{Cl}^- \end{array}$ 

Due to the common ion effect, the degree of dissociation of  $NH_4OH$  gets suppressed and hence the concentration of  $OH^-$  ions in solution decreases appreciably. But even with this low conc. of  $OH^-$  ions, the ionic products of the cations of group III and  $OH^-$  ions exceed the low values of the solubility products of their corresponding metal hydroxides. As a result, the cations of group III get precipitated as their insoluble hydroxides.

On the other hand, cations of groups IV, V and Mg, which require a large conc. of OH<sup>-</sup> ions due to their high solubility products will not be precipitated.

(iii) Precipitation of sulphides of group IV. The sulphides of group IV are precipitated by passing  $H_2S$  through ammoniacal solution of these cations.

Both  $H_2S$  and  $NH_4OH$ , being weak electrolytes; ionize only slightly as :

 $\begin{array}{ccc} H_2S & \longrightarrow & 2H^+ + S^{2-} \\ NH_4OH & \longrightarrow & NH_4^+ + OH^- \end{array}$ 

The H<sup>+</sup> ions and OH<sup>-</sup> ions combine to produce practically unionised molecules of water

 $H^+ + OH^- \longrightarrow H_2O$ 

As a result, the above dissociation equilibrium reactions get shifted in the forward direction, so that the concentration of  $S^{2-}$  ions goes on increasing: Ultimately, the ionic products of the cations of group IV and  $S^{2-}$  ions exceed the solubility products of their corresponding metal sulphides and hence get precipitated.

8/48

(iv) Precipitation of Carbonates of Group V. The carbonates of group V are precipitated by adding  $(NH_4)_2$  CO<sub>3</sub> solution to the solution of these cations in the presence of NH<sub>4</sub>Cl and NH<sub>4</sub>OH.  $(NH_4)_2$ CO<sub>3</sub>, being a weak electrolyte ionises only slightly to give a small concentration of CO<sub>3</sub><sup>2-</sup> ions.

 $(NH_4)_2CO_3 \longrightarrow 2NH_4^+ + CO_3^{2-}$ On the other hand,  $NH_4Cl$  being a strong clectrolyte, ionises almost completely to give a large concentration of  $NH_4^+$  ions. Due to the common ion effect, the dissociation of  $(NH_4)_2CO_3$  is suppressed and hence the concentration of  $CO_3^{2-}$  ions in the solution decreases considerably. But even with this low concentration of  $CO_3^{2-}$  ions, the ionic products of these cations and  $CO_3^{2-}$  ions exceed the low values of the solubility products of their corresponding metal carbonates and thus get precipitated.

However, under these conditions, Mg salts do not get precipitated as  $MgCO_3$  since its solubility product is comparatively high and thus requires a high concentration of  $CO_3^{2-}$  ions for precipitation. The carbonates of Na<sup>+</sup>, K<sup>+</sup> and NH<sub>4</sub><sup>+</sup> ions are also not precipitated because they are quite soluble.

The necessity of adding  $NH_4OH$  arises due to the fact that  $(NH_4)_2CO_3$  solution usually contains a large amount of  $NH_4HCO_3$ . Thus the cations of group V will form not only insoluble carbonates but soluble bicarbonates as well. As a result, the precipitation will not be complete. In order to convert  $NH_4HCO_3$  to  $(NH_4)_2CO_3$ ,  $NH_4OH$  is always added.

 $NH_4HCO_3 + NH_4OH \longrightarrow (NH_4)_2 CO_3 + H_2O$ 

(5) In fractional precipitation. Fractional precipitation is a technique of separating two or more ions from a solution by adding a suitable reactant that precipitates first one ion, then another and so on. For example, suppose we have a solution which is 0.1 M in  $Ba^{2+}$  and 0.1 M in  $Sr^{2+}$ . When a concentrated K<sub>2</sub>CrO<sub>4</sub> solution is added to it slowly,  $Ba^{2+}$  ions precipitate out first. When most of the  $Ba^{2+}$  ions (almost whole of it) have precipitated out,  $Sr^{2+}$  ions start precipitating out. The reason for this may be explained on the basis of their solubility products as follows :

 $K_{sp}$  for BaCrO<sub>4</sub> = 1 · 2 × 10<sup>-10</sup>

 $K_{tr}$  for SrCrO<sub>4</sub> = 3 · 5 × 10<sup>-5</sup>

Assuming volume change of the solution to be negligible due to addition of concentrated  $K_2CrO_4$  solution,  $[CrO_4^{2^-}]$  required to start precipitation of  $0.1 \text{ M Ba}^{2^+}$  may be calculated as follows:

$$[Ba^{2+}] [CrO_4^{2-}] = K_{sp} \text{ for } BaCrO_4$$
  
(0.1)  $[CrO_4^{2-}] = 1.2 \times 10^{-10}$   
or  $[CrO_4^{2-}] = \frac{1.2 \times 10^{-10}}{0.1} = 1.2 \times 10^{-9} \text{ M}$ 

Similarly  $[CrO_4^{2-}]$  required to start precipitation of 0.1 M Sr<sup>2+</sup> can be calculated as follows :

$$[Sr^{2+}] [CrO_4^{2-}] = K_{sp} \text{ for } SrCrO_4$$
  
(0.1) [CrO\_4^{2-}] = 3.5 × 10^{-5}  
or [CrO\_4^{2-}] =  $\frac{3.5 \times 10^{-5}}{0.1}$  = 3.5 × 10<sup>-4</sup> M

Thus BaCrO<sub>4</sub> starts precipitating first because  $CrO_4^{2-}$  concentration required to precipitate BaCrO<sub>4</sub> is much smaller than that required for the precipitation of SrCrO<sub>4</sub>.

#### 8.16. Buffer Solutions and Buffer Action

It is sometimes necessary that a solution of definite pH be prepared and stored. The preservation of such a solution is even more difficult than its preparation. If the solution comes in contact with air, it will absorb carbon dioxide (an acidic anhydride) and becomes more acidic. If the solution is stored in a glass bottle, the alkaline impurities present in glass may dissolve into the solution and may alter its pH.

A buffer solution is defined as a solution which resists any change in its pH value (i.e. whose pH remains preactically constant) even when small amounts of the acid or the base are added to it.

Types of Buffer solutions. There are two types of buffer solutions. These are :

(i) Solutions of single substances. The solution of the salt of a weak acid and a weak base e.g. ammonium acetate  $(CH_3COONH_4)$  acts as a buffer.

(ii) Solutions of Mixtures. These are further of two types :

(a) Acidic Buffer. It is the solution of a mixture of a weak acid and a salt of this weak acid with a strong base (e.g.  $CH_3COOH + CH_3COONa$ ).

(b) Basic Buffer. It is the solution of a mixture of a weak base and a salt of this weak base with a strong acid. (e.g.  $NH_4OH + NH_4Cl$ ).

Buffer Action. The property of a buffer solution to resist any change in its pH value even when small amounts of the acid or the base are added to it is called 'Buffer action'.

The buffer action of different types of buffers may be explained as follows :

Buffer Action of Ammonium Acetate Solution. Ammonium acetate like all other salts, is almost completely dissociated in the aqueous solution as follows :

 $CH_3COONH_4 \longrightarrow CH_3COO^- + NH_4^+$ 

Thus in the solution there is excess of  $CH_3COO^-$  ions and  $NH_4^+$  ions.

When a few drops of an acid (say HCl) are added to the above solution, the  $H_3O^+$  ions given by the acid combine with the  $CH_3COO^-$  ions to form weakly ionized molecules of  $CH_3COOH$ .

 $CH_3COO^- + H_3O^+ \longrightarrow CH_3COOH + H_2O$ 

Thus the  $H_3O^+$  ion concentration of the solution does not change practically and hence the pH of the solution remains almost constant. Similarly, when a few drops of a base (say NaOH) are added

to the above solution, the  $OH^-$  ions given by the base combine with the  $NH_4^+$  ions to form weakly ionized molecules of  $NH_4OH$ .

 $NH_4^+ + OH^- \longrightarrow NH_4OH$ 

Thus the  $OH^-$  ion concentration and hence the  $H_3O^+$  ion concentration or the pH of the solution remains almost consant.

On the contrary, the solution of a substance like NaCl cannot act as a buffer because NaCl dissociates completely to give Na<sup>+</sup> and Cl<sup>-</sup> ions. These may combine with the base or the acid added to form NaOH or HCl. But these ionize completely to give back the OH<sup>-</sup> ions or H<sub>3</sub>O<sup>+</sup> ions. Thus the H<sub>3</sub>O<sup>+</sup> ions concentration of the solution changes and hence the pH of the solution changes. Buffer Action of Acidic Buffer. For example, let us consider the buffer action of the acidic buffer containing CH<sub>3</sub>COOH and CH<sub>3</sub>COONa. Acetic acid dissociates to a small extent whereas sodium acetate is almost completely dissociated in the aqueous solution as follows :

$$CH_{3}COOH + H_{2}O \implies CH_{3}COO^{-} + H_{3}O^{+}$$

$$...(i)$$

$$CH_{3}COONa \longrightarrow CH_{3}COO^{-} + Na^{+}$$

$$...(ii)$$

By 'common ion effect', the ionization of  $CH_3COOH$  is further suppressed. Thus in the solution, there are excess of acetate ( $CH_3COO^-$ ) ions and a small amount of  $H_3O^+$  ions.

When a few drops of an acid are added to the above mixture solution, the  $H_3O^+$  ions given by the acid combine with the  $CH_3COO^-$  ions to form weakly ionized molecules of  $CH_3COOH$ .

 $CH_3COO^- + H_3O^+ \longrightarrow CH_3COOH + H_2O$ 

Thus the  $H_3O^+$  ion concentration and hence the pH of the solution remains almost constant.

Similarly, when a few drops of a base are added, the  $OH^-$  ions given by the base combine with the  $H_3O^+$  ions already present to form weakly ionized molecules of  $H_2O$ .

$$\begin{array}{l} H_{3}O^{+} + OH^{-} \longrightarrow 2H_{2}O \\ From (i) \end{bmatrix} \quad [Given by the base] \end{array}$$

As the  $H_3O^+$  ions are consumed, the equilibrium (i) shifts towards right (according to Le Chatelier's principle). Thus more of CH<sub>3</sub>COOH dissociates to make up the loss of H<sub>3</sub>O<sup>+</sup> ions. Hence the H<sub>3</sub>O<sup>+</sup> ion concentration or the pH of the solution does not change.

**Buffer Action of Basic Buffer.** The buffer action of a basic buffer *e.g.*  $NH_4OH + NH_4Cl$  may be explained as follows :

 $NH_4OH$  dissociates to a small extent whereas  $NH_4Cl$  dissociates completely in the aqueous solution as follows :

| NH4OH              | ${=}$ | NH <sub>4</sub> <sup>+</sup> + | OH- | (i)  |
|--------------------|-------|--------------------------------|-----|------|
| NH <sub>4</sub> Cl |       | NH <sub>4</sub> <sup>+</sup> + | Cl- | (ii) |

By common ion effect, the ionization of NH<sub>4</sub> OH is further suppressed. Thus in the solu-

EQUILIBRIUM --- II (IONIC EQUILIBRIUM IN SOLUTIONS)

tion, there are excess of  $NH_4^+$  ions and a small amount of  $OH^-$  ions.

When a few drops of a base are added, the  $OH^-$  ions given by it immediately combine with  $NH_4^+$  ions to form the weakly ionized  $NH_4OH$ .

 $NH_4^+ + OH^- \longrightarrow NH_4 OH$ 

Thus the  $H_3O^+$  ion concentration or the pH of the solution remains unaffected.

Similarly, when a small amount of an acid is added, the  $H_3O^+$  ions given by it combine with the  $OH^-$  ions already produced by  $NH_4OH$  in equilibrium (*i*).

 $H_3O^+ + OH^- \longrightarrow 2H_2O$ [Given by the acid] [Given by (i)]

As the OH<sup>-</sup> ions are consumed, the equilibrium (i) shifts in the forward direction. Thus more of NH<sub>4</sub>OH dissociates to produce more of OH<sup>-</sup> ions which makes up the loss of OH<sup>-</sup> ions. Hence the OH<sup>-</sup> ion concentration and, therefore, the H<sub>3</sub>O<sup>+</sup> ion concentration or the pH of the solution remains fairly constant.

Note. (i) From titration curves given in Fig. 8.3, it may be seen that some portions of the titration curves are flat. *i.e.* the pH of the titration mixtures changes very little even on adding acid or base. These portions are generally mixtures of acid and salt or base and salt. Thus they correspond to buffer mixtures.

(ii) A solution of a strong acid (e.g. HCl) of reasonable concentration ( $\sim 0.1 M$ ) also acts as a buffer. The acid is completely dissociated and all the H<sup>+</sup> ions are present in the free form. From the titration curve, it may be seen that initial pH increases only by 0.3 even after half of the acid is neutralized.

#### Calculation of pH of a buffer mixture

(a) For acidic buffer mixture (Henderson-Hasselbalch equation)

If the weak acid is HA and its salt is BA, then

$$HA + H_2O \xrightarrow{} H_3O^+ + A^-$$

$$BA \xrightarrow{} B^+ + A^-$$

$$\therefore \qquad K_a = \frac{[H_3O^+] [A^-]}{[HA]}$$
or 
$$[H_3O^+] = K_a \frac{[HA]}{[A^-]} \qquad \dots (i$$

But 
$$[A^-] = [BA]$$
, therefore  
 $[H_3O^+] = K_a \frac{[HA]}{[BA]} = K_a \frac{[Acid]}{[Salt]}$   
...(*ii*)

$$= -\log \left\{ K_{a} \frac{[\text{Acid}]}{[\text{Salt}]} \right\}$$
$$= -\log K_{a} - \log \frac{[\text{Acid}]}{[\text{Salt}]}$$
or 
$$pH = pK_{a} + \log \frac{[\text{Salt}]}{[\text{Acid}]} \qquad \dots (iv)$$

or substituting the value of  $[H_3O^+]$  from eqn. (i) in eqn. (iii), we get

$$pH = -\log K_a - \log \frac{[HA]}{[A^-]}$$
  
or  $pH = pK_a + \log \frac{[A^-]}{HA}$   
or  $pH = pK_a + \log \frac{[Conjugate base]}{[Acid]} \dots (\nu)$ 

It is interesting to observe that if [Salt]/[Acid] = 10, pH =  $pK_a + 1$  and if [Acid]/[Salt] = 10, pH =  $pK_a - 1$ . Thus if the ratio of the conjugate acidbase pair is changed by 10 times, pH changes by  $\pm 1$ .

(b) For basic buffer mixture like BOH + BA, in a similar manner,

$$pOH = pK_b + \log \frac{[Salt]}{[Base]}$$
 ...(vi)

As pH + pOH = 14, pH can be calculated.

Alternatively, the above equation can be expressed in a different form as follows :

$$pH + pOH = 14$$

or 
$$pOH = 14 - pH$$

Also  $pK_a + pK_b = 14$ 

or 
$$pK_b = 14 - pK_a$$

Substituting these values in eqn. (vi), we get

$$14 - pH = 14 - pK_a + \log \frac{|Salt|}{|Base|}$$
  
or 
$$pH = pK_a - \log \frac{|Salt|}{|Base|}$$

or 
$$pH = pK_a + \log \frac{[Base]}{[Salt]}$$
 ...(vii)

where K<sub>a</sub> is the ionization constant of the conjugate acid of the base (e.g. in the buffer  $NH_4OH + NH_4Cl, NH_4^+$  is the conjugate acid of the base NH<sub>3</sub> and K<sub>a</sub> represents the ionization constant of the reaction

$$NH_{4}^{+}(aq) + H_{2}O(l) \implies NH_{1}(aq) + H^{+}(aq)$$

Thus for this basic buffer, the above equation implies that

$$pH = pK_a + \log \frac{[NH_3]}{[NH_4^+]}$$

$$e. \ pH = pK_a + \log \frac{[Base]}{[Conjugate acid]} \dots (viii)$$

Buffer capacity or Buffer index. It is defined as the number of moles of an acid or a base required to be added to one litre of the buffer solution so as to change its pH by one unit. Thus

> AND UNITS

**Buffer** capacity No. of moles of the acid or base added to 1 litre of the buffer dn Change in pH d pH'

Buffer capacity of a buffer is maximum when the concentration of the weak acid and its salt or weak base and its salt are equal *i.e.* when  $pH = pK_a$  or  $pOH = pK_b$ . (Refer to Henderson equation).

#### **Importance of Buffer Solutions :**

(1) In biological processes. The pH of our blood is maintained constant (at about  $7 \cdot 4$ ) inspite of various acid and base-producing reactions going on in our body. In the absence of its buffer nature, we could not eat a variety of foods and spices.

(2) In Industrial processes. The use of buffers is an important part of many industrial processes, e.g.,

(i) In electroplating;

(ii) in the manufacture of leather, photographic materials and dyes;

(iii) in analytical chemistry;

(iv) to calibrate the pH metres;

(v) in bacteriological research-culture media are generally buffered to maintain the pH required for the growth of the bacteria being studied.

**PROBLEMS ON BUFFER SOLUTIONS** 

FORMULAS By Henderson equation, pH of an acid buffer is given by  $pH = pK_a + \log \frac{[Salt]}{[Acid]}$ Similarly, for a basic buffer  $pOH = pK_b + \log \frac{[Salt]}{[Base]}$ pH + pOH = 14 i.e. pH = 14 - pOH.

EXAMPLE 1. Calculate the pH of a buffer which is 0 · 1 M in acetic acid and 0 · 15 M in sodium acetate. Given that the ionization constants of acetic acid is  $1.75 \times 10^{-5}$ . Also calculate the change in pH of the buffer if to 1 litre of the buffer

> (i) 1 cc of 1 M NaOH are added (ii) 1 cc of 1 M HCl are added. Assume that the change in volume is negligible. <u>Solution</u>.  $pH = pK_a + \log \frac{|Salt|}{|Acid|}$

$$= -\log(1.75 \times 10^{-3}) + \log \frac{1}{0.10}$$

= (5 - 0.2430) + 0.1761 $= 4 \cdot 757 + 0 \cdot 1761 = 4 \cdot 933.$ 

(i) 1 cc of 1 M NaOH contains NaOH =  $10^{-3}$  mol. This will convert  $10^{-3}$  mol of acetic acid into the salt so that salt formed =  $10^{-3}$  mol

Now [Acid] =  $0 \cdot 10 - 0 \cdot 001 = 0 \cdot 099$  M

[Salt] = 0.15 + 0.001 = 0.151 M

$$pH = 4.757 + \log \frac{0.151}{0.099}$$
$$= 4.757 + 0.183 = 4.940$$

: Increase in pH = 4.940 - 4.933 = 0.007which is negligible.

(*ii*) 1 cc of 1 M HCl contains HCl =  $10^{-3}$  mol. This will convert  $10^{-3}$  mol CH<sub>3</sub>COONa into CH<sub>3</sub>COOH.

 $\therefore \text{ Now } [\text{Acid}] = 0 \cdot 10 + 0 \cdot 001 = 0 \cdot 101 \text{ M}$ [Salt] =  $0 \cdot 15 - 0 \cdot 001 = 0 \cdot 149 \text{ M}$  $\therefore p\text{H} = 4 \cdot 757 + \log \frac{0 \cdot 149}{0 \cdot 101}$ =  $4 \cdot 757 + 0 \cdot 169 = 4 \cdot 926$ 

 $\therefore$  Decrease in pH = 4.933 - 4.926 = 0.007which is again negligible.

• EXAMPLE 2. Calculate the pH of a solution obtained by mixing 5 mL of  $0 \cdot 1 M NH_4OH$  with 250 mL of  $0 \cdot 1 M NH_4Cl$  solution.  $K_b$  for  $NH_4OH$  =  $1 \cdot 8 \times 10^{-5}$ .

Solution. 5 mL of 0.1 M NH<sub>4</sub>OH =  $5 \times 0.1$ millimole = 0.5 millimole

## PROBLEMS FOR PRACTICE

- 1. How much volume of 0.1 M HAc should be added to 50 mL of 0.2 M NaAc solution if we want to prepare a buffer solution of pH 4.91. Given  $pK_a$ for acetic acid is 4.76. [Ans. 70.92 mL]
- 2. How much of 0.3 M ammonium hydroxide should be mixed with 30 mL of 0.2 M solution of am-

1.

250 mL of 
$$0.1$$
 M NH<sub>4</sub>Cl

=  $250 \times 0.1$  millimole = 25 millimoles Total volume of solution after mixing = 255 mL.

$$\therefore \quad [Salt] = [NH_4Cl] = \frac{25}{255} M$$

$$[Base] = [NH_4OH] = \frac{0.5}{255} M$$

$$pOH = pK_b + \log \frac{[Salt]}{[Base]}$$

$$= -\log (1.8 \times 10^{-5}) + \log \frac{25/255}{0.5/255}$$

$$= (5 - 0.2553) + 1.6990 = 6.4437$$

$$pH = 14 - 6.4437 = 7.5563$$

Note. For more solved examples, see problem 5, page 8/66 and problems 10, 14, 24 and 31, pages 8/70, 71, 74 and 75, given under CBSE-PMT (Mains) Special and IIT (Mains) Special.

monium chloride to give a buffer solution of pH 10. Given  $pK_b$  for NH<sub>4</sub>OH is 4.75. [An3, 112.5 mL]

3. The ionization constant of formic acid is  $1.8 \times 10^{-4}$ . Calculate the ratio of sodium formate and formic acid in a buffer of pH 4.25. [Ans. 3.24]

HINTS FOR DIFFICULT PROBLEMS

$$pH = pK_{a} + \log \frac{[Salt]}{[Acid]}$$

$$i.e. \quad 4 \cdot 91 = 4 \cdot 76 + \log \frac{[Salt]}{[Acid]}$$

$$r \log \frac{[Salt]}{[Acid]} = 0 \cdot 15$$

$$or \log \frac{[Salt]}{[Acid]} = 0 \cdot 15$$

$$or \frac{[Salt]}{[Acid]} = Antilog 0 \cdot 15 = 1 \cdot 41$$

$$Moles of Salt}{Moles of Acid} = 1 \cdot 41$$

$$i.e. \quad \frac{Moles of Salt}{Moles of Acid} = 1 \cdot 41$$

$$i.e. \quad \frac{Moles of Salt}{Moles of Acid} = 0 \cdot 1778$$

$$i.e. \quad \frac{Moles of Salt}{1000} \times V = 1 \cdot 41 \text{ or } \frac{0 \cdot 01}{0 \cdot 0001 \text{ V}} = 1 \cdot 41$$

$$or \quad V = 100/1 \cdot 41$$

$$= 70 \cdot 92 \text{ mL.}$$

$$pOH = pK_{b} + \log \frac{[Salt]}{[Base]}$$

$$4 = 4 \cdot 75 + \log \frac{[Salt]}{[Base]}$$

$$4 = 4 \cdot 75 + \log \frac{[Salt]}{[Base]}$$

$$0 \cdot 1778$$

$$0 r \quad [Salt] = 0 \cdot 1778$$

$$i.e. \quad \frac{Moles of Salt}{Moles of Acid} = 0 \cdot 1778$$

$$0 r \quad \frac{0 \cdot 2}{1000} \times 30$$

$$0 \cdot 1778 \text{ or } V = 112 \cdot 5 \text{ ml}$$

$$0 r \quad V = 100/1 \cdot 41$$

$$= 70 \cdot 92 \text{ mL.}$$

$$pOH = 14 - pH = 14 - 10 = 4$$

$$0 r \quad [Salt]/[Acid]] = pH - pK_{a} = 4 \cdot 25 - 3 \cdot 74 = 0 \cdot 5$$

$$0 r \quad [Salt]/[Acid]] = Antilog 0 \cdot 51 = 3 \cdot 24.$$

## ADD TO YOUR KNOWLEDGE

- *p*H of a buffer solution does not change on dilution or on keeping for long time or on adding small amounts of an acid or a base.
- pH of a buffer changes with temperature because  $K_w$  changes. pH decreases with increase of temperature.
- Buffer solutions can also be obtained by mixing an acid salt and a normal salt of a polybasic acid e.g.  $Na_2HPO_4 + Na_3PO_4$ .

## **Conceptual Questions**

- Q. 1. How does the degree of ionization of a weak electrolyte vary with concentration ? Give exact relationship. What is this law called ?
- Ans.  $\alpha = \sqrt{K_i/C}$ . It is called Ostwald's dilution law ( $K_i$  is ionization constant and C is molar concentration of the electrolyte).
- Q. 2. Classify each of the following substances into an acid or base or both and mention the concept/concepts on the basis of which you can do so.

(i) HCl (aq) (ii)  $NH_3(g)$  (iii)  $Na_2 CO_3(aq)$  (iv)  $CH_3 COOH(aq)$ 

- (v)  $\operatorname{CO}_2(g)$  (vi)  $\operatorname{BF}_3$  (vii)  $\operatorname{Ag}^+$  (viii)  $\operatorname{CN}^-$
- (ix)  $H_2O$  (x)  $H_2SO_4$  (xi)  $HCO_3^-$  (xii)  $SiF_4^-$

Ans. (i) HCl (aq) — Acid (Arrhenius concept and Bronsted — Lowry concept) (ii) NH<sub>3</sub> (g) — Base (Bronsted concept and Lewis concept)

(*iii*)  $Na_2CO_3(aq)$  — Base (Bronsted concept)

(iv) CH3COOH (aq) - Acid (Arrhenius concept and Bronsted concept)

 $(v) CO_2(g)$  — Acid (Bronsted concept and Lewis concept)

(vi) BF<sub>3</sub> - Acid (Lewis concept)

(vii) Ag<sup>+</sup> — Acid (Lewis concept)

(viii) CN<sup>-</sup> — Base (Lewis concept)

(ix) H<sub>2</sub>O — Both acid and base *i.e.* amphoterric (Bronsted concept)

(x)  $H_2SO_4$  — Both acid and base *i.e.* amphoterric (Bronsted concept)

(xi)  $HCO_3^-$  — Both acid and base *i.e.* amphoteric (Bronsted concept)

(xii)  $SiF_4$  — Acid (Lewis concept)

0.3. Write down the conjugate acid and conjugate base of

(*i*)  $H_2O$  (*ii*)  $HSO_4^-$  (*iii*)  $NH_3$  (*iv*)  $HS^-$ Ans. (*i*)  $H_3O^+$ ,  $OH^-$  (*ii*)  $H_2SO_4$ ,  $SO_4^{2-}$  (*iii*)  $NH_4^+$ ,  $NH_2^-$  (*iv*)  $H_2S$ ,  $S^{2-}$ 

Note. To write the conjugate acid of the given species, add  $H^+$  ion. To write the conjugate base of the given species, subtract  $H^+$  ion.

O. 4. Write the conjugate acid/base for the following species :

 $HNO_{2}, CN^{-}, HClO_{4}, F^{-}, OH^{-}, CO_{3}^{2-}, S^{2-}$ 

(N.C.E.R.T.)

#### EQUILIBRIUM --- II (IONIC EQUILIBRIUM IN SOLUTIONS)

Ans.  $NO_7^-$ , HCN,  $CIO_4^-$ , HF,  $H_2O$ ,  $HCO_3^-$ , HS<sup>-</sup>.

Q. 5. Which of the following are Lewis acids ? H2O, BF3, H<sup>+</sup>, NH4.

Ans.  $BF_3$ ,  $H^+$  and  $NH_4^+$  (Remember that all cations are Lewis acids).

Q. 6. Classify the following into Lewis acids and Lewis bases, OII<sup>-</sup>, F<sup>-</sup>, H<sup>+</sup>, BCl<sub>3</sub>.

- Ans. OH<sup>-</sup> and F<sup>-</sup> are Lewis bases because they can donate a pair of electrons while H<sup>+</sup> and BCl<sub>3</sub> are Lewis acids because they can accept a lone pair of electrons (In BCl<sub>3</sub>, B is electron deficient).
- Q. 7. Which concept can justify that  $CaO + SO_3 \longrightarrow CaSO_4$  is an acid-base reaction?
- Ans. Lewis concept.

Fu

Q. 8. Ionization constants  $K_a$  for formic acid and acetic acid are  $17 \cdot 7 \times 10^{-5}$  and  $1 \cdot 77 \times 10^{-5}$ . Which acid is stronger and how many times the other if equimolar concentrations of the two are taken ?

Ans.  $K_a$  for HCOOH >  $K_a$  for CH<sub>3</sub>COOH. Hence formic acid is stronger.

rther Strength of HCOOH  
Strength of CH<sub>3</sub>COOH = 
$$\sqrt{\frac{K_{\text{HCOOH}}}{K_{\text{CH}_2\text{COOH}}}} = \sqrt{10} = 3.16$$
 times

Q. 9. Fill in the blanks :

- A strong acid has a weak......and a weak base has a strong......
- Ans. Conjugate base, conjugate acid.
- Q.10. Out of CH<sub>3</sub>COO<sup>-</sup> and OH<sup>-</sup> which is stronger base and why?
- Ans. OH<sup>-</sup> ions can combine with H<sup>+</sup> ions more readily than CH<sub>3</sub>COO<sup>-</sup> ions can do. Hence OH<sup>-</sup> is a stronger base.

Q. 11. What will be the pH of 1 M NaNO<sub>3</sub> solution at 25°C?

Ans. NaNO<sub>3</sub> is a salt of strong acid and strong base. Hence its solution will be neutral. At 25°C, its pH will be = 7.

Q. 12. How is the degree of dissociation of a weak base related to its molarity ?

Ans.  $\alpha = \sqrt{K_b / C} = \sqrt{K_b / M}$  where M = molarity

Q. 13. What is the effect of temperature on ionic product of water and why?

Ans. Ionic product of water  $(K_w)$  increases with increase of temperature because  $K_w = [H_3O^+][OH^-]$  and dissociation of  $H_2O$  to give  $H_3O^+$  and  $OH^-$  increases with increase of temperature.

Q. 14. What happens to the ionic product of water if some acid is added into water ?

Ans. If remains unchanged.

Q. 15. What is pK, ? What is its value at 25°C?

Ans.  $pK_w = -\log K_w = -\log 10^{-14} = 14$ 

Q. 16. What are pH and pOH values of a neutral solution at a temperature at which  $K_{\mu} = 10^{-13}$ ?

Ans.  $pK_w = pH + pOH$ . But  $pK_w = 13$ . Also, for neutral solution, pH = pOH. Hence pH = pOH = 6.5.

Q. 17. The ionization constants of HF is  $6.8 \times 10^{-4}$ . Calculate the ionization constant of the corresponding conjugate base. (N.C.E.R.T.)

Ans.  $K_b = K_w / K_c = 10^{-14} / (6.8 \times 10^{-4}) = 1.47 \times 10^{-11} \approx 1.5 \times 10^{-11}$ 

Q. 18. What pH do you expect for 10<sup>-8</sup> M solution of an acid?

Ans. Close to 7 but < 7. (Refer to solved example on page 8/26).

(N.C.E.R.T.)

8/56

Pradeep's New Course Chemistry (XI)

O. 19. Predict the acidic, basic or neutral nature of the solutions of the following salts : NaCl, KBr, NaCN, NH4NO3, NaNO2, KE. (N.C.E.R.T.) Ans. NaCN, NaNO2, KF solutions are basic NaCl. KBr solutions are neutral NH4NO3 solution is acidic. Q. 20. What is the difference between ionic product and solubility product ? Ans. Solubility product is the product of the molar concentrations of the ions in a saturated solution but ionic product is for any solution. Q. 21. When is a precipitate formed when solutions of BaCl2 and Na2SO4 are mixed ? Ans. When in the final solution after mixing, the ionic product  $[Ba^{2+}][SO_4^{2-}] > K_{un}$  for BaSO<sub>4</sub>. Q. 22. Will AgCl be more soluble in aqueous solution or NaCl solution and why?  $\rightarrow$  Ag<sup>+</sup> + Cl<sup>-</sup> Ans. AgCl In NaCl solution,  $[Cl^-]$  will increase. As  $[Ag^+][Cl^-] = K_{en}$  remains constant,  $[Ag^+]$  will decrease *i.e.* the solubility will be less in NaCl solution than in water. O. 23. Why solid NaCl starts separating out from a saturated solution of NaCl if HCl gas is passed through it ? Ans. HCl in the solution provides Cl<sup>-</sup> ions. This increases the ionic product of NaCl and so the solid NaCl starts separating out. Q. 24. Why common salt is added to precipitate out soap from the solution during its manufacture ? Ans. Soap is sodium salt of higher fatty acids (RCOONa). On adding common salt, Na<sup>+</sup> ion concentration increases. Hence the equilibrium RCOONa (s)  $\implies$  RCOO<sup>-</sup> + Na<sup>+</sup> shifts in the backward direction *i.e.* soap precipitates out. Q. 25. Through a solution containing Cu<sup>2+</sup> and Ni<sup>2+</sup>, H<sub>2</sub>S gas is passed after adding dil HCl, which will precipitate out and why? Ans.  $Cu^{2+}$  will precipitate out because in the acidic medium, only ionic product  $[Cu^{2+}][S^{2-}]$  exceeds the solubility product of CuS. Q. 26. Why in Group V of qualitative analysis, sufficient NH4OH solution should be added before adding (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> solution ? Ans. This is done to convert  $NH_4HCO_3$  usually present in large amounts alongwith  $(NH_4)_7CO_3$  to  $(NH_4)_7CO_3$  $NH_4HCO_3 + NH_4OH \rightarrow (NH_4)_2CO_3 + H_2O$ 0.27. What is pH of our blood ? Why does it remain almost constant inspite the variety of foods and spices we eat? Ans. pH of our blood is about 7.4. It remains constant because it is a buffer. 0.28. The pH of an enzyme catalysed reaction has to be maintained between 7 and 8. What indicator should be used to monitor and control the pH? (N.C.E.R.T.)Ans. Bromothymol blue or Phenol red or Cresol red (see Table 8.6 Page 8/37). Q. 29. The pK In of an indicator is 10.5. For which pII transition range is the indicator most suitable ? (N.C.E.R.T.)Ans.  $pK_{10} \pm 1$  i.e. 9.5 to 11.5. 0.30. Benzoic acid is a monobasic acid. When 1.22 g of its pure sample are dissolved in water and titrated against base, 50 ml of 0.2 M NaOII are used up. Calculate the molar mass of benzoic acid. (N.C.E.R.T.)Ans. 1000 ml of 1 M NaOH will neutralize acid =  $\frac{1 \cdot 22}{50 \times 0.2} \times 1000 = 122 g$ But 1000 ml of 1 M NaOH contain 1 mole of NaOH and will neutralize 1 mole of monobasic acid. Hence molar mass of benzoic acid =  $122 \text{ g mol}^{-1}$ . Q. 31. A solution gives yellow colour with methyl orange, methyl red and phenol red. What is the pH of the solution ?

- Ans. Yellow colour with methyl orange means pH > 4.5Yellow colour with methyl red means pH > 6.2Yellow colour with phenol red means pH < 6.4. Hence the solution has pH between 6.2 to 6.4.
- Q. 32. The ionization constant of formic acid is  $1.8 \times 10^{-4}$ . Around what pH will its mixture with sodium formate give huffer solution of highest capacity ?
- Ans. Buffer solution of highest capacity is formed at which  $pH = pK_a = -\log(1.8 \times 10^{-4}) = 3.74$ .

## Very Short Answer Questions CARRYING 1 MARK

- Q. 1. What is the law called which gives relationship between degree of dissociation of a weak electrolyte and its concentration in the solution ?
- Ans. Ostwald's dilution law.
- Q. 2. What is the difference between a conjugate acid and a conjugate base ?
- Ans. A conjugate acid and base differ by a proton (Conjugate acid \_\_\_\_\_ Conjugate base + H<sup>+</sup>)
- Q. 3. Write the expression for comparison of relative strengths of two weak acids in terms of their ionization constants.

 $\frac{\text{Strength of Acid}_1}{\text{Strength of Acid}_2} = \sqrt{\frac{K_{a_1}}{K_{a_2}}}$ Ans.



Q. 4. What is the active mass of water ?

Ans. 55.5 mol L<sup>-1</sup>

Q. 5. How can we predict whether a precipitate will be formed or not on mixing two solutions ?

Ans. A precipitate will be formed if ionic product > solubility product

Q. 6. What happens when HCl gas is passed through saturated NaCl solution ?

Ans. NaCl will be precipitated out.

Q. 7. What is the function of adding NH, OH in group V?

Ans. It converts any NH4HCO3 present into (NH4)2 CO3.

Q. 8. What happens to the pH if a few drops of acid are added to CH3COONH4 solution ?

Ans. pH will remain almost constant (being a buffer solution).

Q. 9. Which indicator should preferably be used for titration of NH4OH with HCl solution ?

Ans. Methyl orange.

Q. 10. What is the relationship between  $pK_{ln}$  and pH at the equivalence point ?

Ans.  $pK_{in} = pH$  at the equivalence point.

- Q. 11. At half-neutralisation of a weak acid with a strong base, what is the relationship between pH and dissociation constant (K,) of the weak acid ?
- Ans. At half-neutralisation,  $pH = pK_{a}$ .
- Q. 12. What is the range of a pH indicator in terms of its dissociation constant (Kin)?

Ans.  $pH = pK_{lo} \pm 1$ .

Q. 13. What happens to the solubility of AgCl in water if NaCl solution is added to it ?

Ans. Solubility of AgCl decreases due to common ion effect.

Q. 14. What is the relationship between pKg and pKb values where Kg and Kb represent ionization constants of the acid and its conjugate base respectively ?

Ans.  $pK_a + pK_b = pK_w = 14$ .

Q. 15. What is the relationship between pH and pOH ?

Ans.  $pH + pOH = pK_w = 14$ .

|                                  |            | hort Answer Questions CARRYING 2 or 3 MARKS                                                                                                                                                                                                            |
|----------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sec.8.1.<br>to 8.2.              |            | What are strong and weak electrolytes ? Derive an expression for the calculation of the degree of ionization of a weak electrolyte.                                                                                                                    |
| Sec. 8.3.                        | 2.<br>3.   | Derive and define Ostwald's Dilution Law.<br>Define the following giving examples :                                                                                                                                                                    |
|                                  |            | <ul> <li>(i) Bronsted-Lowry acid (ii) Bronsted-Lowry base (iii) Conjugate acid (iv) Conjugate base</li> <li>(v) Lewis acid (vi) Lewis base</li> </ul>                                                                                                  |
|                                  | 4          | Discuss the proton transfer theory (Bronsted Lowry theory) of acids and bases.                                                                                                                                                                         |
|                                  | 5          | What is meant by the conjugate acid-base pair ?                                                                                                                                                                                                        |
|                                  | 6.         | The second provide and bases. How is it more useful than the Bronsted definition ?                                                                                                                                                                     |
|                                  |            | Define the terms 'acid' and 'base' according to each of the following concepts :                                                                                                                                                                       |
|                                  | 1.         | (i) Arrhenius (ii) Bronsted-Lowry (iii) Lewis                                                                                                                                                                                                          |
|                                  | 8.         | Derive expression for dissociation constants of weak acids and weak bases.                                                                                                                                                                             |
| Sec. 8.4.<br>to 8.5.             | 9.         | How do you explain the strengths of acids and bases on the basis of Arrhenius theory ?                                                                                                                                                                 |
|                                  | 10.        | Discuss the strengths of acids and bases in terms of their dissociation or ionization constants.                                                                                                                                                       |
|                                  | 11.        | Justify the statement that a strong acid has a weak conjugate base and strong base has a weak                                                                                                                                                          |
| Sec. 8.6.<br>Sec.8.7.<br>to 8.8. | 12.<br>13. | What happens when the ions of weak or strong acid or base are allowed to interact with water?<br>What do you understand by the term 'ionic product of water'? How has this concept been useful in<br>defining the acidity and basicity of a solution ? |
|                                  | 14.        | Explain the term 'ionic product of water'                                                                                                                                                                                                              |
|                                  | 15.        | Evolution the significance of K                                                                                                                                                                                                                        |
|                                  | 16         | The loss W approximate tomperature and why?                                                                                                                                                                                                            |
| Sec. 8.9.                        |            | Briefly explain the term 'pH'.                                                                                                                                                                                                                         |
|                                  | 18.        | What do you understand by 'pH scale'? Can a solution have pH less than 0 or more than 14? Explain your answer, giving suitable reasons. Derive expression for the calculation of pH of a solution of a salt of weak acid with a strong base or         |
| Sec 8.10.<br>to 8.11.            |            | weak base with a strong acid.                                                                                                                                                                                                                          |
| tu 0.11.                         | 20.        | Prove that the degree of hydrolysis of the solution of a salt of weak acid with a weak base (e.g. $CH_3COONH_4$ ) is independent of the concentration of the solution.                                                                                 |
|                                  | 21.        | Derive that for the solution of a salt of strong acid with a weak base (having concentration $= c \mod L^{-1}$ )                                                                                                                                       |
|                                  |            | $pH = -\frac{1}{2} \left[ \log K_w - \log K_b + \log c \right]$                                                                                                                                                                                        |
| Sec. 8.12.                       | 22.        | Briefly explain why phenophthalein is not a suitable indicator when the base is weak acid why methyl orange is not suitable when the acid is weak.                                                                                                     |
|                                  | 23.        | Is pH of the end point of acid-base titration always equal to 7? Explain why or why not.                                                                                                                                                               |
|                                  | 24.        | Prove that for the colour change $pK_{indicator} \equiv pH$ at the equivalence point.                                                                                                                                                                  |
|                                  | 25.        | Why most of the indicators have a useful colour change over a pH range of 2 units ? Prove mathematically                                                                                                                                               |
|                                  |            | How is pK of a weak acid or a weak base determined from the titration curve? Derive the result mathematically                                                                                                                                          |
| lo,itest                         | 27         | Derive normality equation, $N_1V_1 = N_2V_2$ and the molarity equation, $n_1 M_1 V_1 = n_2 M_2 V_2$                                                                                                                                                    |
|                                  |            | where $n_1$ and $n_2$ are the acidity and basicity of the base and the acid respectively.                                                                                                                                                              |
| Sec. 8.13.<br>to 8.15.           |            | <ul> <li>Explain the terms</li> <li>(i) Solubility product (ii) Common ion effect</li> </ul>                                                                                                                                                           |

#### EQUILIBRIUM - II (IONIC EQUILIBRIUM IN SOLUTIONS)

- 29. How does solubility product differ from ionic product ? Discuss two important applications of solubility product.
- 30. Give reasons for the following :

(i) Zinc sulphide is precipitated by hydrogen sulphide from an ammoniacal solution but not from a strong hydrochloric acid solution.

(*ii*) The precipitation of Mg  $(OH)_2$  is prevented by the addition of  $NH_4Cl$  prior to the addition of  $NH_4OH$  but its precipitation by NaOH is not prevented by the prior addition of NaCl.

(iii) In qualitative analysis, NH4Cl is added before adding NH4OH solution for testing

#### Fe<sup>3+</sup>, Cr<sup>3+</sup> and Al<sup>3+</sup>

or Discuss the use of ammonium chloride in group III of the inorganic analysis.

- 31. Define the term 'solubility product'. How would you use this concept to separate the sulphides of copper from that of zinc?
- 32. How is concept of solubility product utilized in qualitative analysis ? Sec. 8.16, 33. What is the Buffer solution ? Give an example of an exiting the former of the solution of the solut
  - 33. What is the Buffer solution ? Give an example of an acidic buffer and explain its buffer action.
  - 34. Derive Henderson-Hasselbalch equation.

## Long Answer Questions CARRYING 5 or more MARKS

| Sec.8.1.<br>to 8.2. | 1.  | What are strong and weak electrolytes ? Define the term 'degree of ionization' and derive how the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sec. 8.3.           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 4.  | (i) Arrhenius concept (ii) Propried Language (i) Arrhenius concept (ii) Arrhenius concept (ii) Propried Language (ii) Arrhenius concept (iii) Propried Language (iii) Propried Language (iii) Propried (i |
|                     | 1   | (i) Arrhenius concept (ii) Bronsted-Lowry concept ? In what respects (ii) is superior to (i) ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     | Э,  | What is Lewis concept of Acids and Bases ? Classify the following into Lewis acids or Lewis bases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |     | giving reasons: H <sub>2</sub> O, BF <sub>3</sub> , NH <sub>3</sub> , SiF <sub>4</sub> , Ag <sup>+</sup> , Cl <sup>-</sup> , CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                     |     | What are the advantages and limitations of this concept over the earlier concepts ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sec. 8,4.           | 4.  | Derive expression relating the strengths of monohasic acids of same molar concentration to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| to 8.5.             |     | ionalition constants of the acids.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sec. 8.6.           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sec. 8.7.           | 6.  | Explain the terms 'Ionic Product of Water' and 'pH value' How does the former shares with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| to 8.9.             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sec 8.10.           | 7.  | Briefly explain the terms—Salt hydrolysis, hydrolysis constant and degree of hydrolysis. Derive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| to 8.11.            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |     | (a) salt of strong acid with weak base (b) salt of weak acid with weak base.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sec. 8.12.          | 8.  | Describe Ostwald's theory of Acid-Base indicators.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | 9.  | Explain the different types of acid-base tittration curves. How is a suitable indicator selected for a particular titration ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sec. 8.13.          | 10. | Briefly explain the term 'Solubility product.' Discuss its application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| to 8.15.            |     | (i) in calculation of solubility of a sparingly soluble salt $(i)$ in qualitative analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     | 11. | Explain 'Common Ion Effect'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sec. 8.16.          | 12. | What is a 'Buffer solution'? What are different types of buffers? Discuss their buffer action. What is the importance of buffer in biclosical buffer in bicl |
|                     |     | is the importance of buffers in biological processes ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     |     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

13. Derive expressions for the pH of (a) an acidic buffer mixture (b) a basic buffer mixture

 $M_{11}$  is solution of pM = 2 in matrix with our count value



## ADDITIONAL USEFUL INFORMATION

1. Levelling effect of water and differentiating solvents. As already explained, acids like HCl, HNO<sub>3</sub>,  $H_2SO_4$  etc. when dissolved in water dissociate almost completely *i.e.* their dissociation equilibrium is almost completely to the right (*e.g.* HCl +  $H_2O \implies H_3O^+ + Cl^-$  or may be written simply as HCl +  $H_2O \implies H_3O^+ + Cl^-$ ). These acids behave as equally strong in water. In fact, in aqueous solution, all acids stronger than  $H_3O^+$  appear equally strong. Similarly, a number of strong bases behave as equally strong in water. This is called the levelling effect of water because the solvent 'water' levels them to the same strength. Thus to compare the relative strength of strong acids or strong bases, the solvent selected should be such that it ionizes the acids and bases to different extents. Such a solvent is called differentiating solvent. For example, acetic acid acts as a differentiating solvent for strong acids like HClO<sub>4</sub>, HCl, HBr, HI, H<sub>2</sub>SO<sub>4</sub> and HNO<sub>3</sub>. This is because acetic acid is a poor proton acceptor. It accepts protons to different extents from these strong acids and an equilibrium exists which may be represented in general as

 $HA(aq) + CH_3COOH(aq) \implies A^-(aq) + CH_3COOH_2^+(aq)$ 

 $[e.g. HClO_4 (aq) + CH_3COOH (aq) \implies ClO_4^- (aq) + CH_3COOH_2^+ (aq)$ 

 $HNO_3(aq) + CH_3COOH(aq) \implies NO_3^-(aq) + CH_3COOH_2^+(aq)]$ 

Their equilibrium constants can be determined and hence their relative strength can be found. For example, in case of the acids mentioned above, the strengths are found to be in the order

Lastly, it may be mentioned that in water, as strong acids and strong bases dissociate almost completely,  $K_a$  or  $K_b$  has no meaning.

2. An interesting observation on change in pH on dilution or mixing with another solution.

If a solution of pH = 2 is diluted with water so that the volume becomes double, the pH of the diluted solution can be calculated as follows : pH = 2 means  $[H_3O^+] = 10^{-2}$  M

After dilution to double the volume,  $[H_3O^+] = \frac{10^{-2}}{2} M = 5 \times 10^{-3} M$ 

 $pH = -\log(5 \times 10^{-3}) = 3 - \log 5 = 3 - 0.699 - 2.3$ 

If a solution of pH = 2 is mixed with an equal volume of a solution of pH = 5, the pH of the final solution can be calculated as follows:

## ADDITIONAL USEFUL INFORMATION contd.

After mixing, for solution with pH = 2,  $[H_3O^+] = \frac{10^{-2}}{2} = 5 \times 10^{-3} \text{ M}$ and for solution with pH = 5,  $[H_3O^+] = \frac{10^{-5}}{2} = 5 \times 10^{-6} \text{ M}$ Total  $[H_3O^+] = 5 \times 10^{-3} + 5 \times 10^{-6}$  $= 5 \times 10^{-3} (1 + 0.001) = 5 \times 1.001 \times 10^{-3}$  $= 5.005 \times 10^{-3}$  $pH = -\log (5.005 \times 10^{-3}) = 3 - \log 5.005 = 2.3$ 

Thus we observe that the solution of pH = 2 when diluted with water to double the volume, pH changes to 2.3. Again when the solution of pH = 2 is mixed with equal volume of solution of pH = 5, pH again changes to 2.3. It means that the solution of pH = 2 being strong enough, the other solutions of pH = 5 or pH = 7 *i.e.* water have no role to play. However when the acid is diluted so that its concentration of  $H_3O^+$  ions falls below  $10^{-7}$ , then it is the  $[H_3O^+]$  of water which retains the pH below 7. Similarly in case of a very dilute solution of a base *e.g.*  $10^{-10}$  M NaOH solution, it is the  $[OH^-]$  from  $H_2O$  which helps to retain the pH of the solution above 7. (Refer to solved examples of Type VIII and IX on page 8/26)

3. Double indicator. In the acid-base titrations, generally the indicators used are phenolphthalein and methyl orange. As they give end point at different *pH* ranges, hence it is important to remember the following :

(i) For titration of a base such as  $Na_2CO_3$  against a strong acid (HCl), if phenolphthalein is used as indicator, the end point is indicated only for half neutralization of  $Na_2CO_3$  (*i.e.* upto  $NaHCO_3$ ),  $Na_2CO_3 + H^+ \rightarrow NaHCO_3 + Na^+$ . If methyl orange is used, the end point is indicated when all the alkali is completely neutralized.

(ii) For titration of a mixture of  $Na_2CO_3 + NaOH vs HCl$ , there are two ways to carry out the titration :

(a) Phenolphthalein may be used first to get first end point followed by methyl orange to get second end point. Then Acid used upto 1st end point = Complete neutralization of NaOH +  $\frac{1}{2}$  neutralization of Na<sub>2</sub>CO<sub>3</sub>

Acid used from 1st end point to 2nd end point =  $\frac{1}{2}$  neutralization of Na<sub>2</sub>CO<sub>3</sub>

(b) Titration may be carried out first using phenolphthalein and then with same volume of fresh sample using methyl orange.

Acid used with phenolphthalein as indicator = Complete neutralization of NaOH +  $\frac{1}{2}$  neutralization of Na<sub>2</sub>CO<sub>3</sub>

Acid used with methyl orange as indicator = Complete neutralization of NaOH + Complete neutralization of Na<sub>2</sub>CO<sub>3</sub>. See solved example 40, page 8/79.

4. Acidic and Basic salts. The salts obtained during the intermediate stages of neutralization of a polyprotic acid are called acidic salts. The salt obtained on complete reaction of the acid with the base is called normal salt. For example, in the neutralization of  $H_3PO_4$  with KOH, the salts  $KH_2PO_4$  and  $K_2HPO_4$  are acidic salts while  $K_3PO_4$  is normal salt. Similarly NaHSO<sub>4</sub>, NaHCO<sub>3</sub> etc. are acidic salts while Na<sub>2</sub>SO<sub>4</sub>, Na<sub>2</sub>CO<sub>3</sub> etc. are normal salts.

**Basic salts** are salts that contain oxygen or hydroxyl groups in addition to the usual anions. Basic salts may be considered as the products of intermediate neutralization of bases *e.g.* 

Pb(OH)NO<sub>3</sub> from Pb(OH)<sub>2</sub> + HNO<sub>3</sub>

Lead hydroxy nitrate

or as the products of the loss of water from salts containing hydroxide ion e.g.

## ADDITIONAL USEFUL INFORMATION contd

from Bi(OH)2Cl by loss of H2O. BiOCL

Bismuth oxychloride

5. Effect of pH on solubility. The solubility of a salt of weak acid increases if the solution is made more acidic (i.e. pH is decreased). For example, the solubility equilibrium of CaF2 may be represented as

$$CaF_2(s) \implies Ca^{2+}(aq) + 2F^{-}(aq)$$

On making the solution more acidic, H<sup>+</sup> ions will combine with the F<sup>-</sup> ions. As a result, equilibrium will shift forward i.e. solubility will increase.

## C.B.S.E.-P.M.T. (MAINS) SPECIAL

A. SUBJECTIVE QUESTIONS

Q. 1. What are the conjugate bases of the following ?

$$-, N_3^-, [Al(H_2O)_5OH]^{2+}$$

methoxide ion azide ion

CH<sub>2</sub>O

- Q. 2. Why is ammonia termed as a base though it does not contain OH - ions ?
- Ans. : NH<sub>3</sub> is termed as a base on the basis of Lewis concept because it can donate a lone pair of electrons.
- Glycine is an  $\alpha$ -amino acid which exists in the Q.3.

form of Zwitter ion as NH<sub>3</sub>CH<sub>2</sub>COO<sup>-</sup>. Write the formula of its conjugate acid and conjugate base.

Ans. Conjugate acid =  $NH_3CH_2COO^- + H^+$ 

 $= NH_{2}CH_{2}COOH$ 

Conjugate base =  ${}^{+}_{N}H_{3}CH_{2}COO^{-} + H^{+}$ 

 $= NH_2CH_2COO^{-1}$ .

Q.4. Write reaction for autoprotolysis of water. How is ionic product of water related to ionization constant of water ? Derive the relationship.

Ans. Autoprotolysis of H2O takes place as follows :

$$H_{1}O + H_{2}O \implies H_{3}O^{+} + OH^{-}$$

For ionization of H2O,

$$H,0 \implies H^+ +$$

$$K_{i} = \frac{[H^{+}][OH^{-}]}{[H_{2}O]} = \frac{K_{w}}{[H_{2}O]} = \frac{K_{w}}{55 \cdot 55 \text{ mol } L^{-1}}$$
  
or  $K_{w} = K_{i} \times 55 \cdot 55.$ 

OH<sup>-</sup>

Q.5. Give reason for the following :

(i) Zinc is not precipitated as Zn(OH)<sub>2</sub> on adding NH\_OH to a zinc salt solution containing NH\_CI.

(ii) BaSO4 precipitate is washed with water containing a small amount of H2SO4 in gravimetric analysis.

(iii) CO<sub>2</sub> is more soluble in aqueous NaOH solution than in water.

(iv) A brown precipitate in a bottle containing aqueous FeCl<sub>3</sub> solution appears on standing.

(i) NH<sub>4</sub>Cl suppresses the ionization of NH<sub>4</sub>OH due to common ion effect. Hence concentration of OH<sup>-</sup> decreases such that the ionic product  $[Zn^{2+}][OH^{-}]^2$  does not exceed solubility product. Hence Zn(OH)2 is not precipitated.

(ii) BaSO<sub>4</sub> dissociates as BaSO<sub>4</sub> (s)  $Ba^{2+}(aq) + SO_4^{2-}(aq)$ . Addition of  $H_2SO_4$ gives common  $SO_4^{2-}$  ions which suppresses the dissociation of BaSO4 and thus helps in the complete precipitation.

(iii) In water, CO2 dissoves to form carbonic acid (H2CO3)

 $CO_2(g) + H_2O(l) \longrightarrow H_2CO_3(aq)$ 

As the reaction is reversible, the solubility is low. In aqueous NaOH, CO2 reacts to form sodium carbonate

 $2 \operatorname{NaOH} (aq) + \operatorname{CO}_2(g)$ 

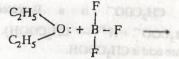
$$\rightarrow$$
 Na<sub>2</sub>CO<sub>3</sub> (aq) + H<sub>2</sub>O (l)

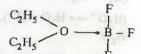
As the reaction is irreversible, the solubility is more.

#### EQUILIBRIUM - II (IONIC EQUILIBRIUM IN SOLUTIONS)

(*iv*) FeCl<sub>3</sub> undergoes hydrolysis forming a brown precipitate of ferric hydroxide FeCl<sub>3</sub> + 3 H<sub>2</sub>O  $\longrightarrow$  Fe(OH)<sub>3</sub> + 3 HCl

Brown ppt.


Q. 6. Why  $PO_4^{3-}$  ion is not amphiprotic?


(B.I.T. Ranchi, 1990)

Ans. An amphiprotic ion is one which can donate proton as well as accept proton.  $PO_4^{3-}$  ion can accept proton(s) but cannot donate any proton. Hence  $PO_4^{3-}$  is not amphiprotic.

Q. 7. In the reaction between BF<sub>3</sub> and C<sub>2</sub>H<sub>5</sub>OC<sub>2</sub>H<sub>5</sub> which one of them will act as an acid ? Justify your answer. (I.S.M. Dhanbad 1990)

Ans. The reaction between  $BF_3$  and  $C_2H_5OC_2H_5$  is





As  $BF_3$  accepts a pair of electrons, hence  $BF_3$  is the Lewis acid.

Q. 8. Give reason in one or two sentences for the following :

Ammonium chloride is acidic in liquid ammonia solvent (I.I.T. 1991)

Ans. In solution of  $NH_4Cl$  in liquid  $NH_3$ , the following reaction takes place

$$NH_4^+ + NH_3 \implies NH_3 + NH_4^+$$

Thus NH4Cl gives proton. Hence it is acidic.

Q. 9. Arrange the following in order of their increasing basicity

$$H_2O, OH^-, CH_3OH, CH_3O^-$$

(I.I.T. 1992)

Ans.  $H_2O < CH_3OH < OH^- < CH_3O^-$ 

Q. 10. The following can act as both Bronsted acid and Bronsted base. Write the formula in each case (of the product)

| PO |
|----|
|    |

(iii) NH<sub>3</sub> (iv) HS<sup>-</sup>

(I.S.M. Dhanbad 1992)

- Ans. (i)  $CO_3^{2-}$ ,  $H_2CO_3$ (ii)  $HPO_4^{-}$ ,  $H_3PO_4$ (iii)  $NH_2^{-}$ ,  $NH_4^{+}$ 
  - $(iv) S^{2-}, H_2S.$
- Q. 11. NaCl solution is added to a saturated solution of PbCl<sub>2</sub>. What will happen to the concentration

of Pb<sup>2+</sup> ions?

Ans.  $Pb^{2+}$  ion concentration will decrease to keep  $K_{sp}$  constant.

Q. 12. Which is a stronger base in each of the following pairs and why?

(a) The salability product

$$(i) H_2 O, Cl^{-1}$$

Ans. (i) H<sub>2</sub>O

(ii) OH~.

Refer to Bronsted-Lowry concept for relative strengths.

- Q. 13. Between Na<sup>+</sup> and Ag<sup>+</sup> which is stronger Lewis acid and why? (*L1.T. 1997*)
- Ans. Ag<sup>+</sup>. This is because Ag<sup>+</sup> has a pseudo noble gas configuration which makes it more polarizing.
- Q. 14. Anhydrous AlCl<sub>3</sub> is covalent. From the data given below, predict whether it would remain covalent or become ionic in aqueous solution (Ionization energy for Al = 5137 kJ mol<sup>-1</sup>,  $\Delta H_{hydration}$  for Al<sup>3+</sup> = - 4665 kJ mol<sup>-1</sup>,  $\Delta H_{hydration}$  for Cl<sup>-</sup> = - 381 kJ mol<sup>-1</sup>).

(I.I.T. 1997)

- Ans. Total energy released due to hydration of ions =  $-4665 - 3 \times 381 = -5808$  kJ mol<sup>-1</sup>. This energy is greater than the ionisation energy of A1 which is 5137 kJ mol<sup>-1</sup>. Hence it would be ionic in the solution.
- Q.15. Classifly the following species as Lewis acids and Lewis bases

NH3, BF3, SnCl4, C5H5N, CO, Ni2+

(Bihar 1997)

Ans. Lewis acids : BF3, SnCl4, Ni<sup>2+</sup>

Lewis bases : NH3, C5H5N, CO.

Q. 16. Give reasons for the following :

(i) The solubility of calcium acetate decreases while that of lead nitrate increases with increase in temperature.

(ii) Magnesium is not precipitated from a solution of its salt by NH, OH in the presence of NH Cl. (Roorkee 2000)

Ans. (i) This is explained on the basis of Le Chatelier principle. Dissolution of lead nitrate is endothermic while that of calcium acetate is exothermic i.e.

$$b(NO_3)_2 + aq = Pt$$

 $Pb(NO_3)_2(aq) - Heat$ 

 $CaAc_2 + 2H_2O \rightarrow$ 

P

Ca (OH)2 + 2 CH1COOH

Ca  $(OH)_2 + aq \implies$  Ca  $(OH)_2 (aq) + H cat.$ (ii) The solubility product of Mg (OH)<sub>2</sub> is high. Presence of NH4Cl suppresses the dissociation of

NH4OH due to common ion effect thus giving

low concentration of [OH-]. The ionic product, therefore, cannot exceed the solubility product.

Q. 17. Explain why pH of 0.1 molar solution of acetic acid will be higher than that of 0.1 molar solu-(Bihar C.E.C.E. 2000) tion of HCl?

Ans. Acetic acid is a weak electrolyte. It is not completely ionized and hence gives less H+ ion concentration. HCl is a strong acid. It is completely ionized giving more H<sup>+</sup> ion concentration. As  $pH = -\log [H^+]$ ; less the  $[H^+]$ , greater will be the pH.

- O. 18. Will the pH of water be same at 4°C and 25°C ? (I.I.T. 2003) Explain.
- Ans. No, pH of water is not same at 4°C and 25°C. This is because with increase in temperature, dissociation of H2O molecules increases. Hence [H+] will increase i.e. pH decreases. Thus,pH at 4°C will be more than at 25°C.
- 19. What type of salts are Na<sub>2</sub>HPO<sub>3</sub> and NaHS ?

(West Bengal J.E.E. 2003)

Ans. Na<sub>2</sub>HPO<sub>3</sub> is obtained by reaction between NaOH and H<sub>3</sub>PO<sub>3</sub> (a dibasic acid)

# H/POH

Both displaceable hydrogens are replaced by Na. No acidic hydrogen is left. Hence Na2HPO3 is a normal salt. NaHS is obtained by replacement of one acidic hydrogen of  $H_2S$  by Na (on reaction with NaOH). Hence NaHS is an acidic salt.

Q. 20. Classify the following as acid or base according to Bronsted-Lowry theory and name their corresponding conjugate base or acid

| (i) NH <sub>3</sub>                 | (ii) CH <sub>3</sub> COO <sup>-</sup> |
|-------------------------------------|---------------------------------------|
| (iii) H <sub>3</sub> O <sup>+</sup> | (iv) H <sup>-</sup>                   |
| (v) HOO <sup>-</sup>                | (vi) $S_2 O_8^{2-}$ .                 |
|                                     | ITT I D                               |

(West Bengal J.E.E. 2004)

Ans. According to Bronsted-Lowry theory, an acid is a substance which can donate a proton while base is a substance which can accept a proton.

base Bronsted (i)NH<sub>2</sub> is  $(NH_3 + H^+ \rightarrow NH_4^+)$ . Its conjugate acid is NH<sup>+</sup>.

CH<sub>3</sub>COO<sup>-</sup> is a Bronsted base (11)  $(CH_3COO^- + H^+ \longrightarrow CH_3COOH)$ . Its conjugate acid is CH3COOH.

Bronsted acid H<sub>3</sub>O<sup>+</sup> is a (iii)  $(H_3O^+ \rightarrow H_2O + H^+)$ . Its conjugate base is H,O.

(iv)  $H^-$  is a Bronsted base  $(H^- + H^+ \longrightarrow H_2)$  in the reaction  $H^- + H_2O \longrightarrow H_2 + OH^-$ ). Its conjugate acid is H2.

( $\nu$ ) HOO<sup>-</sup> is a Bronsted acid (HOO<sup>-</sup>  $\rightarrow$  $O_2^{2-} + H^+$  in the reaction HOO<sup>-</sup> + H<sub>2</sub>O  $\rightarrow$  $O_2^{2-} + H_3O^+$ ). Its conjugate acid is  $O_2^{2-}$ (peroxide ion).

(vi)  $S_2O_8^{2-}$  is a Bronsted base ( $S_2O_8^{2-} + 2 H^+$  $\rightarrow$  2 HSO<sub>4</sub><sup>-</sup> in the reaction S<sub>2</sub>O<sub>8</sub><sup>2-</sup> + 2 H<sub>2</sub>O  $2 \text{ HSO}_4^- + \text{OH}^-$ ). Its conjugate acid is HSO\_.

Prove that the degree of dissociation of a weak monoprotic acid is given by

$$\alpha = \frac{1}{1+10^{(pK_a-pH)}}$$

where K<sub>a</sub> is the dissociation constant of the acid.

Ans. Suppose we start with C mol  $L^{-1}$  of the weak monoprotic acid HA. Then

HA 
$$\rightleftharpoons$$
 H<sup>+</sup> + A<sup>-</sup>  
Initial molar conc. C  
Molar conc. C - Ca Ca Ca  
after dissociation = C (1 - a)

Mol

#### EQUILIBRIUM - II (IONIC EQUILIBRIUM IN SOLUTIONS)

Thus 
$$K_a = \frac{C \alpha \cdot C \alpha}{C(1-\alpha)} = \frac{C \alpha^2}{1-\alpha}$$
 (i)

Also  $[H^+] = Ca$ ....(ii) Substituting the value of C from eqn. (i), we get

$$[H^+] = \frac{K_a(1-\alpha)}{\alpha^2} \text{ or } \alpha = \frac{K_a(1-\alpha)}{\alpha}$$

 $-\log [H^+] = -[\log K_a + \log (1 - \alpha) - \log \alpha]$ or  $pH = pK_c - \log(1 - \alpha) + \log \alpha$ 

 $\log \frac{1-\alpha}{\alpha} = p\mathbf{K}_a - p\mathbf{H}$ OF  $\frac{1-\alpha}{\alpha} = 10^{pK_a - pH}$ or  $\frac{1}{a} - 1 = 10^{pK}a^{-pH}$ or  $\frac{1}{\alpha} \approx 1 + 10^{pK_a - pH}$  $\alpha = \frac{1}{1 + 10^{pK_a - pH}}$ OF or

Q. 22. (a) For an aqueous solution NH<sub>4</sub>Cl prove that

$$H_30^+$$
] =  $\sqrt{K_rC}$ 

(C.B.S.E. P.M.T. 2004)

Ans. Refer to page 8/30.

O.23. Arrange the following compounds in the decreasing order of basicity on the basis of Bronsted-Lowry concept

BaO, CO2, SO3, B2O3, Cl2O7.

(I.I.T. 2004)

Ans. BaO +  $H_2O \implies Ba(OH)_2$  (Basic)

 $CO_2 + H_2O \longrightarrow H_2CO_3$  (Weakly acidic)

 $SO_3 + H_2O \longrightarrow H_2SO_4$  (Strongly acidic)

 $B_2O_3 + 3 H_2O \implies 2 H_3BO_3$  (Very weakly acidic)

Cl2O7 + H2O 2 HClO4 (Very strongly acidic) Hence in the decreasing order of basicity, we have  $BaO > B_2O_1 > CO_2 > SO_1 > Cl_2O_7$ .

#### B PROBLEMS

Problem 1. Calculate the degree of dissociation of  $0.5 \text{ M NH}_3$  at 25°C in a solution of pH = 12.

| Solution.                | NH₄OH ₹                  |        | NH <sub>4</sub> <sup>+</sup> | + OH <sup>-</sup>      |
|--------------------------|--------------------------|--------|------------------------------|------------------------|
| Initial conc.            | C mol L <sup>-1</sup>    |        | 0                            | 0                      |
| After disso.             | C-Ca                     |        | Са                           | Са                     |
| pH = 12 mean             | $\ln[H^+] = 10^-$        | -12 or | [OH-                         | $] = 10^{-2}$          |
| ∴ [OH <sup>-</sup> ] = C | $\alpha = 10^{-2}$ or    | α =    | $\frac{10^{-2}}{C}$          | $=\frac{10^{-2}}{0.5}$ |
| = 2                      | × 10 <sup>-2</sup> or 2% | 1,103  |                              |                        |

Problem 2. Calculate the ratio of pH of a solution containing 1 mole of CH<sub>3</sub>COONa + 1 mole of HCl per litre to that of a solution containing 1 mole of CH<sub>1</sub>COONa + 1 mole of CH<sub>1</sub>COOH per litre.

Solution. Case I. Calculation of pH of solution containing I mole of CH<sub>3</sub>COONa + I mole of HCl per litre

|               | CH <sub>3</sub> COONa | $+$ HCl $\rightarrow$ | CH3COOH | I + NaCl |
|---------------|-----------------------|-----------------------|---------|----------|
| Initial moles | 1 mole                | 1 mole                | 0       | 0        |
| Moles         | 0                     | 0                     | 1       | 1        |
| after re      | action                |                       |         |          |

*i.e.*  $[CH_3COOH] = 1 \mod L^{-1}$ 

CH<sub>3</sub>COOH → CH<sub>3</sub>COO<sup>-</sup> + H<sup>+</sup> C mol I -1 Initial After  $C - C \alpha$ Cα Ca

dissociation

$$[H^+] = C \alpha \text{ But } \alpha = \sqrt{\frac{K_a}{C}}$$
  
$$[H^+] = C \sqrt{\frac{K_a}{C}} = \sqrt{K_a C} = \sqrt{K_a} = K_a^{1/2}$$

 $(:: C = 1 \mod L^{-1})$ 

$$i.e. \quad (pH)_1 = -\frac{1}{2}\log K_a$$

$$i.e. \quad (pH)_1 = -\frac{1}{2}\log K_a \quad ...(i)$$

Case II. Calculation of pH of solution containing 1 mole of  $CH_3COONa + 1$  mole of  $CH_3COOH$  per litre

Applying Henderson equation

$$(pH)_2 = pK_a + \log \frac{|Salt|}{|Acid|}$$
$$= pK_a = -\log K_a \qquad \dots (ii)$$

 $[[Salt] = [Acid] = 1 \mod L^{-1}]$ 

From equations (i) and (ii),  $(pH)_1/(pH)_2 = 1/2$ .

Problem 3. 0.1 M CH<sub>3</sub>COOH (pH = 3) is titrated with 0.05 M NaOH solution. Calculate the pH when

(i) 1/4th of the acid has been neutralized.

(ii) 3/4th of the acid has been neutralized.

Solution. Calculation of dissociation constant of the acid

CH<sub>3</sub>COOH 
$$\rightleftharpoons$$
 CH<sub>3</sub>COO<sup>-</sup> + H<sup>+</sup>  
As  $pH = 3$ ,  $\therefore [H^+] = 10^{-3} \text{ M}$ ,  
 $[CH_3COO^-] = [H^+] = 10^{-3} \text{ M}$   
 $K_a = \frac{[CH_3COO^-][H^+]}{[CH_3COOH]} = \frac{10^{-3} \times 10^{-3}}{0 \cdot 1} = 10^{-5}$ 

| 8/66             | A personal and a second second          | - Cano                                   |
|------------------|-----------------------------------------|------------------------------------------|
|                  | en 1/4th of the acid ha<br>COOH + NaOH→ |                                          |
| Initial<br>conc. | 0·1 M                                   | i to that of soil                        |
| After 1/4th      | $0.1 \times \frac{3}{4}$                | $0 \cdot 1 \times \frac{1}{4}$           |
| neutra-          |                                         |                                          |
| lization         | = 0.075 M                               | 0.025 M                                  |
| ∴ <i>p</i> I     | $H = pK_a + \log \frac{[Salt]}{[Acid]}$ |                                          |
|                  | $= -\log 10^{-5} + \log 10^{-5}$        | $\frac{0.025}{0.075}$                    |
|                  | = 5 - 0.4771 = 4.5                      | 229                                      |
| (ii) W.          | hen 3/4th of the acid h                 | as been neutralized                      |
|                  |                                         | CH <sub>3</sub> COONa + H <sub>2</sub> O |
| Initial<br>conc. | 0·1 M                                   |                                          |
| After 3/4th      | $0.1 \times \frac{1}{4}$ M              | $0.1 \times \frac{3}{4}$ M               |
|                  |                                         | 4                                        |
| neutralizatio    | on                                      |                                          |
|                  | = 0.025  M                              | = 0.075  M                               |
|                  |                                         | 0.055                                    |

- $\therefore pH = -\log 10^{-5} + \log \frac{0.075}{0.025}$ 
  - = 5 + 0.4771 = 5.4771.

**Problem 4.** A sample of hard water contains 100 ppm of CaSO<sub>4</sub>. What minimum fraction of water should be evaporated off so that solid CaSO<sub>4</sub> begins to separate

out ? K<sub>sp</sub> for CaSO<sub>4</sub> is  $9.0 \times 10^{-6}$ .

Solution. Maximum solubility of  $CaSO_4$  in water can be calculated from its  $K_{sp}$  value as follows :

 $S = \sqrt{K_{sp}} = \sqrt{9.0 \times 10^{-6}}$ = 3.0 × 10<sup>-3</sup> mol L<sup>-1</sup>.

Suppose the volume of water taken = V litre

As CaSO<sub>4</sub> present is 100 ppm *i.e.* 100 g per  $10^6$  g of water, therefore, CaSO<sub>4</sub> present in V litres (V ×  $10^3$  g) of water

$$=\frac{100}{10^6} \times V \times 10^3 g = 0.1 V g = \frac{0.1 V}{136} \text{ moles}$$

(Molar mass of  $CaSO_4 = 136 g \text{ mol}^{-1}$ )

After evaporation, suppose volume of water left = V' litre

Thus V' litre of water will now contain  $\frac{0.1 \text{ V}}{136}$  moles of CaSO<sub>4</sub>.

This should be equal to the maximum solubility in moles  $L^{-1}$ .

$$\therefore \quad \frac{0 \cdot 1 \text{ V}}{136} \times \frac{1}{\text{V}'} = 3 \cdot 0 \times 10^{-3}$$
  
or 
$$V' = \frac{0 \cdot 1 \text{ V}}{136 \times 3 \times 10^{-3}} = 0 \cdot 245 \text{ V}$$
  
$$\therefore \text{ Volume of water evaporated}$$
$$= \text{V} - \text{V}' = \text{V} - 0 \cdot 245 \text{ V} = 0 \cdot 7$$
*i.e.* 75 5% of water should be evaporated

**Problem 5.** A buffer solution with pH 9 is to be prepared by mixing  $NH_4Cl$  and  $NH_4OH$ . Calculate the number of moles of  $NH_4Cl$  that should be added to one

litre of  $1.0 \text{ M NH}_4\text{OH} \{ K_{\rm b} = 1.8 \times 10^{-5} \}$ 

(M.L.N.R. Allahabad 1991)

55 V off.

Solution. For a basic buffer

(1005.TM

$$pOH = pK_b + \log \frac{[Salt]}{[Base]}$$
Further  $pH + pOH = 14$   
so that  $pOH = 14 - pH = 14 - 9 = 5$   
 $pK_b = -\log K_b$   
 $= -\log (1.8 \times 10^{-5}) = 4.7447$   
 $[Base] = [NH_4OH] = 1 \mod L^{-1}$ 

$$5 = 4.7447 + \log \frac{[Salt]}{1}$$

or log [Salt] = 0.2553 or [Salt] =  $1.8 \text{ mol L}^{-1}$  *Problem 6.* Calculate the amount of  $(NH_4)_2SO_4$  in g which must be added to 500 mL of 0.2 M NH<sub>3</sub> to yield

a solution of pH = 9.35. K<sub>b</sub> for NH<sub>3</sub> =  $1.78 \times 10^{-5}$ . (*M.L.N.R. 1992*)

Solution. As it is a basic buffer,  

$$pOH = pK_b + \log \frac{[Salt]}{[Base]}$$

$$= -\log K_b + \log \frac{[NH_4^+]}{[NH_4OH]}$$

As pH = 9.35,  $\therefore pOH = 14 - 9.35 = 4.65$ Milli moles of NH<sub>4</sub>OH in solution

= 
$$0.2 \times 500 = 100$$
  
Suppose milli moles of NH<sub>4</sub><sup>+</sup> to be added = x  
 $\therefore 4.65 = -\log(1.78 \times 10^{-5}) + \log \frac{x/500}{100/500}$   
=  $(5 - 0.2504) + \log \frac{x}{100}$   
or  $\log \frac{x}{100} = -0.0996 = \tilde{1}.0004 = 0.1$ 

or  $\log x = 2 \cdot 1$  or  $x = 125 \cdot 9$  $\therefore$  Milli moles of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> to be added

$$=\frac{125\cdot 9}{2}=62\cdot 95$$

(: 1 millimole of  $(NH_4)_2SO_7 \equiv 2$  millimoles of  $NH_4^+$ )

... Mass of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> to be added

 $= (62.95 \times 10^{-3} \text{ moles}) (132 \text{ g mol}^{-1})$ = 8.3094 g.

Problem 7. Given that the solubility product of radium sulphate (RaSO<sub>4</sub>) is  $4 \times 10^{-11}$ . Calculate the solubility in (a) pure water (b) 0.10 M Na2SO4.

(I.S.M. Dhanbad 1992)

Solution. (a) Suppose the solubility of RaSO4 in water =  $x \mod L^{-1}$ . Then

RaSO<sub>4</sub> → Ra<sup>2+</sup> + SO<sub>4</sub><sup>2-</sup>  

$$x \mod L^{-1}$$
  $x \mod L^{-1}$   $x \mod L^{-1}$   
 $K_{sp} = [Ra^{2+}] [SO_4^{2-}]$   
 $= x \times x = x^2$   
or  $x^2 = 4 \times 10^{-11}$   
or  $x = 6.66 \times 10^{-6} \mod L^{-1}$   
(b) Na<sub>2</sub>SO<sub>4</sub> → 2Na<sup>+</sup> + SO<sub>4</sub><sup>2-</sup>  
As [Na<sub>2</sub>SO<sub>4</sub>] = 0.10 M,  
 $\therefore [SO_4^{2-}] \text{ from Na}_2SO_4 = 0.10 M$   
 $\therefore \text{ Total } [SO_4^{2-}] = x + 0.1 M$ 

 $= 6.66 \times 10^{-6} + 0.1 = 0.1$ 

Hence

 $4 \times 10^{-11} = [Ra^{2+}] [0.1]$ or  $[Ra^{2+}] = 4 \times 10^{-10} \text{ mol } L^{-1}$ ... Sulubility of RaSO4 in 0.1 M Na2SO4

 $K_{sn} = [Ra^{2+}][SO_4^{2-}]$ 

 $= 4 \times 10^{-10} \text{ mol } \text{L}^{-1}$ 

Problem 8. Calculate the simultaneous solubility of AgSCN and AgBr. K<sub>sp</sub> for AgSCN and AgBr are

 $1.0 \times 10^{-12}$  and  $5.0 \times 10^{-13}$  respectively.

#### (M.L.N.R. Allahabad 1995)

Solution. Suppose the simultaneous solubilities of AgSCN and AgBr are x and y moles  $L^{-1}$ . Then as

Ag SCN 
$$\longrightarrow$$
 Ag<sup>+</sup> + SCN<sup>-</sup>  
and AgBr  $\longrightarrow$  Ag<sup>+</sup> + Br<sup>-</sup>  
 $\therefore$  Total [Ag<sup>+</sup>] = x + y moles L<sup>-1</sup>,  
[SCN<sup>-</sup>] = x moles L<sup>-1</sup>,  
[Br<sup>-</sup>] = y moles L<sup>-1</sup>  
K<sub>sp</sub> for Ag SCN = [Ag<sup>+</sup>] [SCN<sup>-</sup>]  
= (x + y)x = 1.0 × 10<sup>-12</sup> (Given) ...(i)

 $K_{sp}$  for AgBr = [Ag<sup>+</sup>] [Br<sup>-</sup>]

 $= (x + y)y = 5.0 \times 10^{-13}$  (Given) ...(ii) Dividing (ii) by (i),

$$\frac{y}{x} = 0.5 \quad \text{or} \quad y = 0.5x$$

Putting in (i),

th

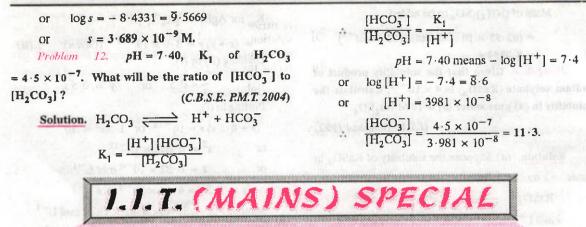
$$(x + 0.5 x) x = 10^{-12}$$
 or  $1.5 x^2 = 10^{-12}$   
or  $x^2 = 0.667 \times 10^{-12}$   
or  $x = 0.82 \times 10^{-6} \text{ mol } L^{-1}$   
 $\therefore y = 0.5 x = 0.41 \times 10^{-6} \text{ mol } L^{-1}$   
Solubility of AgSCN =  $0.82 \times 10^{-6} \text{ mol } L^{-1}$   
Solubility of AgBr =  $0.41 \times 10^{-6} \text{ mol } L^{-1}$  M  
Problem 9. Calculate the hydrolysis constant of  
the salt containing NO<sub>2</sub><sup>-</sup> ions. (Given K<sub>a</sub> for  
HNO<sub>2</sub> =  $4.5 \times 10^{-10}$ . (M.L.N.R. 1996)

Solution. For the salt containing NO7 ion (i.e. salt of weak acid)

$$K_b = \frac{K_w}{K_a} = \frac{10^{-4}}{4.5 \times 10^{-10}} = 2 \cdot 2 \times 10^{-5}.$$

Problem 10. Calculate the degree of hydrolysis of a 0.01 M solution of KCN, K, for HCN is  $6.2 \times 10^{-10}$ .

Solution. 
$$h = \sqrt{\frac{K_w}{K_a c}}$$
  
=  $\sqrt{\frac{10^{-14}}{6 \cdot 2 \times 10^{-10} \times 10^{-2}}}$ 


= 0.04 = 4%

Problem 11. K<sub>sp</sub> of Al (OH)3 at 25°C is 5 × 10<sup>-33</sup>. Calculate the solubility of Al (OH)3 in moles/litre at 25°C. (Bihar C.E.E. 2000)

Solution. Suppose the solubility of Al (OH)3 = s moles litre<sup>-1</sup>

Al (OH)<sub>3</sub> 
$$\xrightarrow{+aq}_{s}$$
 Al<sup>3+</sup> + 3 OH<sup>-</sup>  
 $s$  3s  
 $K_{sp} = s \times (3 s)^3 = 27 s^4 = 5 \times 10^{-33}$   
or  $s^4 = \frac{5}{27} \times 10^{-33}$   
or  $4 \log s = \log 5 - \log 27 - 33$   
 $= 0.6990 - 1.4314 - 33 = 33.7324$ 

TLOOLET 1



**Problem 1.** The pH of pure water at 25°C and 35°C are 7 and 6 respectively. Calculate the heat of dissociation of H<sub>2</sub>O into H<sup>+</sup> and OH<sup>-</sup> ions.

Solution. The reaction is

$$H_2O \iff H^+ + OH^-$$

At 25°C, 
$$pH = 7$$
 means  $[H^+] = 10^{-7}$  M

 $K_{w} = 10^{-14}$ 

At 35°C, 
$$pH = 6$$
 means  $[H^+] = 10^{-6} M$   
 $K_w = 10^{-12}$ 

As equilibrium constants for the dissociation of  $H_2O$  are in the same ratio as ionic products of water, we can apply the relation

$$\log \frac{K_{w_2}}{K_{w_1}} = \frac{\Delta H}{2 \cdot 303 \text{ R}} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$
  

$$\therefore \quad \log \frac{10^{-12}}{10^{-14}} = \frac{\Delta H}{2 \cdot 303 \times 8 \cdot 314 \text{ JK}^{-1} \text{ mol}^{-1}} \left(\frac{1}{298 \text{ K}} - \frac{1}{308 \text{ K}}\right)$$

or  $\Delta H = 52898 \text{ J mol}^{-1} = 52 \cdot 898 \text{ kJ mol}^{-1}$ . Problem 2. Calculate the approximate pH of a 0.100 M aqueous H<sub>2</sub>S solution. K<sub>1</sub> and K<sub>2</sub> for H<sub>2</sub>S are

 $1.00 \times 10^{-7}$  and  $1.30 \times 10^{-13}$  respectively at 25°C. (*Roorkee 1986*)

Solution.  $K_2 < < K_1$ . Hence H<sup>+</sup> ions are mainly

from 1st dissociation  $H_2S \rightleftharpoons H^+ + HS^-$ 

$$K_{1} = \frac{[H^{+}] [HS]}{[H_{2}S]} = \frac{[H^{+}]^{2}}{[H_{2}S]}$$
  
or  $[H^{+}] = \sqrt{K_{1}[H_{2}S]}$   
 $\therefore [H^{+}] = \sqrt{10^{-7} \times 10^{-1}} = 10^{-4}.$   
Hence  $pH = 4$ 

**Problem 3.** What volume of 0.10 M sodium formate solution should be added to 50 ml of 0.05 M formic acid to produce a buffer solution of pH 4.0?  $pK_{a}$  for formic acid is 3.80. (Roorkee 1990)

Solution. The pH value of an acid buffer is given by

$$pH = pK_{a} + \log \frac{|Salt|}{|Acid|} \therefore 4 = 3 \cdot 8 + \log \frac{|Salt|}{|Acid|}$$
  
or  $\log \frac{|Salt|}{|Acid|} = 0 \cdot 2$  or  $\frac{|Salt|}{|Acid|} = 1 \cdot 5849$   
or  $\frac{No. \text{ of moles of salt}}{No. \text{ of moles of acid}} = 1 \cdot 5849$ 

(:: Volume is same for both)

No. of moles of acid present = 
$$\frac{0.05}{1000} \times 50$$

 $\therefore$  No. of moles of salt =  $1.5849 \times 2.5 \times 10^{-3}$ 

 $= 3.962 \times 10^{-3}$ 

Hence volume of 0.1 M sodium formate required

$$= \frac{1000}{0 \cdot 1} \times 3.962 \times 10^{-1}$$
  
= 39.62 ml

**Problem 4.** Calculate the pH at equivalence point when a solution of 0.10 M acetic acid is titrated with a solution of 0.10 M NaOH solution. K<sub>a</sub> for acetic acid

= 
$$1.9 \times 10^{-5}$$
 (Roorkee 1990)  
Solution. At the equivalent point, CH<sub>3</sub>COONa is

formed and its concentration =  $\frac{0 \cdot 1}{2}$  M = 0.05 M.

It is a salt of weak acid and strong base. The formula for finding the pH of such a salt is

$$pH = -\frac{1}{2} \left[ \log K_w + \log K_a - \log c \right]$$

$$\therefore \quad \text{pH} = -\frac{1}{2} \left[ \log 10^{-14} + \log (1.9 \times 10^{-5}) - \log (5 \times 10^{-2}) \right]$$
$$= -\frac{1}{2} \left[ -14 + (-5 + 0.2788) - (-2 + 0.6990) \right]$$
$$= \frac{1}{2} (14 + 5 - 0.2788 - 2 + 0.6990) = \frac{17.42}{2} = 8.71$$

Problem 5. Calcium lactate is a salt of a weak organic acid and represented as Ca (Lac), A saturated solution of Ca(Lac), contains 0.13 mole of this salt in 0.50 litre solution. The pOH of this solution is 5.60. Assuming complete dissociation of the salt, calculate K, of lactic acid. (Roorkee 1991)

Solution. In solution, Ca (Lac), is hydrolysed as follows :

> $Ca (Lac)_2 + 2H_2O \implies Ca (OH)_2 + 2HLac$ lactic acid (weak)

 $Ca^{2+} + 2Lac^{-} + 2H_2O$  $Ca^{2+} + 2OH^{-} + 2HLac$ or  $2Lac^{-} + 2H_2O \implies 2OH^{-} + 2HLac$  $Lac^{-} + H_2O \implies OH^{-} + HLac$ or Hydrolysis constant,

$$K_{h} = \frac{[OH^{-}][HLac]}{[Lac^{-}]} \qquad \dots (i)$$

But 
$$[Ca (Lac)_2] = 0.26 \text{ mol } L^{-1}$$
 so that

$$[Lac-] = 0.52 \text{ mol } L^{-1}$$
  
pOH = 5.60 so that

 $-\log [OH^-] = 5.60$ 

$$[OH^-] = antilog(-5.6)$$

$$= 2.51 \times 10^{-6} M$$
  
K<sub>h</sub> =  $\frac{(2.51 \times 10^{-6})^2}{0.52}$ 

$$= 1 \cdot 21 \times 10^{-1}$$

Further HLac =

A 2 20 YO 16 Mg

and

ог

Further HLac 
$$\longrightarrow$$
 H<sup>+</sup> + Lac<sup>-</sup>  
 $\therefore$   $K_a = \frac{[H^+][Lac^-]}{[HLac]}$  ....

....(ii)

 $K_w = [H^+][OH^-]$  ...(*iii*) Also From (i), (ii) and (iii),

$$K_{a} = \frac{K_{w}}{K_{h}} = \frac{10^{-14}}{1 \cdot 21 \times 10^{-11}}$$
  
= 8.26 \times 10^{-4}

Problem 6. A 40 mL solution of a weak base BOH is titrated with 0.1 N HCl solution. The pH of the solution is found to be 10.04 and 9.14 after the addition of 5.0 mL and 20.0 mL of acid respectively. Find out K<sub>A</sub> for the weak base. (I.I.T. 1991)

Solution. Suppose initially 40 mL of weak base BOH contains x milli moles of the base.

Case I. After adding 5.0 mL of 0.1 N HCl,

pH = 10.04

$$pOH = 14 - 10.04 = 3.96$$

5 mL of 0.1 N HCl =  $5 \times 0.1$  milli moles = 0.5 milli mole

BOH + HCl 
$$\longrightarrow$$
 BCl + H<sub>2</sub>O

Initial milli

*.*..

moles

x = 0.5 0 0.5 0.5 Milli moles after reaction

$$pOH = pK_b + \log \frac{[BCI]}{[BOH]}$$
  

$$3.96 = -\log K_b + \log \frac{0.5}{x - 0.5} \qquad \dots (i)$$

Case II. After adding 20.0 mL of 0.1 N HCl,

pH = 9.14

: 
$$pOH = 10 - 9 \cdot 14 = 4 \cdot 86$$

20 mL of 0.1 N HCl  $\equiv 20 \times 0.1$  milli moles = 2milli moles

BOH + HCl 
$$\longrightarrow$$
 BCl + H<sub>2</sub>O

r 2 0 0 Initial milli moles

2 2 Milli moles x -2 after reaction

$$4 \cdot 86 = -\log K_b + \log \frac{2}{x-2} \qquad (...ii)$$

Subtracting eqn. (i) from eqn. (ii), we get

$$4 \cdot 86 - 3 \cdot 96 = \log \frac{2}{x - 2} - \log \frac{0 \cdot 5}{x - 0 \cdot 5}$$
  
or 
$$0 \cdot 9 = \log 2 - \log (x - 2)$$

$$0.9 = \log 2 - \log (x - 2)$$

$$-\log 0.5 + \log (x - 0.5)$$

or  $\log \frac{x - 0.5}{x - 2} = 0.9 - \log 2 + \log 0.5$ 

$$= 0.9 - 0.3010 - 0.3010$$

or  $\frac{x-0.5}{x-2} = 1.986$ x - 0.5 = 1.986x - 3.972OF or 0.986x = 3.472 or x = 3.52Substituting in eqn. (ii), we get

$$4.86 = -\log K_b + \log \frac{2}{3.52 - 2}$$

or 
$$\log K_b = -4.86 + 0.301 - 0.1818$$
  
=  $-4.7408 = 5.2592$   
 $\therefore K_b = 1.817 \times 10^{-5}.$ 

**Problem** 7. A certain weak acid has  $K_a = 1.0 \times 10^{-4}$ . Calculate the equilibrium constant for its reaction with a strong base. (1.1.T. 1991)

Solution. HA + BOH  $\implies$  BA + H<sub>2</sub>O

weak strong

or  $HA + B^+ + OH^- \implies B^+ + A^- + H_2O$ 

$$HA + OH^- \rightleftharpoons A^- + H_2O$$

$$K = \frac{[A^-]}{[HA] [OH^-]}$$
 ...(i)

Further for the weak acid,

$$HA \rightleftharpoons H^{+} + A^{-}$$
$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} \qquad \dots (ii)$$

Also  $K_w = [H^+][OH^-]$  ...(iii)

From eqns. (i), (ii) and (iii),

$$K = \frac{K_a}{K_w} = \frac{10^{-4}}{10^{-14}} = 10^{10}$$

Problem 8. The solubility product (K<sub>so</sub>) of

 $Ca(OH)_2$  at 25°C is  $4.42 \times 10^{-5}$ . A 500 ml of a saturated solution of Ca  $(OH)_2$  is mixed with equal volume of 0.4 M NaOH. How much Ca $(OH)_2$  in milligrams is precipitated ? (1.1.T. 1992)

Solution. Step I. Calculation of amount of  $Ca(OH)_2$  in 500 ml of saturated solution. Suppose solubility of Ca  $(OH)_2 = x \mod L^{-1}$ 

Ca (OH)<sub>2</sub> 
$$\longrightarrow$$
 Ca<sup>2+</sup> + 2OH<sup>-</sup>  
 $\therefore$  K<sub>sp</sub> = [Ca<sup>2+</sup>] [OH<sup>-</sup>]<sup>2</sup>  
= x × (2x)<sup>2</sup> = 4x<sup>3</sup>  
 $\therefore$  4x<sup>3</sup> = 4.42 × 10<sup>-5</sup>  
or x<sup>3</sup> = 1.105 × 10<sup>-5</sup>  
3 log x = log (1.105 × 10<sup>-5</sup>)  
= 0.0434 - 5 = -4.9566  
log x = -1.6522 = 2.3478  
or x = 2.227 × 10<sup>-2</sup> mol L<sup>-1</sup>  
 $\therefore$  Amount of Ca (OH)<sub>2</sub> present in 500 ml

 $= \frac{2 \cdot 227 \times 10^{-2}}{2} \times 74 \text{ g}$ = 82 \cdot 39 \times 10^{-2} \text{ g} = 823 \cdot 9 \text{ mg} Step II. Calculation of the amount of Ca  $(OH)_2$  in solution after mixing. As equal volumes of Ca  $(OH)_2$  solution and 0.4M NaOH solution have been mixed

Conc. of NaOH in the mixture =  $\frac{0.4}{2} = 0.2$  M

 $[OH^{-}] = [NaOH] = 0.2 M$   $K_{sp}$  for Ca  $(OH)_2 = [Ca^{2+}] [OH^{-}]^2$  $\therefore [Ca^{2+}] = \frac{4.42 \times 10^{-5}}{(0.2)^2}$ 

$$= 1 \cdot 105 \times 10^{-3} \text{ mol } \text{L}^{-1}$$

Total volume of the solution after mixing = 500 + 500 = 1000 ml

: Amount of Ca (OH), in the mixture solution

=  $1 \cdot 105 \times 10^{-3} \times 74$  g =  $0 \cdot 0818$  g =  $81 \cdot 8$  mg  $\therefore$  Amount of Ca (OH)<sub>2</sub> precipitated

$$= 823 \cdot 9 - 81 \cdot 8 = 742 \cdot 1 \text{ mg}$$

**Problem** 9. Calculate the pH at which Mg(OH)<sub>2</sub> begins to precipitate from a solution containing 0.10 M Mg<sup>2+</sup> ions. K<sub>xp</sub> of Mg(OH)<sub>2</sub> =  $1 \times 10^{-11}$ .

<u>Solution.</u> Minimum  $[OH^-]$  after which Mg  $(OH)_2$  begins to precipitate can be calculated from

$$[Mg^{2+}] [OH^{-}]^{2} = K_{sp} \text{ of } Mg (OH)_{2}$$

$$(0 \cdot 10) [OH^{-}]^{2} = 10^{-11}$$
or
$$[OH^{-}]^{2} = 10^{-10} \text{ or } [OH^{-}] = 10^{-5}$$
or
$$[H^{+}] = 10^{-9}$$
or
$$pH = 9$$

**Problem 10.** The pH of blood stream is maintained by a proper balance of  $H_2CO_3$  and NaHCO<sub>3</sub> concentrations. What volume of 5M NaHCO<sub>3</sub> solution should be mixed with a 10 ml sample of blood which is 2M in  $H_2CO_3$  in order to maintain a pH of 7.4 ?  $K_a$  for

$$H_2CO_3$$
 in blood is 7.8 × 10<sup>-7</sup>. (I.I.T. 1993)

Solution. 
$$pH = pK_a + \log \frac{[Salt]}{[Acid]}$$
  
 $7 \cdot 4 = -\log (7 \cdot 8 \times 10^{-7}) + \log \frac{[NaHCO_3]}{[H_2CO_3]}$   
 $\log \frac{[NaHCO_3]}{[H_2CO_3]} = 7 \cdot 4 + (-7 + 0.8921)$   
 $= 1 \cdot 2921$   
or  $\frac{[NaHCO_3]}{[H_2CO_3]} = Antilong 1 \cdot 2921 = 19 \cdot 59$ 

8/70

OF

H<sub>2</sub>CO<sub>3</sub> present in 10 ml of blood (2M H<sub>2</sub>CO<sub>3</sub>)

 $=\frac{2}{1000} \times 10 = 0.02$  mole

.: NaHCO3 that should be present

=  $19 \cdot 59 \times 0.02 = 0.3918$  mole Volume of 5 M NaHCO<sub>3</sub> required

 $=\frac{1000}{5} \times 0.3918 = 78.36$  ml

**Problem** 11. An aqueous solution of a metal bromide MBr<sub>2</sub> (0.05 M) is saturated with H<sub>2</sub>S. What is the minimum pH at which MS will be precipitated ? (K<sub>sp</sub> for MS =  $6.0 \times 10^{-21}$ , concentration of saturated H<sub>2</sub>S = 0.1 M, K<sub>1</sub> =  $10^{-7}$  and K<sub>2</sub>= $1.3 \times 10^{-13}$  for H<sub>2</sub>S) (*LI.T. 1993*)

Solution. 
$$[M^{2+}] = [MBr_2] = 0.05 M$$

For the precipitation of MS, minimum  $[S^{2-}]$  can be calculated from

 $[S^{2^{-}}][M^{2^{+}}] = K_{sp} i.e. [0.05][S^{2^{-}}] = 6.0 \times 10^{-21}$ or [S<sup>2^{-}</sup>] = 1.2 × 10<sup>-19</sup>

 $S^{2-}$  ions are obtained from the following dissociations

$$H_{2}S \xrightarrow{K_{1}} H^{+} + HS^{-}$$

$$HS^{-} \xrightarrow{K_{2}} H^{+} + S^{2-}$$

$$K_{1} = \frac{[H^{+}][HS^{-}]}{[H_{2}S]}, K_{2} = \frac{[H^{+}][S^{2-}]}{[HS^{-}]}$$

$$K_{1} K_{2} = \frac{[H^{+}]^{2}[S^{2-}]}{[H_{2}S]}$$

$$10^{-7} \times 1.3 \times 10^{-13} = \frac{[\text{H}^+]^2 [1.2 \times 10^{-19}]}{(0.1)}$$

OF

$$H^{+}]^{2} = \frac{1 \cdot 3 \times 10^{-20} \times 10^{-1}}{1 \cdot 2 \times 10^{-19}} = 1 \cdot 083 \times 10^{-2}$$

or 
$$[H^+] = 1.041 \times 10^{-1} = 0.1041 \text{ M}$$

 $\therefore$  pH = -log (0.1041) = 0.9826.

**Problem** 12. Nicotinic acid ( $K_a = 1.4 \times 10^{-5}$ ) is represented by the formula HNiC. Calculate its percentage dissociation in a solution which contains 0.10 mole of nicotinic acid per 2.0 litre of solution.

(Roorkee 1993)

Solution. Suppose degree of dissociation of nicotinic acid = a

HNiC  $\longrightarrow$  H<sup>+</sup> + NiC<sup>-</sup> Initial amount 0 · 1 mole Amount 0 · 1 - 0 · 1  $\alpha$  0 · 1  $\alpha$  0 · 1  $\alpha$ at eqm = 0 · 1 (1 -  $\alpha$ ) Molar conc. = 0 · 1 (1 -  $\alpha$ ) / 2 0 · 1  $\alpha$  / 2 0 · 1  $\alpha$  / 2 at eqm.

$$K_{a} = \frac{[H^{+}][NiC^{-}]}{[HNiC]}$$
  
or  $1.4 \times 10^{-5} = \frac{(0.1 \alpha/2)(0.1 \alpha/2)}{0.1(1-\alpha)/2}$   
If  $\alpha < < 1$ , then

$$1 \cdot 4 \times 10^{-5} = \frac{(0 \cdot 05 \, \alpha)^2}{0 \cdot 05} = 0 \cdot 05 \, \alpha^2$$
$$\alpha^2 = 2 \cdot 8 \times 10^{-4}$$

 $\alpha = 5.29 \times 10^{-2} = 0.053$ 

% dissociation = 
$$0.053 \times 100 = 5.3\%$$

**Problem 13.** The pH of 0.05 M aqueous solution of diethylamine is 12.0. Calculate its  $K_b$ .

(Roorkee 1993)  
**lution.** 
$$(C_2H_5)_2 NH + H_2O \implies$$
  
 $(C_2H_5)_2 NH_2^+ + OH^-$   
 $pH = 12, \therefore [H^+] = 10^{-12}$   
 $[OH^-] = 10^{-2}, (C_2H_5)_2 NH$ 

$$= 0.05 - 0.01 = 0.04$$

$$K_{b} = \frac{[(C_{2}H_{5})_{2} NH_{2}^{+}][OH^{-}]}{[(C_{2}H_{5})_{2} NH]} = \frac{10^{-2} \times 10^{-2}}{0.04}$$

$$= 2.5 \times 10^{-3}$$

$$= 2 \cdot 5 \times 10$$

OF

10

So

As or

**Problem 14.** 0.15 mole of pyridinium chloride has been added into 500 cm<sup>3</sup> of 0.2 M pyridine solution. Calculate pH and hydroxyl ion concentration in the resulting solution assuming no change in volume (K<sub>b</sub>

for pyridine =  $1.5 \times 10^{-19}$  M) (Roorkee 1995)

Solution. For basic buffer,

$$pOH = pK_b + \log \frac{[Salt]}{[Base]}$$

Here base is pyridine and salt is pyridinium chloride.

Conc. of pyridine = 0.2 MConc. of pyridinium chloride

= 
$$0.15 \text{ mol in } 500 \text{ cm}^3 = 0.30 \text{ M}$$
  
 $pK_b = -\log(1.5 \times 10^{-9})$   
=  $-[0.1761 - 9] = 8.8239$ 

$$00H = 8.8239 + \log \frac{0.30}{0.20}$$

| $= 8.8239 + \log 1.5$                                                                |
|--------------------------------------------------------------------------------------|
| $= 8 \cdot 8239 + 0 \cdot 1761 = 9 \cdot 0$                                          |
| <i>i.e.</i> $-\log[OH^{-}] = 9.0$                                                    |
| or $\log[OH^-] = -9$                                                                 |
| :. $[OH^-] = 10^{-9}$                                                                |
| $[OH^{-}]$ from $H_2O = 10^{-7} M$                                                   |
| : Total [OH <sup>-</sup> ] = $10^{-7} + 10^{-9}$ M                                   |
| $= 10^{-9} (10^2 + 1)$                                                               |
| $= 1.01 \times 10^{-7} M$                                                            |
| $\therefore [H^+] = \frac{K_w}{[OH^-]} = \frac{10^{-14}}{1 \cdot 01 \times 10^{-7}}$ |
| $= 9.90 \times 10^{-8} M$                                                            |
| $\therefore pH = -\log [H^+] = -\log (9.90 \times 10^{-8})$                          |
| = - [0.9956 - 8] = 7.0044                                                            |

**Problem 15.** An aqueous solution contains 10% ammonia by mass and has a density of  $0.99 g \text{ cm}^{-3}$ . Calculate hydroxyl and hydrogen ion concentration in this solution.  $K_g$  for NH<sub>4</sub><sup>+</sup> =  $5.0 \times 10^{-10} \text{ M}$ 

(Roorkee 1995)

Solution. 10% ammonia by mass means 10 g NH<sub>3</sub> are present in 100 g of the solution.

 $\therefore \text{ Molarity of the solution} = \frac{10}{17} \times \frac{1}{100/0.99} \times 1000 = 5.82 \text{ M}$  $\text{NH}_3 + \text{H}_2\text{O} \longrightarrow \text{NH}_4\text{OH} \xrightarrow{} \text{NH}_4^+ + \text{OH}^-$ 

 $C \mod L^{-1}$ 

Initial

conc. Aftr dissociation

dissociation  $C - C\alpha$   $C\alpha$   $C\alpha$   $= C(1 - \alpha)$   $\therefore [OH^-] = C\alpha = C \cdot \sqrt{K_b/C} = \sqrt{K_bC}$   $= \sqrt{\frac{10^{-14}}{5 \cdot 0 \times 10^{-10}} \times 5 \cdot 82} = 1 \cdot 079 \times 10^{-2} M$   $\therefore [H^+] = \frac{K_w}{[OH^-]} = \frac{10^{-14}}{1 \cdot 079 \times 10^{-2}}$  $= 0.9268 \times 10^{-12} M = 9.268 \times 10^{-13} M$ 

Problem 16. Calculate the pH of an aqueous solution of 1.0 M ammonium formate assuming completedissociation (pK<sub>a</sub> of formic acid = 3.8 and  $pK_b$  ofammonia = 4.8)Solution. For the salt of weak acid and weak base,

$$H^+] = \sqrt{\frac{K_w K_a}{K_b}}$$

or  $pH = -\frac{1}{2} [\log K_a + \log K_w - \log K_b]$  $=\frac{1}{2}[pK_{a} + pK_{w} - pK_{b}]$  $=\frac{1}{2}[3\cdot 8+14-4\cdot 8]=6\cdot 5$ Problem 17. What is the pH of a 0.50 M aqueous NaCN solution ?  $pK_b$  of CN<sup>-</sup> is 4.70. (I.I.T. 1996) Solution. NaCN + H2O \_\_\_\_ NaOH + HCN or  $CN^{-} + H_2O$   $OH^{-} + HCN$  $K_b = \frac{[OH^{-}][HCN]}{[CN^{-}]} = \frac{[OH^{-}]^2}{[CN^{-}]}$  $\therefore pK_b = -\log K_b = -2\log [OH^-] + \log [CN^-]$ or  $4.70 = -2\log[OH^-] + \log(0.5)$  $\begin{bmatrix} \ddots & [CN^{-}] = [NaCN] \end{bmatrix}$  $2\log[OH^{-}] = -5.00$ Or.  $\log [OH^{-}] = -2.5$ or  $-\log[OH^{-}] = 2.5$ POH = 2.5 pH = 14 - 25 = 11.5

**Problem 18.** The ionization constant of  $NH_4^+$  in water is  $5.6 \times 10^{-10}$  at 25°C. The rate constant for reaction of  $NH_4^+$  and  $OH^-$  to form  $NH_3$  and  $H_2O$  at 25°C is  $3.4 \times 10^{10}$  litre mol<sup>-1</sup> sec<sup>-1</sup>. Calculate the rate constant for proton transfer from water to  $NH_3$ .

(I.I.T. 1996)

Solution. 
$$NH_4^+ + H_2O \rightleftharpoons NH_4OH + H^+$$
,

$$K_a = 5.6 \times 10^{-10}$$

$$NH_3 + H_2O \xrightarrow{k_f} NH_4^+ + OH^-$$

$$k_b = 3 \cdot 4 \times 10^{10}$$

Aim. To find  $k_f$ 

We know that for a conjugate acid-base pair

$$K_{acid} \times K_{base} = K_w \quad i.e. \quad K_a \times K_b = K$$
  
$$\therefore \qquad K_b = \frac{K_w}{K_b} = \frac{10^{-14}}{5.6 \times 10^{-10}}$$

But 
$$K_b = \frac{R}{k}$$

$$k_f = K_b \times k_b = \frac{10^{-14}}{5 \cdot 6 \times 10^{-10}} \times 3.4 \times 10^{10}$$
$$= 0.607 \times 10^6 = 6.07 \times 10^5$$

Problem19.Calculate the percentage ofhydrolysis in 0.003 M aqueous solution of NaOCN(K<sub>a</sub> for HOCN =  $3.33 \times 10^{-4}$  M)(Roorkee 1996)Solution. NaOCN + H<sub>2</sub>ONaOH + HOCN

or 
$$OCN^- + H_2O \implies OH^- + HOCN$$

Initial conc. c

Conc. at eqm. c(1-h) ch ch

where h is the degree of hydrolysis

... Hydrolysis constant,

 $K_{h} = \frac{ch \cdot ch}{c} = ch^{2} \text{ or } h = \sqrt{K_{h}/c}$ But  $K_{h} = \frac{[OH^{-}][HOCN]}{[OCN^{-}]}$   $K_{a} = \frac{[H^{+}][OCN^{-}]}{[HOCN]} [HOCN \iff H^{+}+OCN^{-}]$ 

$$K_{w} = [H^{+}][OH^{-}]$$

Combining these equations,

$$K_{h} = \frac{K_{w}}{K_{a}} = \frac{10^{-14}}{3 \cdot 33 \times 10^{-4}}$$
  
$$h = \sqrt{\frac{10^{-10}}{3 \cdot 33} \times \frac{1}{3 \times 10^{-3}}} = \sqrt{10^{-8}} = 10^{-4}$$

 $\therefore \quad \% age hydrolysis = 10^{-4} \times 100 = 0.01$ 

Problem 20. An aqueous solution of aniline of concentration 0.24 M is prepared. What concentration of sodium hydroxide is needed in this solution so that anilinium ion concentration remains at  $1 \times 10^{-8}$  M? (K<sub>a</sub> for C<sub>6</sub>H<sub>5</sub>NH<sub>3</sub><sup>+</sup> =  $2.4 \times 10^{-6}$  M) (Roorkee 1996) Solution. In aqueous solution, aniline is hydrolysed as

$$C_6H_5NH_2 + H_2O \implies C_6H_5NH_3 + OH^-$$

When NaOH is added, hydrolysis will be suppressed so that in the final solutoin,

$$[C_6H_5NH_3] = 10^{-8} M (Given)$$

If conc. of NaOH added is  $x \mod L^{-1}$ , then at equilibrium

$$[C_6H_5NH_2] = 0.24 - 10^{-8} = 0.24$$

 $[C_6H_5NH_3] = 10^{-8} M (Given)$ 

$$[OH^{-}] = 10^{-8} + x = xM$$

· Hydrolysis constant,

$$K_{h} = \frac{[C_{6}H_{5}NH_{3}][OH^{-}]}{[C_{6}H_{5}NH_{2}]} \quad \dots (i)$$

Further, we are given

$$C_{6}H_{5}NH_{3} \iff C_{6}H_{5}NH_{2} + H^{+}$$

$$K_{a} = \frac{[C_{6}H_{5}NH_{2}][H^{+}]}{[C_{6}H_{5}NH_{3}]} \qquad \dots (ii)$$

Also  $[H^+][OH^-] = K_w$ 

Combining eqns. (i), (ii) and (iii)

$$K_h = \frac{K_w}{K_a} = \frac{10^{-14}}{2 \cdot 4 \times 10^{-6}} = \frac{10^{-8}}{2 \cdot 4}$$

Substituting the values in eqn. (i), we get,  $\frac{10^{-8}}{2 \cdot 4} = \frac{10^{-8} \times x}{0 \cdot 24}$  which gives  $x = 10^{-2}$  M

**Problem 21.** A sample of hard water contains 96 ppm of  $SO_4^{2-}$  and 183 ppm of  $HCO_3^-$  with  $Ca^{2+}$  as the only cation. How many moles of CaO will be required to remove  $HCO_3^-$  from 1000 kg of this water ? If 1000 kg of this water is treated with the amount of CaO calculated above, what will be the concentration (in ppm) of residual  $Ca^{2+}$  ions ? (Assume CaCO<sub>3</sub> to be completely insoluble in water). If the Ca<sup>2+</sup> ions in one litre of the treated water are completely exchanged with hydrogen ions, what will be its pH ? (One ppm means one part of the substance in one million parts of water, weight/weight). (*L.T. 1997*)

Solution. SO<sub>4</sub><sup>2-</sup> present in 1000 kg of water

$$=\frac{96}{10^6} \times 1000 \text{ kg} = 96 \text{ g} = \frac{96}{96} = 1 \text{ mole.}$$

 $HCO_3^-$  present in 1000 kg of water

 $=\frac{183}{10^6} \times 1000 \text{ kg} = 183 \text{ g} = \frac{183}{61} = 3 \text{ moles}$ 

 $Ca^{2+}$  present alongwith  $SO_4^{2-}$  ions = 1 mole

 $Ca^{2+}$  present alongwith  $HCO_3^-$  as  $Ca (HCO_3)_2$ 

$$=\frac{3}{2}$$
 mole

... Total Ca<sup>2+</sup> present in 1000 kg of water

=  $1 + \frac{3}{2} = 2.5$  moles CaO added will react with Ca (HCO<sub>3</sub>)<sub>2</sub> as follows : Ca(HCO<sub>3</sub>)<sub>2</sub> + CaO  $\rightarrow$  2 CaCO<sub>3</sub>  $\downarrow$  + H<sub>2</sub>O But Ca (HCO<sub>3</sub>)<sub>2</sub> present =  $\frac{3}{2}$  mole (*calculated above*)

...(iii)

## Fradeop's New Course Chemistry (XI)

 $\therefore$  CaO required =  $\frac{3}{2}$  mole = 1.5 moles

After treatment with CaO *i.e.* removal of Ca (HCO<sub>3</sub>)<sub>2</sub>, amount of Ca<sup>2+</sup> left (due to CaSO<sub>4</sub> only) in 1000 kg of water = 1 mole = 40 g

Concentration of residual Ca<sup>2+</sup> (in ppm) = 40 ppm

Now 1000 kg of water contain  $Ca^{2+} = 1$  mole

 $\therefore$  1000 g of water will contain Ca<sup>2+</sup> = 10<sup>-3</sup> mole

No. of moles of  $H^+$  exchanged =  $2 \times 10^{-3}$  mole

$$pH = -\log(2 \times 10^{-3}) = 2.7$$

**Problem 22.** A sample of AgCl was treated with  $5.00 \text{ ml of } 1.5 \text{ M Na}_2 \text{ CO}_3$  solution to give  $\text{Ag}_2\text{CO}_3$ . The

remaining solution contained 0.0026 g of Cl<sup>-</sup> per litre. Calculate the solubility product of AgCl ( $K_{pp}$  for

 $Ag_2CO_3 = 8 \cdot 2 \times 10^{-2}$  (I.I.T. 1997) Solution.  $1 \cdot 5 \text{ M Na}_2CO_3 \text{ gives } [CO_3^{2-1}] = 1 \cdot 5 \text{ M}$ 

K<sub>sp</sub> for Ag<sub>2</sub>CO<sub>3</sub> = [Ag<sup>+</sup>]<sup>2</sup> [CO<sub>3</sub><sup>2−</sup>] ∴ [Ag<sup>+</sup>] =  $\sqrt{\frac{K_{sp} \text{ for Ag_2CO_3}}{[CO_3^{2−}]}} = \sqrt{\frac{8 \cdot 2 \times 10^{-12}}{1 \cdot 5}}$ = 2 · 34 × 10<sup>-6</sup> M

$$K_{sp} \text{ for } AgCl = [Ag^{+}][Cl^{-}]$$
$$= (2 \cdot 34 \times 10^{-6}) \left(\frac{0 \cdot 0026}{35 \cdot 5}\right)$$
$$= 1 \cdot 71 \times 10^{-10}$$

Problem 23. An acid type indicator, HIn differs in

colour from its conjugate base (In<sup>-</sup>). The human eye is sensitive to colour differences only when the ratio [In<sup>-</sup>]/[HIn] is greater than 10 or smaller than 0.1. What should be the minimum change in the pH of the solution to observe a complete colour change. ( $K_e = 1.0 \times 10^{-5}$ )? (I.I.T. 1997)

Solution. H In 
$$\rightleftharpoons$$
 H<sup>+</sup> + In<sup>-</sup>,  
 $K_a = \frac{[H^+][In^-]}{[HIn]}$   
or  $[H^+] = K_a \frac{[HIn]}{[In^-]}$   
When  $[In^-]/[HIn] = 10$ .

$$[H^+] = 10^{-5} \times \frac{1}{10} = 10^{-6}, \quad pH = 6$$

When  $[In^{-}]/[HIn] = 0.1$ ,  $[H^{+}] = 10^{-5} \times 10 = 10^{-4}$ , pH = 4  $\therefore$  Minimum change in pH = 2 **Problem 24.** Calculate the amount of NH<sub>3</sub> and NH<sub>4</sub>Cl required to prepare a buffer solution of pH 9.0 when total concentration of buffering reagents is 0.6 mol L<sup>-1</sup>. pK<sub>b</sub> for NH<sub>3</sub> = 4.7, log 2 = 0.30.

#### (Roorkee 1997)

Solution. pH = 9.0. Hence pOH = 
$$14 - 9 = 5$$
  
pOH =  $pK_b + log \frac{[Salt]}{[Base]}$   
 $5 = 4.7 + log \frac{[Salt]}{[Base]}$  or  $log \frac{[Salt]}{[Base]} = 0.3$   
or  $\frac{[Salt]}{[Base]} = Antilog 0.3 = 2$   
*i.e.* [Salt] = 2 × [Base]  
Also we are given :  
[Salt] + [Base] = 0.6 mol L<sup>-1</sup>

This on solving gives [Base] =  $0.2 \text{ mol } L^{-1}$ 

and  $[Salt] = 0.4 \text{ mol } L^{-1}$ 

Problem 25. K<sub>a</sub> for ascorbic acid (HAsc) is

 $5 \times 10^{-5}$ . Calculate the hydrogen ion concentration and percentage of hydrolysis in an aqueous solution in which the concentration of Asc<sup>-</sup> ions is 0.02 M.

#### (Roorkee 1997)

Solution. As ascorbic acid is a weak acid, aqueous

solution of Asc<sup>-</sup> means the solution of a salt of weak acid with strong base. For such a salt, degree of hydrolysis is given by

$$h = \sqrt{\frac{K_{w}}{K_{a} \times c}} = \sqrt{\frac{10^{-14}}{5 \times 10^{-5} \times 2 \times 10^{-2}}}$$
  
= 10<sup>-4</sup> = 10<sup>-4</sup> × 100% = 0.01%  
Asc<sup>-</sup> + H<sub>2</sub>O  $\implies$  HAsc + OH<sup>-</sup>  
c mol L<sup>-1</sup>  
c - ch ch ch  
[OH<sup>-</sup>] = ch = 0.02 × 10<sup>-4</sup> = 2 × 10<sup>-6</sup> mol L<sup>-1</sup>  
 $\therefore$  [H<sup>+</sup>] =  $\frac{K_{w}}{[OH^{-}]} = \frac{10^{-14}}{2 \times 10^{-6}}$   
= 5 × 10<sup>-9</sup> mol L<sup>-1</sup>  
Problem 26. The solubility product of SrF<sub>2</sub> in

water is  $8 \times 10^{-10}$ . Calculate its solubility in 0.1 M NaF aqueous solution. (Roorkee 1997)

Solution. As NaF is a strong electrolyte, it ionizes completely. Hence  $[F^-] = 0.1 \text{ M}$ 

$$K_{sp}$$
 for SrF<sub>2</sub> = [Sr<sup>2+</sup>] [F<sup>-</sup>]<sup>2</sup>  
∴ 8 × 10<sup>-10</sup> = [Sr<sup>2+</sup>] (0·1)<sup>2</sup>

or 
$$[Sr^{2+}] = 8 \times 10^{-8} \text{ mol } L^{-1}$$

: Solubility of SrF2 in 0.1 M NaF sol.

$$= 8 \times 10^{-8} \text{ mol } L^{-1}$$

Problem 27. What will be the resultant pH when 200 ml of an aqueous solution of HCl (pH =  $2 \cdot 0$ ) is mixed with 300 ml of an aqueous solution of NaOH (pH = 12.0)?(I.I.T. 1998)

Solution. 
$$pH = 2 \text{ means } [H^+] = 10^{-2} \text{ M}$$
  
 $pH = 12 \text{ means } [H^+] = 10^{-12}$   
or  $[OH^-] = 10^{-2} \text{ M}$ 

Thus, 200 ml of 10<sup>-2</sup> M HCl are mixed with 300 ml of  $10^{-2}$  M NaOH. After neutralisation NaOH left = 100 ml of 10<sup>-2</sup> M

Total volume after mixing = 500 ml

... In the final solution, after mixing

$$[OH^{-}] = \frac{10^{-2}}{5} = 2 \times 10^{-3} \text{ M}$$
  
or  $[H^{+}] = \frac{10^{-14}}{2 \times 10^{-3}} = 5 \times 10^{-12}$   
 $\therefore \text{ pH} = -\log [H^{+}] = -\log (5 \times 10^{-12})$   
 $= 12 - 0.69 = 11.39$ 

Problem 28. Determine the number of moles of Agl which may be dissolved in 1.0 litre of 1.0 M CN solution. K<sub>sp</sub> for AgI and K<sub>c</sub> for Ag(CN)<sub>2</sub> are  $1.2 \times 10^{-7} \text{ M}^2$  and  $7.1 \times 10^{19} M^{-2}$  respectively.

(Roorkee 1998)

Solution. Suppose number or moles of Agl which may be dissolved in 1.0 litre of 1.0 M CN<sup>-</sup> solution = x. Then

 $AgI(s) + 2 CN^{-}(aq) \xleftarrow{} [Ag(CN)_{2}]^{-} + 1^{-}$ Intial 1 - 1 win 3 - 1-1 moles

Moles 1 - 2x0 x after reaction

$$K_{eq} = \frac{[Ag(CN)_2]^{-}[1^{-}]}{[CN^{-}]^2} = \frac{x^2}{(1-2x)^2} \qquad \dots (i)$$

Further, AgI (s) 
$$\rightleftharpoons$$
 Ag<sup>+</sup> (aq) + 1<sup>-</sup> (aq)  
 $K_{sp} = [Ag^+][1^-] = 1 \cdot 2 \times 10^{-17} (Given)$  ...(ii)  
Ag<sup>+</sup> (aq) + 2 CN<sup>-</sup> (aq)  $\rightleftharpoons$  [Ag (CN)<sub>2</sub>]<sup>-</sup>  
 $K_c = \frac{[Ag(CN)_2]^-}{[Ag^+][CN^-]^2} = 7 \cdot 1 \times 10^{19} (Given)$  ...(iii)  
From eqn. (i), (ii) and (iii)  
 $K_{eq} = K_{sp} \times K_c$ 

$$= (1 \cdot 2 \times 10^{-17}) \times (7 \cdot 1 \times 10^{19})$$
  
= 8 \cdot 52 \times 10^2  
$$\therefore \quad \frac{x^2}{(1 - 2x)} = 8 \cdot 52 \times 10^2$$
  
or 
$$\frac{x}{1 - 2x} = 29 \cdot 2$$
  
or 
$$x = 29 \cdot 2 - 58 \cdot 4x$$
  
or 
$$x = 0.49$$
 mole

27

OF

Problem 29.0.16 g of N2H4 are dissolved in water and the total volume made upto 500 ml. Calculate the percentage of N2H4 that has reacted with water in this solution. The K<sub>b</sub> for N<sub>2</sub>H<sub>4</sub> is  $4.0 \times 10^{-6}$  M.

(Roorkee 1998)

0.32

Solution. 
$$N_2H_4 + H_2O \implies N_2H_5^+ + OH^-$$
  
Conc. of  $N_2H_4 = 0.16$  g in 500 ml.

$$= 0.32 \text{ g L}^{-1} = \frac{1}{32} \text{ mol } \text{L}^{-1}$$

$$= 0.01 \text{ M} = 10^{-2} \text{ M}$$

$$K_b \text{ for } N_2 H_4 = 4.0 \times 10^{-6} \text{ M (Given)}$$

$$h = \sqrt{\frac{K_w}{K_b c}} = \sqrt{\frac{10^{-14}}{4 \times 10^{-6} \times 10^{-2}}}$$

$$= \frac{1}{3} \times 10^{-3} = 0.5 \times 10^{-3} = 0.05\%$$

Problem 30. The solubility of Pb(OH)2 in water is  $6.7 \times 10^{-6}$  M. Calculate the solubility of Pb(OH)<sub>2</sub> in a buffer solution of pH = 8. (I.I.T. 1999) Solution. Pb(OH),  $Pb^{2+} + 2OH^{-}$ :  $K_{sp} = [Pb^{2+}][OH^{-}]^{2}$  $= s \times (2 s)^2 = 4 s^3 = 4 \times (6 \cdot 7 \times 10^{-6})^3$  $= 1.20 \times 10^{-15}$ In a solution with pH = 8,  $[H^+] = 10^{-8}$ and  $[OH]^- = 10^{-6}$  $\therefore 1.2 \times 10^{-15} = [Pb^{2+}] \times (10^{-6})^2$ or  $[Pb^{2+}] = \frac{1 \cdot 2 \times 10^{-15}}{(10^{-6})^2} = 1 \cdot 2 \times 10^{-3} M$ 

Problem 31. Two buffers (X) and (Y) of pH 4.0 and 6.0 respectively are prepared from acid HA and the salt NaA. Both the buffers are 0.50 M in HA. What would be the pH of the solution obtained by mixing equal volumes of the two buffers ?  $(K_{HA} = 1.0 \times 10^{-5})$ 

pH = 
$$p K_a + \log \frac{[Salt]}{[Acid]}$$
 i.e. 4 = 5 +  $\log \frac{[Salt]}{0.5}$ 

# Pradeep's New Course Chemistry (XI)

or 
$$\log \frac{|Salt|}{0.5} = -1$$
  
or  $\frac{|Salt|}{0.5} = 10^{-1}$   
or  $|Salt| = 0.05 \text{ M}$ 

For buffer Y

$$pH = p K_a + \log \frac{[Salt]}{[Acid]}$$

*i.e.*  $6 = 5 + \log \frac{[\text{Salt}]}{0.5}$ or  $\log \frac{[\text{Salt}]}{0.5} = 1$ 

or 
$$\frac{[Salt]}{0.5} = 10$$

or [Salt] = 5 M

When equal volumes of both the buffers are mixed,

$$[Acid] = 0.5,$$
  

$$[Salt] = \frac{5 + 0.05}{2} = 2.5025$$
  

$$pH = p K_a + \log \frac{[Salt]}{[Acid]}$$
  

$$= 5 + \log \frac{2.5025}{0.5}$$
  

$$= 5 + \log 5.05 = 5.7$$

**Problem 32.** Determine the concentration of  $NH_3$ solution whose one litre can dissolve 0.10 mole AgCl.  $K_{sp}$  of AgCl and  $K_f$  of Ag( $NH_3$ )<sup>+</sup> are  $1.0 \times 10^{-10} M^2$ and  $1.6 \times 10^7 M^{-2}$  respectively. (Roorkee 1999)

Solution. AgC1  $\longrightarrow$  Ag<sup>+</sup> + Cl<sup>-</sup>

0.1 mole AgCl on dissolution will give 0.1 mole Ag<sup>+</sup> and 0.1 mole Cl<sup>-</sup> ions. Ag<sup>+</sup> ions will combine with NH<sub>2</sub> as follows :

$$Ag^+ + 2 NH_3 \implies Ag (NH_3)_2^+$$

Hence  $[Ag^+] + [Ag(NH_3)_2^+] = 0.1$  mole ...(i)

Also for the above formation reaction, we are given

$$K_f = 1.6 \times 10^7 = \frac{[Ag(NH_3)_2^+]}{[Ag^+][NH_3]^2}$$
 ....(*ii*)

Further  $[Ag^+][Cl^-] = K_{sp} = 10^{-10}$ 

or 
$$[Ag^+](0\cdot 1) = 10^{-10}$$
  
or  $[Ag^+] = 10^{-9}$ .

Neglecting this conc. in eqn. (i), we get

$$[Ag(NH_3)_2^+] = 0.1.$$

Putting these values in eqn. (ii), we get

$$\frac{0.1}{10^{-9} \times [\mathrm{NH}_3]^2} = 1.6$$

or 
$$[NH_3]^2 = \frac{0.1}{10^{-9} \times 1.6 \times 10^7}$$
  
=  $\frac{1}{16 \times 10^{-2}}$   
or  $[NH_3] = \frac{1}{4 \times 10^{-1}} = 2.5 \text{ M}$ 

Also 0.2 M NH<sub>3</sub> is needed to dissolve 0.01 M

 $\times 10^{7}$ 

Ag<sup>+</sup> ions. Thus

$$[NH_3] = 2.5 + 0.2 = 2.7 M.$$

**Problem 3.3.** The average concentration of SO<sub>2</sub> in the atmosphere over a city on a certain day is 10 ppm when the average temperature is 298 K. Given that the solubility of SO<sub>2</sub> in water at 298 K is 1.3653 moles

litre<sup>-1</sup> and the  $pK_a$  of H<sub>2</sub>SO<sub>3</sub> is 1.92, estimate the pH of rain on that day. (I.I.T. 2000)

Solution. 
$$SO_2 + H_2O \longrightarrow H_2SO_3$$
  
 $[H_2SO_3] = [SO_2] = 1.3653 \text{ moles litre}^{-1}$   
 $H_2SO_3 \implies 2H^+ + SO_3^{2-}$   
Suppose at equilibrium,  $[H^+] = x \mod L^{-1}$   
Then  $[H_2SO_3] = (1.3653 - \frac{x}{2}),$   
 $[SO_3^{2-}] = \frac{x}{2} \mod L^{-1}$   
 $K_a = \frac{[H^+]^2 [SO_3^{2-}]}{[H_2SO_3]}$   
 $= \frac{x^2 \times x/2}{(1.3653 - x/2)} = 10^{-1.92}$   
 $(\because pK_a = 1.92 \text{ means } - \log K_a = 1.92$ 

or  $\log K_a = -1.92$  or  $K_a = 10^{-1.92}$ )

Neglecting x/2 in comparison to 1.3653, we get

$$\frac{x^3}{2 \times 1.3653} = 10^{-1.92}$$

$$x^3 = 2.7306 \times 10^{-1.9}$$

or

or  $3 \log x = \log 2 \cdot 7306 - 1 \cdot 92$ =  $0 \cdot 4348 - 1 \cdot 92 = -1 \cdot 4852$ or  $-\log x = 0 \cdot 485$ 

*i.e.* pH = 0.485.

**Problem 34.** What  $[H_3O^+]$  must be maintained in a saturated  $H_2S$  solution to precipitate  $Pb^{2+}$  but not  $Zn^{2+}$  from a solution in which each ion is present at a concentration of 0.01 M?

 $[K_{sp} H_2 S = 1 \cdot 1 \times 10^{-22} \text{ and } K_{sp} ZnS = 1 \cdot 0 \times 10^{-21}]$ (Roorkee 2000)

Solution.  $K_{sp}$  for  $ZnS = 10^{-21}$ and  $[Zn^{2+}] = 0.01 \text{ M} = 10^{-2} \text{ M}$ But  $K_{sp} (ZnS) = [Zn^{2+}] [S^{-2}]$ *i.e.*  $10^{-21} = [10^{-2}] [S^{2-}]$ or  $[S^{2-}] = 10^{-19} \text{ M}$ 

Thus to prevent precipitation of  $Zn^{2+}$  ions,  $[S^{2-}]$  must be less than  $10^{-19}$  M. Further

 $H_2S \xrightarrow{2 H_2O} 2 H_3O^+ + S^{2-}$   $\therefore \quad K_{sp} (H_2S) = [H_3O^+]^2 [S^{2-}]$   $1 \cdot 1 \times 10^{-22} = [H_3O^+]^2 \times 10^{-19}$ or  $[H_3O^+]^2 = 1 \cdot 1 \times 10^{-3} = 11 \times 10^{-4}$ or  $[H_3O^+] = 3 \cdot 32 \times 10^{-2} M.$ 

**Problem 35.**  $0.01 \text{ mol of } AgNO_3$  is added to one litre of a solution which is  $0.1 \text{ M in } Na_2 \text{CrO}_4$  and  $0.005 \text{ M in } NaIO_3$ . Calculate the mol of precipitate formed at equilibrium and the concentration of  $Ag^+$ ,  $IO_3^-$  and  $CrO_4^{2-}$  (K<sub>sp</sub> values of  $Ag_2CrO_4$  and  $AgIO_3$  are  $10^{-8}$  and  $10^{-13}$  respectively). (Roorkee 2001)

Solution. 
$$2 \text{ AgNO}_3 + \text{Na}_2\text{CrO}_4$$
  
 $0.1 \text{ mol}$   
 $\longrightarrow \text{ Ag}_2\text{CrO}_4 + 2 \text{ NaNO}_3$   
 $\text{AgNO}_3 + \text{NaIO}_3 \longrightarrow \text{ AgIO}_3 + \text{NaNO}_3$   
 $0.005 \text{ mol}$ 

AgNO<sub>3</sub> that will react with NaIO<sub>3</sub> = 0.005 mol

 $AgIO_3$  (ppt.) formed = 0.005 mol

AgNO<sub>3</sub> left = 0.01-0.005 = 0.005 mol. Whole of it will react completely with Na<sub>2</sub>CrO<sub>4</sub> (as it is present in larger amount). Na<sub>2</sub>CrO<sub>4</sub> reacted = 0.005/2 = 0.0025mol. Hence Na<sub>2</sub>CrO<sub>4</sub> left = 0.1-0.0025 = 0.0975 mol

 $Ag_2CrO_4$  (ppt.) formed = 0.0025 mol.

Total  $[CrO_4^{2-}] = 0.0975 \text{ mol} + CrO_4^{2-}$  obtained from Ag<sub>2</sub>CrO<sub>4</sub> (negligible)

$$\approx 0.0975 \text{ mol} = 9.75 \times 10^{-2} \text{ M}$$

$$Ag_2 \text{CrO}_4 \longrightarrow 2 \text{ Ag}^+ + \text{CrO}_4^{2-}$$

$$K_{sp} (Ag_2 \text{CrO}_4) = [Ag^+]^2 [\text{CrO}_4^{2-}]$$

$$[Ag^+]^2 \times (9.75 \times 10^{-2}) = 10^{-8}$$
or
$$[Ag^+]^2 = 0.1 \times 10^{-1}$$
or
$$[Ag^+] = 0.32 \times 10^{-3} \text{ M}$$

$$= 3 \cdot 2 \times 10^{-4} \mathrm{M}$$

Total precipitate formed = 0.005 + 0.0025

= 0.0075 mol

This is the total  $[Ag^+]$  present in the solution (obtained from  $Ag_2CrO_4$  and  $AgIO_3$ ).

$$AgIO_{3} \longrightarrow Ag^{+} + IO_{3}^{-}$$

$$K_{sp} (AgIO_{3}) = [Ag^{+}] [IO_{3}^{-}]$$

$$10^{-13} = (3 \cdot 2 \times 10^{-4}) [IO_{3}^{-}]$$

$$[IO_{3}^{-}] = 0 \cdot 3125 \times 10^{-9}$$

 $= 3 \cdot 125 \times 10^{-10} \text{ M}$ 

Problem 36. 500 mL of 0 · 2 M aqueous solution of acetic acid is mixed with 500 mL of 0 · 2 M HCl at 25°C.

(i) Calculate the degree of dissociation of acetic acid in the resulting solution and pH of the solution.

(ii) If 6 g of NaOH is added to the above solution, determine the final pH [Assume there is no change in volume on mixing:  $K_a$  of acetic acid is  $1.75 \times 10^{-5}$  mol  $L^{-1}$ ]

Solution. (i) Millimoles of CH3COOH

 $= 500 \times 0.2 = 100$ Millimoles of HCl =  $500 \times 0.2 = 100$ Final volume after mixing = 500 + 500= 1000 mL

| a [0                 | $CH_3COOH$ = $\overline{1}$  | $\frac{100}{000} = 0.1 \mathrm{M},$ |                     |
|----------------------|------------------------------|-------------------------------------|---------------------|
|                      | $[\text{HCl}] = \frac{1}{1}$ | $\frac{100}{000} = 0.1 \text{ M}$   |                     |
|                      | сн,соон                      |                                     | $0^{-} + H^{+}$     |
| Before               | 0.1 M                        | 0                                   | 0.1 M<br>(from HCl) |
| dissociatio<br>After | $(0 \cdot 1 - x)$            | x                                   | $(0\cdot 1+x)$      |

dissociation

$$\mathbf{K}_a = \frac{x \left(0 \cdot 1 + x\right)}{\left(0 \cdot 1 - x\right)}$$

As in the presence of HCl, dissociation of  $CH_3COOH$  will be very small (due to common ion effect), x is very very small. Hence

$$K_a = \frac{x (0 \cdot 1)}{0 \cdot 1} = x$$
  
= 1 · 75 × 10<sup>-5</sup> mol L<sup>-1</sup> (*Given*)  
∴ Degree of dissociation =  $\frac{x}{0 \cdot 1} = \frac{1 \cdot 75 \times 10}{0 \cdot 1}$ 

 $= 1.75 \times 10^{-4}$ = 0.00175%

Further  $[H^+] = 0 \cdot 1 + x \approx 0 \cdot 1$  $pH = -\log 0 \cdot 1 = 1$ 

(ii) 6 g of NaOH =  $\frac{6}{40}$  mole

= 0 · 15 mole

Hence now the equilbrium will be  $CH_3COOH + HCI + NaOH \iff$ 

| Initial | 0.1  | 0.1   | 0.15   |                         |
|---------|------|-------|--------|-------------------------|
| At eqm. | 0.05 | 0     | 0      |                         |
|         |      | CH1CC | DONa + | NaCl + H <sub>2</sub> O |

0 0 0

0.05 0 0

Thus the solution will now be 0.05 M in CH<sub>3</sub>COOH and 0.05 M in CH<sub>3</sub>COONa *i.e.* it is acidic buffer.

$$pH = -\log K_a + \log \frac{[Sait]}{[Acid]}$$
  
= -log (1.75 × 10<sup>-5</sup>) + log  $\frac{0.05}{0.05}$   
= 4.757

**Problem 37.** The ionization constant of benzoic acid is  $6.46 \times 10^{-5}$  and  $K_{sp}$  for silver benzoate is  $2.5 \times 10^{-13}$ . How many times is silver benzoate more soluble in a buffer of pH 3.19 compared to its solubility in pure water ? (N.C.E.R.T.) Solution.  $C_6H_5COOAg \rightarrow C_6H_5COO^- + Ag^+$ Solubility in water. Suppose solubility in water  $= x \mod L^{-1}$ . Then  $[C_6H_5COO^-] = [Ag^+] = x \mod L^{-1}$ .  $\therefore x^2 = K_{sp} \text{ or } x = \sqrt{K_{sp}} = \sqrt{2 \cdot 5 \times 10^{-13}}$  $= 5 \times 10^{-7} \mod L^{-1}$ Solubility in buffer of pH = 3 · 19  $nH = 3 \cdot 19$  means  $= \log [H^+] = 3 \cdot 19$ 

$$p_{\Pi} = 5.19 \text{ means} = \log[\Pi] = 5$$

or  $\log [H^+] = -3 \cdot 19 = \overline{4} \cdot 81$ or  $[H^+] = 6 \cdot 457 \times 10^{-4}$ 

or  $[H^+] = 6.457 \times 10^{-4}$ C<sub>6</sub>H<sub>5</sub>COO<sup>-</sup> ions now combine with the H<sup>+</sup> ions

to form benzoic acid but [H<sup>+</sup>] remains almost constant because we have buffer solution. Now

$$C_{6}H_{5}COOH \iff C_{6}H_{5}COO^{-} + H^{+}$$
  
$$\therefore K_{a} = \frac{[C_{6}H_{5}COO^{-}][H^{+}]}{[C_{6}H_{5}COOH]}$$
  
or  $\frac{[C_{6}H_{5}COOH]}{[C_{6}H_{5}COO^{-}]} = \frac{[H^{+}]}{K_{a}} = \frac{6 \cdot 457 \times 10^{-4}}{6 \cdot 46 \times 10^{-5}} = 10 \dots (i)$ 

Suppose solubility in the buffer solution is y mol  $L^{-1}$ . Then as most of the benzoate ions are converted into benzoic acid molecules (which remain almost ionized), we have

$$y = [Ag^{+}] = [C_{6}H_{5}COO^{-}] + [C_{6}H_{5}COOH]$$
  
= [C\_{6}H\_{5}COO^{-}] + 10 [C\_{6}H\_{5}COO^{-}]  
= 11 [C\_{6}H\_{5}COO^{-}] (using eqn. (i))  
$$\therefore [C_{6}H_{5}COO^{-}] = \frac{y}{11}$$
  
$$\therefore K_{sp} = [C_{6}H_{5}COO^{-}] [Ag^{+}]$$
  
i.e.  $2 \cdot 5 \times 10^{-3} = \frac{y}{11} \times y$   
or  $y^{2} = 2 \cdot 75 \times 10^{-12}$  or  $y = 1 \cdot 66 \times 10^{-6}$   
$$\therefore \frac{y}{x} = \frac{1 \cdot 66 \times 10^{-6}}{5 \times 10^{-7}} = 3 \cdot 32.$$

Note that in case of salt of weak acids, the solubility is more in the acidic solution than in water. The reason, in general, may be explained as follows :

Taking example of C6H5COOAg, we have

$$C_6H_5COOAg \iff C_6H_5COO^- + Ag^+$$

In acidic solution, the anions  $(C_6H_5COO^-)$  in the present case) undergo protonation in presence of acid. Thus,  $C_6H_5COO^-$  ions are removed. Hence equilibrium shifts forward producing more Ag<sup>+</sup> ions. Alternatively, as  $C_6H_5COO^-$  ions are removed,  $Q_{sp}$  decreases. In order to maintain solubility product equilibrium  $(Q_{sp} = K_{sp})$ , Ag<sup>+</sup> ion concentration must increase. Hence solubility is more.

Problem 38. Calculate the solubility of AgCN in a buffer solution of pH 3.00.  $K_{sp}$  for AgCN is  $2 \cdot 2 \times 10^{-16}$  and  $K_a$  for HCN is  $6 \cdot 2 \times 10^{-12}$ .

Solution. Similar to Problem 37. We shall get

$$\frac{[\text{HCN}]}{[\text{CN}^{-}]} = \frac{[\text{H}^{+}]}{K_a} = \frac{10^{-3}}{6 \cdot 2 \times 10^{-10}} = 1 \cdot 6 \times 10^{6}$$

Solubility,  $x = [Ag^+] = [CN^-] + [HCN] = [HCN]$ 

(as  $[CN^-] = [HCN]/(1.6 \times 10^6)$  is negligible in comparison to HCN)

$$\therefore [CN^{-}] = \frac{[HCN]}{1 \cdot 6 \times 10^{6}} = \frac{x}{1 \cdot 6 \times 10^{6}}$$

$$K_{sp} = [Ag^{+}] [CN^{-}]$$

$$= x \times \frac{x}{1 \cdot 6 \times 10^{6}} = 2 \cdot 2 \times 10^{-16}$$
or
$$x = 1 \cdot 9 \times 10^{-5} \text{ mol } L^{-1}.$$

Problem 39, 0.1 M HA is titrated against 0.1 M NaOH. Find the pH at the end point. Dissociation constant for the acid HA is  $5 \times 10^{-6}$  and the degree of hydrolysis, h < 1. (*I.I.T. 2004*)

Solution. HA + NaOH  $\rightarrow$  NaA + H<sub>2</sub>O (weak)

At the end point, their equivalent amounts react together

 $\therefore$  In the final solution, [NaA] =  $\frac{0.1}{2} = 0.05$  M

As NaA is a salt of weak acid and strong base, it hydrolyses as

 $A^- + H_2 O \implies HA + OH$ 

For such a salt,

$$pH = 7 + \frac{1}{2} [pK_{o} + \log c]$$
$$= 7 + \frac{1}{2} [-\log (5 \times 10^{-6}) + \log 0.05]$$

$$= 7 + \frac{1}{2} [6 - 0.6990 + 0.6990 - 2]$$
  
= 9

Problem 40. A sample of mixed alkalis containing NaOH and Na<sub>2</sub>CO<sub>3</sub> is titrated in the following two schemes:

(i) 10 ml of above mixture requires 8 ml of 0 · 1 N HCl by using phenolphthalein.

(*ii*) 10 ml of above mixture requires 10 ml of 0 · 1 N HCl by using methyl orange.

Calculate the ratio of the weight of NaOH and  $Na_2CO_3$  in the sample mixture.

(West Bengal J.E.E. 2004)

Solution. Basic principle involved is as follows :

Acid used with phenolphthalein as indicator.

= Complete neutralization of NaOH

+  $\frac{1}{2}$  neutralization of Na<sub>2</sub>CO<sub>3</sub>

Acid used with methyl orange as indicator

= Complete neutralization of NaOH

+ Complete neutralization of Na<sub>2</sub>CO<sub>3</sub>

M eq of HCl used for 10 ml of mixture using phenolphthalein

$$8 \times 0 \cdot 1 = 0 \cdot 8$$

$$\therefore \text{ M eq of NaOH} + \frac{1}{2} \text{ M eq of Na}_2 \text{CO}_3 = 0.8$$

...(i)

... M eq of HCl used for 10 ml of mixture using methyl orange

$$= 10 \times 0.1 = 1$$

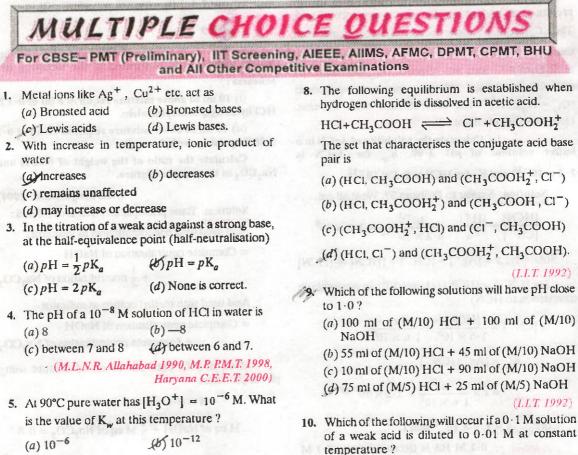
: M eq of NaOH + M eq of Na<sub>2</sub>CO<sub>3</sub> = 1 ...(*ii*)

From eqns (i) and (ii),

M eq of Na<sub>2</sub>CO<sub>3</sub> =  $(1 - 0.8) \times 2 = 0.4$ 

M eq of NaOH = 1 - 0.4 = 0.6

Eq. wt of  $Na_2CO_3 = 106/2 = 53$ 


Eq. wt of NaOH = 40

:  $0.4 \text{ M} \text{ eq of Na}_2 \text{CO}_3 = \frac{53}{1000} \times 0.4 = 0.0212 g$ 

 $0.6 \text{ M} \text{ eq of NaOH} = \frac{40}{1000} \times 0.6 = 0.024 g$ 

Ratio of weight of NaOH and Na2CO2

= 0.024 / 0.0212 = 1.132



- (d) 10<sup>-14</sup> (<u>M.L.N.R. Allahabad 1990</u>)
- 6. Given that the dissociation constant for H<sub>2</sub>O is  $K_w = 1 \times 10^{-14} \text{ mol}^2$  litre<sup>-2</sup>, what is the pH of a 0.001 M KOH solution ?

(a) 
$$10^{-11}$$
 (b)  $10^{-3}$   
(c) 3 (d) 11.

(c)  $10^{-13}$ 

## (M.L.N.R. Allahabad 1990)

 Among the following hydroxides, the one which has the lowest value of K<sub>sp</sub> at ordinary temperature (about 25°C) is

| $(a) \operatorname{Mg}(OH)_2$ | $(b)$ Ca $(OH)_2$ |
|-------------------------------|-------------------|
| (c) Ba (OH) <sub>2</sub>      | (d) Be (OH)2.     |

(I.I.T. 1990)

(a) [H<sup>+</sup>] will decrease to 0.01 M

(b) pH will decrease

(c) percentage ionization will increase

(d) K<sub>a</sub> will increase.

### (M.L.N.R. Allahabad 1992)

11. The pH of a  $10^{-10}$  M NaOH solution is nearest to (a) 10 (b) 7 (c) 4 (d) -10.

#### (M.L.N.R. Allahabad 1992)

12. The precipitate of  $CaF_2$  ( $K_{sp} = 1.7 \times 10^{-10}$ ) is obtained when equal volumes of the following are mixed :

(a)  $10^{-4}$  M Ca<sup>2+</sup> +  $10^{-4}$  M F<sup>-</sup> (b)  $10^{-2}$  M Ca<sup>2+</sup> +  $10^{-3}$  M F<sup>-</sup>

ANSWERS 1. c 2. a 3. b 4. d 5. b 6. d 7. d 8. d 9. d 10. c 11. b

| (c) $10^{-5}$ M Ca <sup>2+</sup> + | 10 <sup>-3</sup> M F <sup>-</sup> |
|------------------------------------|-----------------------------------|
| (d) $10^{-3}$ M $C_{2}^{2+}$ +     | 10-5 M FT                         |

(M.L.N.R. Allahabad 1992)

19.

20.

22.

13. A certain buffer solution contains equal concentration of X<sup>-</sup> and HX. The K<sub>a</sub> for HX is 10<sup>-8</sup>. The pH of the buffer is

- (a) 3
- (c) 11 (d) 14.

(M.L.N.R. Allahabad 1992)

-(0)8

14. Which of the following is not a Lewis base ?

| (a) Ag+             | (b) H <sub>2</sub> O  |  |  |
|---------------------|-----------------------|--|--|
| (c) CN <sup>-</sup> | (d) NH <sub>3</sub> . |  |  |

(B.I.T. Ranchi 1992)

15. Which anion is the weakest base ? (a) C. H OT WINO-

| (a) C21150         | (0) NO3                 |  |  |
|--------------------|-------------------------|--|--|
| (c) F <sup>-</sup> | (d) CH <sub>3</sub> COO |  |  |

#### (B.I.T. Ranchi 1992)

- 101

16. The correct order of increasing  $[H_3O^+]$  in the following aqueous solutions is

 $(a) 0.01 \text{ M H}_{2}\text{S} < 0.01 \text{ M H}_{2} \text{ SO}_{4}$ 

< 0.01 M NaCl < 0.01 M NaNO, (b) 0.01 M NaCl < 0 01 M NaNO<sub>2</sub> < 0.01 M H2S < 0.01 M H2SO4

(c) 0.01 M NaNO2 < 0.01 M NaCl < 0.01 M

 $H_2S < 0.01 M H_2SO_4$ 

 $(d) 0.01 \text{ M H}_2\text{S} < 0.01 \text{ M NaNO}_2 < 0.01 \text{ M}$ 

NaCl <  $0.01 \text{ M} \text{ H}_2 \text{SO}_4$ .

### (M.L.N.R. Allahabad 1993)

7, The best explanation for the solubility of MnS in dil HCl is that

- (a) solubility product of MnCl<sub>2</sub> is less than that of MnS
- $^{(b)}$  concentration of Mn<sup>2+</sup> is lowered by the formation of complex ions with chloride ions
- (c) concentration of sulphide ions is lowered by oxidation to free sulphur
- (d) concentration of sulphide ions is lowered by the formation of the weak H<sub>2</sub>S.

Dedosib in Y constitue of (M.L.N.R. Allahabad 1993)

18. The pK, of HCN is 9.30. The pH of a solution prepared by mixing 2.5 moles of KCN and 2.5

| Star Street                           | 8/81                                                                                                                     |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| moles of HCN<br>volume to 500 m       | in water and making upto total<br>lis                                                                                    |
| (1) 9.30                              | (b) 7·30                                                                                                                 |
|                                       | (d) 8.30. (1.1.7. 1993)                                                                                                  |
| The solubility of a in pure water bec | AgI in NaI solution is less than that cause :                                                                            |
| (a) Agl forms co                      | mplex with NaI                                                                                                           |
| (b) of common id                      | on effect                                                                                                                |
| (c) solubility proc                   | duct of AgI is less than that of NaI                                                                                     |
|                                       | ure of the solution decreases.                                                                                           |
| slution when the                      | intage hydrolysis of NaCN in N/80<br>dissociation constant for HCN is<br>$K_w = 1.0 \times 10^{-14}$                     |
| (a) 2.48                              | (b) 5·26                                                                                                                 |
| (c) 8·2                               |                                                                                                                          |
| S. Ac.S and Her                       | (U.R.C.E.E. 1995)                                                                                                        |
|                                       | s are                                                                                                                    |
| (a) salts of strong                   | g acids and strong bases                                                                                                 |
| (b) salts of weak                     | acids and weak bases                                                                                                     |
| (c) either weak a                     | cids or weak bases                                                                                                       |
|                                       | acids or strong bases                                                                                                    |
| 298 K. The solub                      | (Harrane C.E.E.T. 1996)<br>oduct of AgCl is $4.0 \times 10^{-10}$ at<br>ility of AgCl in $0.04$ m CaCl <sub>2</sub> will |
| be                                    |                                                                                                                          |

| (a) $2 \cdot 0 \times 10^{-5}$ m | (b) $1.0 \times 10^{-4}$ m        |
|----------------------------------|-----------------------------------|
| (c) $5.0 \times 10^{-9}$ m       | (d) $2 \cdot 2 \times 10^{-4}$ m. |

#### (Harvana C.E.E.T. 1996)

23. How much sodium acetate should be added to 0-1 m solution of CH<sub>3</sub>COOH to give a solution of  $pH 5.5 (pK_a \text{ of } CH_3COOH=4.5).$ 

| (a) 0·1 m | (b) 0·2 m  |
|-----------|------------|
| (c)-1.0 m | (d) 10.0 m |

#### (Horyana C.E.E.T. 1996)

24. The strongest base of the following species is

| (a) NH <sup>2-</sup> | (b) OH-      |
|----------------------|--------------|
| (c) $O^{2-}$         | $(d) S^{2-}$ |

#### (Haryana C.E.E.T. 1996)

25. Which of the following sulphides has the lowest solubility product ?

(a) FeS (b) MnS (c) PbS (d) ZnS.

(Harvana C.E.E.T. 1996)

|                |                |                | -              | 14 2 1 | NEI   | 6.3   |       |       |       |  |
|----------------|----------------|----------------|----------------|--------|-------|-------|-------|-------|-------|--|
| 12. b<br>22. c | 13. b<br>23. c | 14. a<br>24. a | 15. b<br>25. c | 16. c  | 17. d | 18. a | 19. b | 20. a | 21. c |  |

## Pradeep's New Course Chemistry

26. The pH of a solution obtained by mixing 50 ml of 0.4 N HCl and 50 ml of 0.2 N NaOH is

| $(a) -\log 2$ | $(b) -\log 0.2$         |
|---------------|-------------------------|
| (c) 1·0       | $(d) 2 \cdot 0.$        |
|               | (Earyana C.E.E.T. 1996) |

- 27. In a mixture of a weak and its salt, the ratio of the concentration of acid to salt is increased ten-fold. The pH of the solution
  - (a) decreases by one (b) decreases by one tenth
  - (c) increases by one (d) increases ten-fold.

(Haryana C.E.E.T. 1996)

28. If a neutral solution has  $pK_w = 13.36$  at 50°C, then pH of the solution is

| (a) 6.68 | (b) 7             |
|----------|-------------------|
| (c) 7.63 | (d) None of these |

(A.E.M.C. Pune 1997, Kerala E.E.E. 2001)

29. The solubility product of CuS,  $Ag_2S$  and HgS and  $10^{-31}$ ,  $10^{-44}$  and  $10^{-54}$  respectively. The solubilities of these sulphides are is the order

(a)  $Ag_2S > CuS > HgS$  (b)  $Ag_2S > HgS > CuS$ 

- (c) HgS > Ag<sub>2</sub>S > CuS (d) CuS > Ag<sub>2</sub>S > HgS. (C.B.S.E. PM.T. 1997)
- 30. If  $pK_b$  for flouride ion at 25°C is 10.83, the ionisation constant of hydrofluoric acid at this temperature is

| (a) $1.74 \times 10^{-5}$ | (b) $3.52 \times 10^{-3}$   |
|---------------------------|-----------------------------|
| (c) $6.75 \times 10^{-4}$ | $(d) 5.38 \times 10^{-2}$ . |

(L.I.T. 1997)

31. The solubility of  $A_2X_3$  is y mol dm<sup>-3</sup>. Its solubility product is

| (a) 6 y <sup>4</sup>  | (b) $64 y^4$             |               |
|-----------------------|--------------------------|---------------|
| (c) 36 y <sup>5</sup> | (d) 108 y <sup>5</sup> . | (I.I.T. 1997) |

32. Which of the following can act both as Bronsted acid and Bronsted base ?

| (a) Na <sub>2</sub> CO <sub>3</sub> | (b) OH <sup>-</sup> |
|-------------------------------------|---------------------|
| (c) HCO <sub>3</sub>                | (d) NH <sub>3</sub> |
|                                     | 1117                |

(M.R. P.M.T. 1998)

**33.** Which of the following statement(s) is (are) correct ?

(a) The pH of  $1.0 \times 10^{-8}$  M solution of HCl is 8 (b) The conjugate base of  $H_2PO_4^-$  is  $HPO_4^{2-}$ 

- (c) Autoprotolysis constant of water increases with temperature
- (d) When a solution of a weak monoprotic acid is titrated against a strong base at half neutralization point,  $pH = (1/2) pK_a$ . (1.1.7.1998)
- 34. The concentration of  $[H^+]$  and  $[OH^-]$  of 0.1 M aqueous solution of 2% ionized weak acid is (ionic product of water =  $1 \times 10^{-14}$ )

(a)  $0.02 \times 10^{-3}$  M and  $5 \times 10^{-11}$  M

(b)  $1 \times 10^{-3}$  M and  $3 \times 10^{-11}$  M

(c)  $2 \times 10^{-3}$  M and  $5 \times 10^{-12}$  M

(d) 
$$3 \times 10^{-2}$$
 M and  $4 \times 10^{-13}$  M.

(C.B.S.E. P.M.T. 1999)

35. The strongest conjugate base is

| $(a) \operatorname{NO}_3^-$ | (b) Cl <sup>-</sup>              |
|-----------------------------|----------------------------------|
| $(c) SO_4^{2-}$             | ( <i>d</i> ) CH <sub>3</sub> COO |

### (C.B.S.E. P.M.T. 1999)

36. The solubility of a saturated solution of calcium fluoride is  $2 \times 10^{-4}$  moles per litre. Its solubility product is

| (a) $12 \times 10^{-2}$  | (b) $14 \times 10^{-4}$  |
|--------------------------|--------------------------|
| (c) $22 \times 10^{-11}$ | $(d) 32 \times 10^{-12}$ |
|                          | TODSE DUTI               |

(C.B.S.E. P.M.T. 1999)

**37.** A monoprotic acid in a 0.01 M solution ionises to 0.001%. Its ionization constant is

| (a) $1.0 \times 10^{-3}$ | (b) $1.0 \times 10^{-6}$     |
|--------------------------|------------------------------|
| (c) $1.0 \times 10^{-8}$ | $(d) \ 1.0 \times 10^{-12}.$ |
|                          | (M.P. C.E.E. 1999)           |

38. What is the correct representation for the solubility product of SnS<sub>2</sub>?

| (a) $[\operatorname{Sn}^{2+}] [\operatorname{S}^{2-}]^2$ |  |
|----------------------------------------------------------|--|
| (c) $[Sn^{2+}] [2S^{2-}]^2$                              |  |

(\$) [Sn<sup>4+</sup>] [2 S<sup>2-</sup>]<sup>2</sup>. (M.P. C.S.E. 1999)

 $(b)[Sn^{4+}][S^{2-}]^2$ 

39. The solubility of CaCO<sub>3</sub> in water is  $3.05 \times 10^{-4}$  moles/litre. Its solubility product will be

| $(a) 6 \cdot 1 \times 10^{-4}$ | (b) 9·3                   |
|--------------------------------|---------------------------|
| (c) $3.05 \times 10^{-4}$      | $(d) 9.3 \times 10^{-8}.$ |

(D.C.E.E.E. 1999)

40. pH of water is 7. When a substance Y is dissolved in water, the pH becomes 13. The substance Y is a salt of

| -              |                |                | A              | NS    | WE    | R S   |          |       |       |
|----------------|----------------|----------------|----------------|-------|-------|-------|----------|-------|-------|
| 26. c<br>36. d | 27. a<br>37. d | 28. a<br>38. b | 29. a<br>39. d | 30. c | 31. d | 32. c | 33. b, c | 34. c | 35. d |

- (a) weak acid and weak base
- (b) strong acid and strong base
- (c) strong acid and weak base

(d) weak acid and strong base. (D.C.E.E.E. 1999)

41. The pH 0.1 M solution of the following salts increases in the order

 $(a) \operatorname{NaCl} < \operatorname{NH}_4\operatorname{Cl} < \operatorname{NaCN} < \operatorname{HCl}$ 

(b)  $HCI < NH_4CI < NaCI < NaCN$ 

(c) NaCN <  $NH_4Cl$  < NaCl < HCl

(d) HCl < NaCl < NaCN <  $NH_4Cl$ .

#### (I.I.T. 1999)

42. Which one of the following is true for any diprotic acid, H<sub>2</sub>X ?

(a) 
$$K_{a_2} > K_{a_1}$$
 (b)  $K_{a_1} > K_{a_2}$   
(c)  $K_{a_2} = \frac{1}{K_{a_1}}$  (d)  $K_{a_2} = K_{a_1}$ .

(C,B,S,E, PM,T 2000)

43. The conjugate acid of NH<sub>2</sub><sup>-</sup> is

(a)  $NH_4^+$  (b)  $NH_2OH$ (c)  $NH_3$  (d)  $N_2H_4$ .

(C.B.S.E. P.M.T. 2000)

- 44. Which of the following statements about pH and  $H^+$  ion concentration is incorrect ?
  - (a) A solution of the mixture of one equivalent each of  $CH_3COOH$  and NaOH has a pH of 7
  - (b) pH of pure neutral water is not zero
  - <sup>(c)</sup> A cold and concentrated  $H_2SO_4$  has lower  $H^+$ ion concentration than a dilute solution of  $H_2SO_4$
  - (d) Addition of one drop of concentrated HCl in NH<sub>4</sub>OH solution decreases pH of the solution.

(C.B.S.E. P.M.T. 2000)

45. Which of the following has lowest pH value ? (a) 1 M HCl (b) 1 M NaOH (c) 1 M H<sub>2</sub>SO<sub>4</sub> (d) 1 M C<sub>2</sub>H<sub>5</sub>OH.

#### (A.EM.C. 2000)

- 46. Which solutions are mixed to form a buffer solution ?
  - (a) Strong acid and its salt with strong base
  - (b) Strong acid and its salt with weak base

- (c) Weak acid and its salt with strong base
  - (d) Weak acid and its salt with weak base.

(B, H, U, 2000)

Which solution will be strongly acidic ? (a) When pOH=4.5 (b) When pH=0

(a) When pOH = 4.5 (b) When pH = 0(c) When pOH = 14 (d) Both (b) and (c)

c) When pOH = 14 (d) Both (b) and (c). (C.P.M.T. 2003)

- 48. The pH of an aqueous solution of CH<sub>3</sub>COONa will be
  (a) 7 (b) 3
  - (a) 7 (b) 3 (c) 9 (d) 14. (C.P.M.T. 2000) Which of the following is not to be found
- 49. Which of the following is not a buffer ?

$$(a) H_2 CO_3 / HCO_3^-$$

(b) CH<sub>3</sub>COOH/CH<sub>3</sub>COONa

(c) NH4OH/NH4CI

4

50. For a buffer with equal amounts of the salt and the acid with  $K_a = 10^{-8}$ , the pH is

| (a) 0 | (b) 13             |
|-------|--------------------|
| 078   | $(d) 8 - \log 2.$  |
|       | (Hamana CEET 2000) |

51. Ionisation constant of  $CH_3COOH$  is  $1.7 \times 10^{-5}$ and concentration of H<sup>+</sup> ions is  $3.4 \times 10^{-4}$ . Then initial concentration of  $CH_3COOH$  molecules is

| (a) $3.4 \times 10^{-4}$   | $(b) 3 \cdot 4 \times 10^{-3}$ |
|----------------------------|--------------------------------|
| (c) $6 - 8 \times 10^{-3}$ | $(d) 1.7 \times 10^{-3}$       |

#### (C.B.S.E. RM.T. 2001)

In HS<sup>-</sup>, I<sup>-</sup>, R—NH<sub>2</sub>, NH<sub>3</sub>, order of proton accepting tendency will be

$$(a) I^- > NH_3 > R - NH_2 > HS^-$$

$$(b) \text{ NH}_3 > \text{R---NH}_2 > \text{HS}^- > \text{I}^-$$

(c) 
$$R - NH_2 > NH_3 > HS^- > I^-$$

$$(d) HS^- > R - NH_2 > NH_3 > I^-$$

#### (C.B.S.E. P.M.T. 2001)

53. Hydrogen ion concentration of an aqueous solution is  $1 \times 10^{-4}$  M. The solution is diluted with equal volume of water. Hydroxyl ion concentration of the resultant solution in terms of mol dm<sup>-3</sup> is

(b) 2 × 10-10

(a)  $0.5 \times 10^{-10}$ 

|                |                |                | A     | NS    | WEI          | R S   |       |       |       |
|----------------|----------------|----------------|-------|-------|--------------|-------|-------|-------|-------|
| 40. d<br>50. c | 41. b<br>51. c | 42. b<br>52. c | 43. c | 44. a | <b>45.</b> c | 46. c | 47. d | 48. c | 49. d |

Pradcep's New Course Chemistry (KI)

|     | (c) $1 \times 10^{-6}$                                    | $(d) 1 \times 10^{-8}$                                               | (d) $Na_2S > ZnS > C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (and a source)                                           |
|-----|-----------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|     | TT Coulding and                                           | ( <i>K.C.E.T.</i> 2001)                                              | 64. Which of the followi<br>(a) CH <sub>3</sub> COOK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(b) \operatorname{Na}_2\operatorname{CO}_3$             |
| 94. |                                                           | ced when an aqueous solu-<br>with an equal volume of an              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(d) \operatorname{NaNO}_3$                              |
|     | aqueous solution of pH                                    |                                                                      | (c) NH <sub>4</sub> Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          |
|     | (a) 4·5                                                   | (b) 4.0                                                              | The state for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (C.B.S.E. PM.T. 2002)                                    |
|     | (c) 4·3                                                   | (d) 3.3 (K.C.E.T. 2001)                                              | strong acidic nature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | wing is the buffer solution of ?                         |
| 55. |                                                           | is $4.8$ . What should be the                                        | (a) HCOOH + HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |
|     | ratio of [Acid]/[Salt] of required ?                      | of a buffer if $pH = 5.8$ is                                         | (b) $CH_3COOH + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |
|     | (a) 0·1                                                   | (b) 10                                                               | and the second sec | man strander that fell                                   |
|     | (c) 1                                                     | (d) 2                                                                | (c) H <sub>2</sub> C <sub>2</sub> O <sub>4</sub> + C <sub>2</sub> O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                        |
|     |                                                           | (E.A.M.C.E.T. 2001)                                                  | $(d) H_3 BO_3 + BO_3^{3-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (M.P. P.E.T. 2002)                                       |
| 56. | Which of the followin solution when mixed in              | g would produce a buffer<br>equal volumes ?                          | 63. Water is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |
|     | (a) 1 M CH <sub>3</sub> COOH an                           | d 0.5 M NaOH                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vent (b) protophilic solvent<br>vent (d) aprotic solvent |
|     | (b) 1 M CH <sub>3</sub> COOH an                           | d 0.5 M HCl                                                          | (c) ampnipione sow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (K.C.E.T 2002)                                           |
|     | (c) 1 M NH, OH and 0                                      | -5 M NaOH                                                            | 64. Among the followin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          |
|     | (d) 1 M NH Cl and 0.                                      |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (b) CH <sub>3</sub>                                      |
|     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                     | (E.A.M.C.E.T 2001)                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |
| 57. | The $pH$ of a $0.1 M$ aqu                                 | eous solution of a weak acid                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (d) Cl (M.P. P.M.T. 2002)                                |
|     | (HA) is 3. What is its d                                  | egree of dissociation ?                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $I^- \longrightarrow I_3^-$ , which is the Lewis         |
|     | (a) 1%                                                    | (b) 10%                                                              | base ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1) T=                                                   |
|     | (c) 50%                                                   | ( <i>d</i> ) 25%                                                     | (a) I <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (b) I <sup>-</sup>                                       |
|     |                                                           | (E.A.M.C.E.T. 2001)                                                  | (c) $I_3^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (d) None of these                                        |
| 58. | The pH range of methy $(a) 4.2 \text{ to } 6.3$           | (b) 8.3 and 10.0                                                     | Tioutosa d'HO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Rajasthan P.M.T. 2002)                                  |
|     | (c) 8.0  to  9.6                                          | (d) 6.8  to  8.4                                                     | 66. How do you diffe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | erentiate between Fe <sup>3+</sup> and                   |
|     | (1)001070                                                 | (E.A.M.C.E.T. 2001)                                                  | Cr <sup>3+</sup> in group III ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |
| -   | For a specially soluble                                   |                                                                      | (a) By taking excess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | forta con discriminatoria de ante                        |
| 59. | of its solubility product                                 | salt $A_p B_q$ , the relationship $(L_S)$ with its solubility (S) is |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $H_4^+$ ion concentration                                |
|     | $(a) L_{S} = S^{p+q} \cdot p^{p} \cdot q^{q}$             |                                                                      | (c) By decreasing C<br>(d) Both (b) and (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (A.I.E.E.E. 2002)                                        |
|     | $(b) L_s = S^{p+q} \cdot p^q \cdot q^p$                   | - tun-hestingan .                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MX <sub>2</sub> type electrolyte is                      |
|     | $(c) L_{\rm s} = {\rm S}^{pq} \cdot p^p \cdot q^q$        | < file - full-siter                                                  | <ul> <li>Towerland h Time manufactured at</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $^{-1}$ , then K <sub>10</sub> of the electrolyte is     |
|     | (d) $L_s = S^{pq} (pq)^{p+q}$ .                           | $c_{\rm g} HS = K_{\rm c} + NH_2 S$                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |
|     |                                                           | (I.I.T. 2001)                                                        | (a) $5 \times 10^{-12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |
| 60. | Identify the correct<br>Na <sub>2</sub> S, CuS and ZnS in | order of solubility of aqueous medium                                | (c) $1 \times 10^{-13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (d) $5 \times 10^{-13}$<br>(C.B.S.E. P.M.T. 2002)        |
|     | (a) CuS > ZnS > Na <sub>2</sub>                           | S                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | owing acid-base titration, pH is                         |
|     | (b) ZnS > Na <sub>2</sub> S > Cu                          | S                                                                    | (a) Acetic acid vers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e equivalence point ?<br>us ammonia                      |
|     | (c) $Na_2S > CuS > ZnS$                                   |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |
|     |                                                           | ANS                                                                  | WERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|     | 3. b 54. d 55.                                            | a 56. a 57. a<br>b 66. d 67. d                                       | 58. a 59. a 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0. d 61. b 62. a                                         |

- (b) Acetic acid versus sodium hydroxide
- (c) Hydrochloric acid versus ammonia
- (d) Hydrochloric acid versus sodium hydroxide

#### (A.I.I.M.S. 2003)

- 69. When rain is accompanied by a thunderstorm, the collected rain water will have pH value
  - (a) slightly higher than that when the thunder storm is not there
  - (b) uninfluenced by the thunder storm
  - (c) which depends on the amount of dust in air
  - (d) slightly lower than that of rain water without thunder storm (A.I.E.E. 2003)
- 70. In the hydrolysis of a salt of weak acid and weak base, the hydrolysis constant  $K_h$  is equal to

(a) 
$$K_w/K_b$$
 (b)  $K_w/K_a$   
(c)  $K_w/K_a \cdot K_b$  (d)  $K_a \cdot K_b$ 

(Orissa J.E.E. 2003)

71. The solubility product of AgI at 25°C is  $1.0 \times 10^{-16} \text{ mol}^2 \text{ L}^{-2}$ . The solubility of AgI in  $10^{-4}$  N solution of KI at 25°C is approximately (in mol  $\text{L}^{-1}$ )

| (a) $1.0 \times 10^{-16}$ | (b) $1.0 \times 10^{-12}$ |
|---------------------------|---------------------------|
| (c) $1.0 \times 10^{-10}$ | (d) $1.0 \times 10^{-8}$  |

(C.B.S.E. P.M.T. 2003)

72. Solubility of  $PbI_2$  is 0.0013 M. Then solubility product of  $PbI_2$  is

| (a) $2 \cdot 2 \times 10^{-9}$ | (b) $8.8 \times 10^{-9}$ |
|--------------------------------|--------------------------|
| (c) $6.8 \times 10^{-6}$       | (d) $8.8 \times 10^{-6}$ |

#### (D.P.M.T. 2003)

- 73. A solution which is  $10^{-3}$  M each in  $Mn^{2+}$ ,  $Fe^{2+}$ , Zn<sup>2+</sup> and Hg<sup>2+</sup> is trea ed with  $10^{-16}$  M sulphide ion. If K<sub>sp</sub> of MnS, FeS, ZnS and HgS are  $10^{-15}$ ,  $10^{-23}$ ,  $10^{-20}$  and  $10^{-54}$  respectively, which one will precipitate first ? (a) FeS (b) MgS (c) HgS (d) ZnS (1.17.2003)
- 74. What is the pH of 0.01 M glycine solution ? For glycine

 $K_{a_1} = 4.5 \times 10^{-3}$  and  $K_{a_2} = 1.7 \times 10^{-10}$  at 298 K

(a)  $3 \cdot 0$  (b)  $10 \cdot 0$ 

- (c)  $6 \cdot 1$  (d)  $7 \cdot 2$  (A.L.I.M.S. 2004)
- 75. The rapid change of pH near the stoichiometric point of an acid-base titration is the basis of indicator detection. pH of the solution is related to ratio of concentration of conjugate acid. (HIn) and the base  $[In^-)$  forms of the indicator by the expression

(a) 
$$\log \frac{[In^-]}{[HIn]} = pK_{In} - pH$$
  
(b)  $\log \frac{[HIn^-]}{[In^-]} = pK_{In} - pH$   
(c)  $\log \frac{[HIn]}{[In^-]} = pH - pK_{In}$   
(d)  $\log \frac{[In^-]}{[HIn]} = pH - pK_{In}$ 

#### (C.B.S.E. P.M.T. 2004)

76. A weak acid HX has the dissociation constant  $1 \times 10^{-5}$  M. It forms a salt NaX on reaction with alkali. The degree of hydrolysis of 0.1 M solution of NaX is

a) 
$$0.0001\%$$
(b)  $0.01\%$ c)  $0.1\%$ (d)  $0.15\%$ (J.J.T. 2004)

77. The molar solubility (in mol  $L^{-1}$ ) of a sparingly soluble salt  $MX_4$  is s. The corresponding solubility product is given by  $K_{sp}$ . s is given in terms of  $K_{sp}$  by the relation

| $(a) s = (K_{sp} / 128)^{1/4}$          | $(b) s = (128 \text{ K}_{sp})^{1/4}$ |
|-----------------------------------------|--------------------------------------|
| $(c)  s = (256  \mathrm{K}_{sp})^{1/5}$ | $(d)'s = (K_{sp}/256)^{1/5}$         |

- (A.I.E.E.E. 2004)
- 78. Which one of the following is not an amphoteric substance ?

| (a) HNO <sub>3</sub> | (b) HCO <sub>3</sub> |
|----------------------|----------------------|
| (c) H <sub>2</sub> O | (d) NH <sub>3</sub>  |

#### (Karnataka C.E.T. 2004)

79. The mixture of acetic acid and sodium acetate, the ratio of concentrations of the salt to the acid is increased ten times. Then pH of the solution

| (a) increases by one   | (b) decreases by one   |
|------------------------|------------------------|
| (c) decreases ten fold | (d) increases ten fold |

#### (Karnetaka C.E.T. 2004)

80. Select the  $pK_a$  value of the strongest acid from the following: (a)  $1 \cdot 0$  (b)  $3 \cdot 0$ 

ANSWERS

6

68. b 69. d 70. c 71. b 72. b 73. c 74. c 75. d 76. b 77. d 78. a 79. a

| 8/86 |                                                                                     |                                                                    | Prac | leep's New Cou                                                                                                             | urse Chemistry (XI)                                                                                                                       |
|------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|      | The $pK_a$ of acetic acid is<br>of CH <sub>3</sub> COOH is 0.01 M<br>is<br>(a) 3.37 |                                                                    | 84.  | (a) 1<br>(c) 8<br>(e) 13<br>The principal buffer<br>(a) $NaH_2PO_4 + NaH_2$<br>(b) $H_3PO_4 + NaH_2$<br>(c) $CH_3COOH + C$ | PO <sub>4</sub>                                                                                                                           |
| 82.  |                                                                                     | 0 ml of 0 · 2 M NaOH are                                           | 85.  |                                                                                                                            | $\frac{(Keraln P.M.T. 2004)}{(Keraln P.M.T. 2004)}$ tion of NH <sub>4</sub> OH in water is<br>rdrolysis constant of NH <sub>4</sub> Cl is |
| Visi | 0.365 g of HCl gas was pa<br>0.2 M NaOH solution. '<br>solution would be            | ssed through $100 \text{ cm}^3$ of The <i>p</i> H of the resulting |      | (a) $1.8 \times 10^{-5}$<br>(c) $5.55 \times 10^{-5}$                                                                      | (b) $1.8 \times 10^{-10}$<br>(c) $5.55 \times 10^{-10}$<br>(Bihar C.E. C.E. 2004)                                                         |

# HINTS/EXPLANATIONS to Multiple Choice Questions

3. At half-equivalence point,

 $pH = pK_a$ .

- 4. See solved example on page 8/26.
- 5.  $K_{w} = [H^+] [OH^-] = (10^{-6}) (10^{-6}) = 10^{-12}$
- 6. 0.001 M KOH means  $[OH^{-}] = 10^{-3}$ .

Hence  $[H_1O^+] = 10^{-11}$  : pH = 11.

- The solubility increases down the group due to increase in size of the ion and decrease in lattice energy. Lower the solubility, lower is the K<sub>sp</sub>.
- 9. (a) pH = 7.

(b) M/10 HCt left unneutralized = 10 ml of M/10Total volume = 100 ml.

 $\therefore \quad 10 \times \frac{M}{10} = 100 \times ? M$ 

: 
$$[HCl] = \frac{1}{100} = 10^{-2} \text{ M. } p\text{H} = 2$$

(c) solution is basic, pH will be > 7.

(d) 75 ml M/5 HCl = 15 millimoles, 25 ml of M/5 NaOH = 5 millimoles. HCl left unneutralised = 10 millimoles. Volume = 100 ml.

: 
$$[HCl] = \frac{10}{100} = 0.1 \text{ M}$$

81. a

$$pH = -\log(0 \cdot 1) = 1.$$

 On dilution of a weak acid solution, percentage ionisation increases.

- 11. See solved example on page 8/26.
- 12. In (b), ionic product =  $|Ca^+| [F^-]^2$

= 
$$1.25 \times 10^{-9}$$
 which is greater than  $K_{sp}$ 

13.  $pH = pK_a + \log \frac{[Sait]}{[Acid]}$ 

 $= -\log 10^{-8} + \log 1 = 8.$ 

- Ag<sup>+</sup> ion is a Lewis acid. CH<sub>4</sub> is neither Lewis acid nor Lewis base.
- 15. Weak base has a strong conjugate acid.  $NO_3^-$  has the strongest conjugate acid HNO<sub>3</sub>.
- 16.  $H_2S$  = weak acid,  $H_2SO_4$  = strong acid, NaCl = neutral,  $NaNO_2$  = basic. Hence  $[H_3O^+]$  will be in the order :  $NaNO_2 < NaCl < H_2S < H_2SO_4$ .
- MnS + 2 HCl → MnCl<sub>2</sub> + H<sub>2</sub>S. As H<sub>2</sub>S is a weak electrolyte, it ionises very less. Hence concentration of S<sup>2−</sup> ions is lowered.

**18.** 
$$pH = pK_a + \log \frac{|Salt|}{|Acid|}$$
  
= 9.30 +  $\log \frac{5 \cdot 0}{5 \cdot 0} = 9.30$ 

80. a

82. c 83. e

84. e 85. d

WER

20. NaCN is a salt of weak acid (HCN) and strong base (NaOH).

$$h = \sqrt{\frac{K_w}{K_a c}} = \sqrt{\frac{10^{-14}}{(1 \cdot 3 \times 10^{-9}) \times 1 / 80}}$$

... %age hydrolysis

$$= (2.48 \times 10^{-2}) \times 100 = 2.48.$$

22. If x is the solubility of AgCl in 0.04 m CaCl<sub>2</sub>, then

$$[Ag^+] = x \mod L^{-1},$$
  

$$[Cl^-] = (0.04 \times 2) + x \approx 0.08 n$$
  

$$\therefore x (0.08) = 4 \times 10^{-10}$$

or  $x = 5.0 \times 10^{-9} m$ 

23.  $pH = pK_a + \log \frac{[CH_3COONa]}{[CH_3COOH]}$ 

$$5.5 = 4.5 + \log \frac{100000}{0.1}$$

$$= 4.5 + \log [CH_2COONa] + 1$$

or  $\log [CH_3COONa] = 0$ 

$$[CH_3COONa] = 1 m$$

- Due to highest electron density on N in NH<sup>2-</sup>, it can accept protons most easily and hence is the strongest base.
- 25. Sulphides of Group II (PbS) have low solubility product.
- 26. 50 ml of 0.4 N HCl =  $\frac{0.4}{1000} \times 50 = 0.02$  g eq.

50 ml of 0.2 N NaOH =  $\frac{0.2}{1000} \times 50 = 0.01$  g eq.

0.01 g eq. of NaOH will neutralise 0.01 g eq. of HCI

:. HCl left unneutralised = 0.01 g eq. Volume of solution = 50 + 50 = 100 ml

: 
$$[HCl] = \frac{0.01}{100} \times 1000 \text{ N} = 0.1 \text{ N}$$

or 
$$[H^+] = 0.1 \text{ M}$$
  
 $\therefore \quad nH = \log(0.1) = 1.0$ 

7. 
$$pH = pK_a + \log \frac{[Salt]}{[Acid]}$$

$$= pK_a + \log \frac{1}{10} = pK_a - 1$$

28. 
$$pK_w = pH + pOH$$
.

2'

As 
$$[H^+] = [OH^-],$$
  
 $pK_w = 2 \times pH$   
or  $pH = 13.36 / 2 = 6.68$ 

29. 
$$s (CuS) = \sqrt{K_{sp}} = \sqrt{10^{-31}} = 10^{-15 \cdot 5}$$
,  
 $Ag_2S \longrightarrow 2 Ag^+ + S^{2-}$ ,  
 $K_{sp} = (2 s)^2 \times s = 4 s^3$   
or  $s = \left(\frac{1}{4} K_{sp}\right)^{1/3}$   
 $= \left(\frac{10^{-44}}{4}\right)^{1/3} = (2 \cdot 5)^{1/3} \times 10^{-15}$ ,  
 $s (HgS) = \sqrt{K_{sp}} = \sqrt{10^{-54}} = 10^{-27}$ 

**30.** The dissociation constants of a weak acid and its conjugate base are related as

$$pK_a + pK_b = pK_w$$
  
 $\therefore pK_a + 10.83 = 14$   
or  $pK_a = 3.17$   
 $-\log K_a = 3.17$   
or  $\log K_a = -3.17 = \overline{4.83}$   
or  $K_a = 6.76 \times 10^{-4}$ .

31. 
$$A_2X_3 \rightarrow 2A^{3+} + 3X^{-2}$$

$$K_{sp} = (2y)^2 \times (3y)^3 = 108y^5.$$

32. 
$$HCO_3^-$$
 can accept a proton as well as give a proton

34. HA 
$$\rightleftharpoons$$
 H<sup>+</sup> + A<sup>-</sup>  
c  
 $c(1-\alpha)$   $c\alpha$   $c\alpha_{1}$   
 $\therefore$  [H<sup>+</sup>] = C $\alpha$  = 0.1 × 0.02 = 2 × 10<sup>-2</sup>  
Hence [OH<sup>-</sup>] =  $\frac{10^{-14}}{2 \times 10^{-3}}$  = 5 × 10<sup>-12</sup>

 Strong conjugate base has a weak conjugate acid. Weakest conjugate acid is CH<sub>3</sub>COOH.

36. 
$$CaF_7 \rightarrow Ca^{2+} + 2F^-$$
,

$$K_{sp} = s (2 s)^{2}$$
  
= 4 s<sup>3</sup> = 4 × (2 × 10<sup>-4</sup>)<sup>3</sup>  
= 32 × 10<sup>-12</sup>  
37. HA → H<sup>+</sup> + A<sup>-</sup>  
c  
c (1-α) c α c α  
K =  $\frac{c α × c α}{c (1-α)} ~ c α^{2}$   
c = 10<sup>-2</sup> M,  
a =  $\frac{0.001}{100}$  = 10<sup>-5</sup>,  
∴ K = 10<sup>-2</sup> × (10<sup>-5</sup>)<sup>2</sup> = 10<sup>-1</sup>

### Predcep's New Course Chemistry

- 40. pH = 13 means the solution is basic.
- 41. NaCl = neutral (pH = 7); NH<sub>4</sub>Cl = Slightly acidic (pH < 7); NaCN = basic (pH > 7); HCl = strongly acidic (pH < < 7).
  - :. Order will be HCl <  $NH_4Cl$  < NaCl < NaCN.
- 42. For diprotic acid  $K_{a_2} < K_{a_1}$ .
- 43.  $NH_2^- + H^+ = NH_3$ .
- 44. pH = 7 at the end point is only for strong acid with strong base.
- 45. Higher the  $[H^+]$ , lower is the pH.

1 M H<sub>2</sub>SO<sub>4</sub> has highest [H<sup>+</sup>].

- 47.  $p_{OH} = 14$  means pH = 0. Less the pH, more acidic is the solution.
- 48. As the solution is basic (not very strongly basic), pH= 9.
- 50. See Q. 13.

51. CH<sub>2</sub>COOH  $\implies$  CH<sub>2</sub>COO<sup>-</sup> + H<sup>+</sup>

Initial

At. eqm.  $(a-3.4 \times 10^{-4})$   $3.4 \times 10^{-4}$   $3.4 \times 10^{-4}$   $\frac{(3.4 \times 10^{-4})(3.4 \times 10^{-4})}{(a-3.4 \times 10^{-4})} = 1.7 \times 10^{-5} (Given)$ or  $(a-3.4 \times 10^{-4}) = \frac{(3.4 \times 10^{-4})^2}{1.7 \times 10^{-5}}$  $= 6.8 \times 10^{-3}$ 

or 
$$a = 6.8 \times 10^{-3} + 3.4 \times 10^{-4} = 6.8 \times 10^{-3}$$

- In R—NH<sub>2</sub>, electron pair on N is most easily available for protonation because R is electron releasing group.
- 53. After dilution,  $[H^+] = 10^{-4} / 2$ .

Hence 
$$[OH^-] = \frac{10^{-14}}{[H^+]}$$
  
=  $\frac{10^{-14} \times 2}{10^{-4}} = 2 \times 10^{-10} \text{ M}$ 

54. In the final solution,

$$[H^{+}] = (10^{-6} + 10^{-3}) / 2$$
  
=  $\frac{10^{-3}(10^{-3} + 1)}{2} = \frac{1 \cdot 001 \times 10^{-3}}{2}$   
=  $0 \cdot 5005 \times 10^{-3} = 5 \cdot 005 \times 10^{-4}$   
 $pH = -\log [H^{+}] = -\log (5 \cdot 005 \times 10^{-4})$   
=  $4 - 0 \cdot 6994 = 3 \cdot 3$   
S5.  $pH = pK_{g} + \log \frac{[Salt]}{[Acid]}$   
or  $\log \frac{[Salt]}{[Acid]} = 5 \cdot 8 - 4 \cdot 8 = 1 \cdot 0$ 

- $\therefore [Salt]/[Acid] = 10$
- or [Acid]/[Salt] = 1/10 = 0.1
- 56. Vc.c. of 0.5 M NaOH will neutralise V/2 c.c. of 1 M CH<sub>3</sub>COOH to form sodium acetate. V/2 c.c. of 1 M acetic acid will be present alongwith sodium acetate.

-3 ( $\because pH = 3$ )

57. HA  $\implies$  H<sup>+</sup> + A<sup>-</sup>,

$$[\mathrm{H}^+] = c \ \alpha = 10$$

 $i.e.\ 0.1 \times \alpha = 10^{-3}$ 

or 
$$\alpha = 10^{-2} = 1\%$$
  
59.  $A_p B_a = p A^+ + q B^-$ 

$$S pS qS$$

$$K_{sp} i.e. L_s = (pS)^p (qS)^q = S^{p+q} p^p q^q$$

- 60. Sulphides of alkali metals are soluble in water. Sulphides of group II have lower solubility than those of group IV radicals.
- 61. NH<sub>4</sub>Cl solution is acidic, its pH < 7. NaNO<sub>3</sub> solution is neutral, its pH = 7. CH<sub>3</sub>COOK and Na<sub>2</sub>CO<sub>3</sub> solutions are basic, their pH > 7. But Na<sub>2</sub>CO<sub>3</sub> solution is more basic, its pH > pH of CH<sub>3</sub>COOK solution.
- 62. Out of the given acids, HCOOH is the strongest.
- 63. Water is an amphiprotic solvent as it can accept protons as well as given protons.
- 64. Cl<sup>-</sup> is the weakest base because it has the strongest conjugate acid viz. HCl.
- 65. In the reaction  $I_2 + I^- \longrightarrow I_3^-$ ,  $I^-$  is the electron pair donor and hence is a Lewis base.
- 66. In group III of analysis, addition of  $NH_4Cl$  increases  $NH_4^+$  ion concentration and decreases  $OH^-$  ion concentration produced from  $NH_4OH$  due to common ion effect.

67. 
$$MX_{2} \implies M^{2+} + 2X^{-}$$
s
$$K_{sp} = (s) (2 s)^{2} = 4 s^{3}$$

$$= 4 \times (0.5 \times 10^{-4})^{3}$$

$$= 5 \times 10^{-13}.$$

- 68. pH > 8 at the equivalence point means that the salt formed on hydrolysis should give basic solution *i.e.* when acetic acid reacts with NaOH.
- Due to thunder storm, temperature increases *i.e.* [H<sup>+</sup>] increases which means pH decreases.
- 70. For salts of weak acid and weak base,

k

$$K_h = K_w / K_a K_b$$
.

71. 
$$\operatorname{Iotal}[1^{-}] = 10^{-4} + 10^{-6} - 10^{-4} M$$
  
 $[\operatorname{Ag}^{+}][1^{-}] = K_{sp}$   
 $\therefore [\operatorname{Ag}^{+}][10^{-4}] = 1 \cdot 0 \times 10^{-16}$   
or  $[\operatorname{Ag}^{+}] = 10^{-12}$ .  
72.  $\operatorname{PbI}_{2} \longrightarrow \operatorname{Pb}^{2+} + 21^{-12}$ .  
 $\therefore [\operatorname{Pb}^{2+}] = 1 \cdot 3 \times 10^{-3} M$   
 $[1^{-}] = 2 \times 1 \cdot 3 \times 10^{-3} M = 2 \cdot 6 \times 10^{-3} M$   
 $K_{sp} = [\operatorname{Pb}^{2+}][1^{-}]^{2}$   
 $= (1 \cdot 3 \times 10^{-3}) (2 \cdot 6 \times 10^{-3})^{2}$   
 $= 8 \cdot 8 \times 10^{-9}$ .

- 73. The one with lowest value of K<sub>sp</sub> i.e. HgS will precipitate out first.
- 74. Glycine  $H_3N^+CH_2COO^-$  is more acidic than basic. Instead of K<sub>b</sub> value, the second given K<sub>a</sub> value is corresponding to the K<sub>b</sub> value (::  $K_a \times K_b = 10^{-14}$ ). Hence overall ionization constant,

4 5 40

$$K_{a_{1}} \times K_{a_{2}} = 4.5 \times 10^{-10}$$

$$\times 1.7 \times 10^{-10} = 7.65 \times 10^{-13}$$

$$H^{+} = \sqrt{KC} = \sqrt{7.65 \times 10^{-13} \times 0.01}$$

$$= \sqrt{0.765 \times 10^{-14}} = 0.87 \times 10^{-7} M$$

$$pH = -\log (0.87 \times 10^{-7}) = 7 - 0.93 = 6.07$$

$$PH = pK_{a} + \log \frac{[\text{Conjugate base}]}{[\text{Acid]}} \text{ (see page 8/51)}$$

[Acid]

$$\therefore p\mathbf{H} - p\mathbf{K}_{\mathbf{In}} = \log \frac{[\mathbf{In}^{-}]}{[\mathbf{H} \mathbf{In}]}$$

VVV

76. Hydrolysis reaction is  $X^- + H_2O$ HX + OH<sup>-</sup> For a salt of weak acid with strong base,

$$K_b = \frac{K_w}{K_a} = c\alpha^2$$

$$\frac{10^{-14}}{10^{-5}} = 0.1 \times a^2 \text{ or } a^2 = 10^{-8} \text{ or } a = 10^{-4}$$

% hydrolysis = 
$$10^{-4} \times 100 = 10^{-2} = 0.01$$
  
77.  $MX_4(s) \implies M^{4+}(aq) + 4X^{-}(aq)$   
 $s \qquad 4s$   
 $K_{sp} = s \times (4s)^4 = 256 s^5 \text{ or } s = (K_{sp}/256)^{1/5}$ 

79. Ist case.  $pH = pK_a + \log \frac{[Salt]}{[Acid]} = pK_a + \log \frac{a}{b}$ **2nd case.**  $pH = pK_a + \log \frac{10 a}{b}$ 

$$= pK_a + \log\frac{a}{b} + \log 10 = pK_a + \log\frac{a}{b} + 1$$

80. Higher the  $K_a$  value or lower the  $pK_a$  value, stronger is the acid.

H. CH<sub>3</sub>COOH 
$$\rightleftharpoons$$
 CH<sub>3</sub>CrO<sup>-</sup> + H<sup>+</sup>  
c 0 0  
 $c - c \alpha$   $c \alpha$   $c \alpha$   
K<sub>a</sub> =  $\frac{c \alpha \cdot c \alpha}{c (1 - \alpha)} = \frac{c \alpha^2}{1 - \alpha} = c \alpha^2, \alpha = \sqrt{K_a/c}$   
[H<sup>+</sup>] =  $c \alpha = c \sqrt{K_a/c} = \sqrt{K_a \cdot c}$   
pH - log [H<sup>+</sup>] =  $-\log (K_a c)^{1/2}$   
=  $\frac{1}{2} [-\log K_a - \log c]$   
=  $\frac{1}{2} [pK_a - \log c] = \frac{1}{2} [4 \cdot 74 - \log 10^{-2}]$   
=  $\frac{1}{2} \propto 6 \cdot 74 = 3 \cdot 37$ 

82. 50 ml of 0.1 MHCl = 50 × 0.1 millimoles = 5 millimoles.  $50 \text{ ml of } 0.2 \text{ NaOH} = 50 \times 0.2 \text{ millimoles}$ = 10 millimoles Millimoles of NaOH left after neutralization = 5. Volume of solution = 100 ml.

... Molar conc. of NaOH = 
$$\frac{5}{100} = 5 \times 10^{-2}$$
 M  
 $pOH = -\log(5 \times 10^{-2})$   
 $= \log \frac{1}{5 \times 10^{-2}} = \log 20 = 1.301$   
 $pH = 14 - 1.301 = 12.699 = 12.70$ 

83.  $0.365 \text{ g HCl} = \frac{0.365}{36.5} \text{ mole} = 0.01 \text{ mole}$ 

 $100 \text{ cm}^3 \text{ of } 0.2 \text{ M NaOH} = \frac{0.2}{1000} \times 100 = 0.02 \text{ mole}$ NaOH left unneutralized = 0.01 mole Volume of solution = 100 ml ... Molarity of NaOH in the solution

$$= \frac{0.01}{100} \times 1000 = 0.1 \text{ M} = 10^{-1} \text{ M}$$
$$[\text{H}^+] = \frac{10^{-14}}{10^{-1} \text{ M}} = 10^{-13} \text{ M}$$
$$p\text{H} = 13$$

85. 
$$K_h = \frac{K_w}{K_b} = \frac{10^{-14}}{1 \cdot 8 \times 10^{-5}}$$
  
= 5 \cdot 55 \times 10^{-10}

ADDITIONAL QUESTIONS

For All Competitive Examinations

# Assertion-Reason Type Questions

The following questions consist of two statements, printed as Assertion and Reason. While answering these questions, you are required to choose any one of the following four responses.

- (a) If both Assertion and Reason are true and the Reason is the correct explanation of the Assertion.
- (b) If both Assertion and Reason are true but reason is not a correct explanation of the 'Assertion'.
- (c) If Assertion is true but Reason is false.
- (d) If Assertion is false but Reason is true.
- (e) If both Assertion and Reason are false.

### Assertion

### Reason

| 112 | 1.  | Water is specially effective in screening the elec-<br>trostatic interactions between the dissolved ions.                                         | The force of ionic interaction depends upon the dielectric constant of the solvent.                                |
|-----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|     | 2.  | The degree of ionization of water is small at $25^{\circ}$ C, only about one of every $10^{7}$ molecules in pure water is ionized at any instant. | In pure water at 25°C the molar concentration of water<br>is essentially constant.                                 |
|     | 3.  | The $pK_a$ of a weak acid becomes equal to $pH$ of the solution at the mid-point of its titration.                                                | The molar concentrations of proton acceptor and proton<br>donor become equal at mid point of a weak acid.          |
|     | 4.  | pH of HCl solution is less than that of acetic acid of the same concentration.                                                                    | In equimolar solutions, the number of titrable protons<br>present in HCl is less than that present in acetic acid. |
|     | 5.  | Acetic acid is a weak acid.                                                                                                                       | It has a weak conjugate base.                                                                                      |
|     | 6.  | pH value of HCN solution decreases when NaCN is added to it.                                                                                      | NaCN provides a common ion CN <sup></sup> to HCN.                                                                  |
|     | 7.  | pH of water increases with increase in tempera-<br>ture.                                                                                          | $K_{w}$ of water increases with increase in temperature.                                                           |
|     | 8.  | When a small amount of strong acid is added to<br>a buffer solution, its <i>pH</i> value does not change<br>significantly.                        | Buffer action of the buffer solution resists the change in $pH$ when some acid is added to it.                     |
|     | 9.  | A buffer solutions has a capacity to resist the change in $pH$ value on addition of a small amount of acid or base to it.                         | An aqueous solution of ammonium acetate can act as buffer.                                                         |
|     | 10. | Sb (III) is not precipitated as sulphide when in its alkaline solution, $H_2S$ is passed.                                                         | The concentration of $S^{2-}$ ion in alkaline medium is inadequate for precipitation. (A.I.I.M.S. 2004)            |
|     | 11. | Addition of silver ions to a mixture of aqueous sodium chloride and sodium bromide solution will first precipitate AgBr rather than AgCl.         | $K_{sp}$ of AgCl < $K_{sp}$ of AgBr. (A.I.I.M.S. 2004)                                                             |

# True/False Statements

Which of the following statements are false ? Rewrite them correctly.

- 1. The degree of ionization of a salt is directly proportional to its molar concentration
- 2. A Lewis base is a substance which can donate a pair of electrons.
- 3. CO<sub>2</sub> is a Lewis base.
- 4. The ionic product of water changes if a few drops of acid or base are added to it.
- 1. A compound whose aqueous solution or melt conducts electricity is called ......
- 2. The degree of dissociation of a salt is ..... proportional to ......
- 3. According to Bronsted-Lowry concept, an acid is a substance which can ..... whereas a base is a substance which can ......

- 5. A solution with pH less than zero or greater than 14 cannot be prepared.
- 6. More acidic is the solution, greater is its pH.
- 7. The pH of 10<sup>-8</sup> M HCl solution is 8.
- 8. Ionic product of water is always equal to  $10^{-14}$ .
- Phenolphthalein is not a suitale indicator for titration of HCl solution with Na<sub>2</sub>CO<sub>3</sub> solution.
- 10. The solubility of PbI<sub>2</sub> in water decreases if KI is added to it.

# Fill In The Blanks

- 4. A strong acid has a weak ..... base.
  - 5. The sum of pH and ..... is equal to 14.
  - 6. The lower the pH, more ..... is the solution.
- Solubility product is the product of the concentration of ions in a ..... solution.
- In the reaction I<sup>-</sup> + I<sub>2</sub> → I<sub>3</sub><sup>-</sup>, the Lewis acid is
   (*I.I.T. 1997*; A.I.I.M.S. 1997)

# Matching Type Questions

| Column A                                             | Column B                  |
|------------------------------------------------------|---------------------------|
| (a) Titration of acetic acid with NaOH solution      | (a) No suitable indicator |
| (b) Titration of $Na_2CO_3$ solution with HCl        | (b) Phenolphthalein       |
| (c) Titration of NH <sub>4</sub> OH with acetic acid | (c) Methyl orange         |
| 2. Match the entries of column A with appropriate    | entries of columns B.     |
| Column A                                             | Column B                  |
| a) Copper sulphate solution                          | (a) pH > 7                |
| (b) Sodium acetate solution                          | (b) pH < 7                |
| c) Potassium nitrate solution                        | (c) pH = 0                |

# ANSWERS

# ASSERTION-REASON TYPE QUESTIONS

1. (a) 2. (b) 3. (a) 4. (c) 5. (c) 6. (d) 7. (d) 8. (a) 9. (b) 10. (c) 11. (c). TRUE/FALSE STATEMENTS

1, 3, 4, 6, 7, 8. FILL IN THE BLANKS

1. an electrolyte 2. inversely, square root of molar concentration 3. donate a proton, accept a proton 4. conjugate 5. pOH 6. acidic 7. saturated. 8.  $I_2$ 

# MATCHING TYPE QUESTIONS

1. (a) - (b), (b) - (c), (c) - (a) 2. (a) - (b), (b) - (a), (c) - (c).

# HINTS/EXPLANATIONS to Assertion-Reason Type Questions

- 2. Degree of ionization of  $H_2O$  is small because  $H_2O$  is a very weak electrolyte.
- 3.  $pH = pK_a + \log \frac{[Salt]}{[Acid]}$ .
- At mid point [Salt] = [Acid]. 4. Number of titratable protons in HCl is greater than
- present in acetic acid.
- 5. Weak acid has a strong conjugate base.
- HCN → H<sup>+</sup> + CN<sup>-</sup>. NaCN gives common CN<sup>-</sup> ions. Equilibrium shifts backward, [H<sup>+</sup>] decreases so that pH increases.

- 7. pH of water decreases with increase in temperature.
- 10. Sb (III) is precipitated (in Group IIB) by  $H_2S$  in
  - acidic medium (dil. HCl). In acidic medium,  $S^{2-}$  concentration decreases so that radicals of Group IV are not precipitated. In alkaline medium,  $S^{2-}$  ion concentration increases and not decreases.
- K<sub>sp</sub> of AgCl > K<sub>sp</sub> of AgBr. For precipitation to occur, ionic product should exceed solubility product.

# Not bound any former to the