
Chemical Bonding

- (c) Ionization potential (d) Electron affinity
- Two elements *X* and *Y* have following electronic 2. configurations $X = 1s^2, 2s^2 2p^6, 3s^2 3p^6, 4s^2$ and $Y = 1s^2$, $2s^2 2p^6$, $3s^2 3p^5$. The expected compound formed by combination of X and Y is [BHU 1990] (a) XY_2 (b) $X_5 Y_2$ (c) X_2Y_5 (d) XY_5
- Electricity do not pass through ionic compounds 3. (a) In solution (b) In solid state (d) None of these (c) In melted state
- 4. From the following which compound on heating readily sublimes
 - (a) NaCl (b) $MgCl_2$
 - (c) $BaCl_2$ (d) $AlCl_3$
- Which one in the following contains ionic as well 5. as covalent bond [IIT 1979; CPMT 1983; DPMT 1983] (a) *CH*₄ (b) H_{2}
 - (c) *KCN* (d) *KCl*
- The solution of sugar in water contains 6. [NCERT 1972; MP PET 2000]

(a) Free atoms

- (b) Free molecules
- (c) Free ions
- (d) Free atoms and free molecules
- In which of the following reactions, there is no 7. change in the valency [NCERT 1974; CPMT 1971, 78] (a) $4KClO_3 \rightarrow 3KClO_4 + KCl$
 - (b) $SO_2 + 2H_2S \rightarrow 2H_2O + 3S$
 - (c) $BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$
 - (d) $2BaO + O_2 \rightarrow 2BaO_2$
- The octet rule is not followed in 8. [BHU 1981] (a) *F*₂ (b) *NaF*
 - (d) BF_3 (c) *CaF*₂
- 9. Sodium chloride is an ionic compound whereas hydrogen chloride is a gas because [KCET 2002] (a) Sodium is reactive
 - (b) Covalent bond is weaker than ionic bond
 - (c) Hydrogen chloride is a gas

	(d) Covalent bond is stronger than ionic bond	
10.	Which one of the following molecules has a	

- Which one of the following molecules has a coordinate bond [CPMT 1988, 94] (a) $NH_{4}Cl$ (b) $AlCl_3$
- 11. [RPMT 2002] (a) BH_{1}^{\bigcirc} (b) CO_{2}^{-2}
 - (d) NH_4^{\oplus} (c) $H_2 O^+$
- The dipole moment of chlorobenzene is 1.73 D. 12. The dipole moment of *p*-dichlorobenzene is expected to be

[CPMT 1991]

(a) 3.46 D	(b) 0.00 D
(c) 1.73 D	(d) 1.00 D

Polarization of electrons in acrolein may be 13. written as

[IIT 1988]

(a)
$$\overset{\delta^-}{C}H_2 = CH - \overset{\delta^+}{C}H = O$$
 (b) $\overset{\delta^-}{C}H_2 = CH - CH = \overset{\delta^+}{O}$

c)
$$CH_2 = CH - CH = O$$
 (d) $CH_2 = CH - CH = O$

The order of dipole moments of the following 14. molecules is

[Roorkee 2000]

(a) $CHCl_3 > CH_2Cl_2 > CH_3Cl > CCl_4$ (b) $CH_2Cl_2 > CH_3Cl > CHCl_3 > CCl_4$ (c) $CH_3Cl > CH_2Cl_2 > CHCl_3 > CCl_4$

(

- (d) $CH_2Cl_2 > CHCl_3 > CH_3Cl > CCl_4$
- The electronegativity of C, H, O, N and S are 2.5, 15. 2.1, 3.5, 3.0 and 2.5 respectively. Which of the following bond is most polar
 - (a) O-H(b) *S* – *H* (c) N-H(d) C - H
- 16. Which of the following bond has the most polar character
 - [DPMT 1982; CBSE PMT 1992; CPMT 1999]
 - (b) C Br(a) C - O
 - (c) C S(d) C - F
- The geometry of H_2S and its dipole moment are[IIT 1999] 17.
 - (a) Angular and non-zero (b) Angular and zero
 - (c) Linear and non-zero (d) Linear and zero

- (c) NaCl (d) *Cl*₂

ET Self Evaluation Test - 3

Co-ordinate bond is absent in

150 Chemical Bonding

18.	•	π bonds are there in the		(a) Planar triangle	(b) Pyramidal
	molecule of tetracyand			(c) Tetrahedral	(d) Square planar
	$N \equiv C$ $N \equiv C$ $C \equiv N$ $C \equiv N$	I I	26.	Which of the following bond energy	g halogens has the highest [CPMT 1988]
	[NCERT 1980; MP I	PMT 1986, 95;Orissa JEE 1997]		(a) <i>F</i> ₂	(b) <i>Cl</i> ₂
	(a) Nine σ and nine π	(b) Five σ and nine π		(c) <i>Br</i> ₂	(d) I ₂
	(c) Nine σ and seven	π (d) Five σ and eight π	27.	What bond order does	0 ²⁻ have [Pb. PMT 2001]
19.	The shape of H_3O^+ ion is[EAMCET 1993; CPMT			(a) 3	(b) 2
	2001]			(c) 1	(d) 1/2
	(a) Linear	(b) Angular	28.	In the process, $O_2^+ \rightarrow O_2^+$	$D_2^{+2} + e$ the electron lost is
	(c) Trigonal planar	(m)		from	2
20.	DPMT 1990]	sulphur dioxide is[IIT 1986;			[Orissa JEE 2002]
	(a) <i>sp</i>	(b) sp^{3}		(a) Bonding π -orbital	(b) Antibonding π -orbital
	(c) sp^2	(d) dsp^2		(c) $2p_z$ orbital	(d) $2p_x$ orbital
21.	The number and type of bonds between two carbon atoms in CaC_2 are		29.	The maximum number by a water molecule in IIT 1996]	of hydrogen bonds formed ice is
			L	[IIT 1996] [MP PET 1993; AFMC 2002;UPSEAT 1999, 2001, 02]	
	(a) One sigma (σ) and	-		(a) 4	(b) 3
	(b) One sigma (σ) and	-		(c) 2	(d) 1
	-	one and a half pi (π) bonds	30.	Hydrogen bonding is no	
	(d) One sigma (σ) bon				MS 1998; MP PET/PMT 1998]
22.	Which of the following resonating structures of N_2O is the most contributing [Roorkee Qualifying 19]		0.001	(a) Glycerine (b) Water	
	-	-	990]	(c) Hydrogen sulphide	
	(a) $N \equiv N - O$ (c) $N = N - O$	(b) $N - N \equiv O$ (d) $N - N = O$		(d) Hydrogen fluoride	
23.		tomic orbitals of nitrogen in	31.) ₆] are
_0.	NO_2^+ , NO_3^- , and NH_4^+ a	-		IIT.Scratting 2000]	
	(a) sp , sp^3 and sp^2 respectively			(b) All covalent	
				(c) Ionic and covalent	
	(b) sp , sp^2 and sp^3 respectively			(d) Ionic, covalent and	coordinate covalent
	(c) sp^2 , sp and sp^3 res	spectively	32.		wing ionic, covalent and
	(d) sp^2 , sp^3 and sp respectively			coordinate bonds are pr	resent
24.	The molecule having one unpaired electron is			(a) Water	
		[IIT 1985; MP PMT 1989]		(b) Ammonia	
	(a) <i>NO</i>	(b) <i>CO</i>		(c) Sodium cyanide(d) Potaccium bromido	
	(c) <i>CN</i> ⁻	(d) O_2		(d) Potassium bromide	
25.		, according to valence shell			
	electron pair repulsior	n (VSEPR) theory will be			
		[KCET 1996; MP PET 1997]			

C Answers and Solutions

- (b) If the two elements have similar electronegativities, the bond between them will be covalent, while a large difference in electronegativities leads to an ionic bond.
- (a) From electronic configuration valencies of X and Y are + 2 and -1 respectively so formula of compound is XY₂.
- (b) Ionic compounds can't pass electricity in solid state because they don't have mobile ion in solid state.
- **4.** (d) $AlCl_3$ sublimes readily on heating.
- 5. (c) Structure of *KCN* is $[K^+(C^- \equiv N)]$.
- **6.** (b) Sugar is an organic compound which is covalently bonded so in water it remains as free molecules.
- 7. (c) In the reaction $BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O$ valency is not changing.
- **8.** (d) BF_3 does not have octet, it has only six electrons so it is electron deficient compound.
- **9.** (b) *NaCl* is a ionic compound because it consists of more elelctronegativity difference compare to *HCl*.
- **10.** (a) NH_4Cl has a coordinate bond besides covalent

and ionic bonds
$$\begin{bmatrix} H \\ H \\ H \\ H \\ H \end{bmatrix} C U$$

- 11. (b) $\overline{O} C = O$ has covalent bonds only.
- **12.** (b) Due to symmetry dipole moment of *p*-dichloro benzene is zero.
- **13.** (d)
- 14. (d) CCl_4 has zero dipole moment because of symmetric tetrahedral structure. CH_3Cl has slightly higher dipole moment which is equal to 1.86*D*. Now CH_3Cl has less electronegativity then CH_2Cl_2 . But CH_2Cl_2 has greater dipole moment than $CHCl_3$.
- **15.** (a) More the difference in electronegativity of atoms. Bond between them will be more polar.

16. (d) C - F bond has the most polar character due to difference of their electronegativity.

(SET -3)

17. (a) H_2S has angular geometry and have some value of dipole moment.

18. (a)
$$N \sigma \frac{\pi}{\pi} C \qquad \sigma C = \sigma C = \sigma N$$
$$N \sigma \frac{\pi}{\pi} C \qquad \sigma C = \sigma C = \sigma N$$

 9π and 9σ bonds.

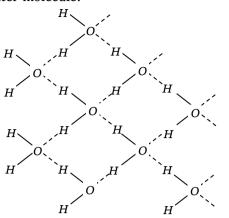
19. (d) H_3O^+ has sp^3 hybridization and its shape is triangular pyramidal due to lone pair on oxygen.

20. (c) SO_2 molecule has sp^2 hybridisation.

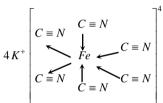
- **21.** (b) In $\parallel Ca$ two carbons are joined with 1σ and 2π bonds.
- **22.** (a) In N_2O molecule $N \equiv N O$ structure is most contributed.
- **23.** (b) The shape of NO_2^+, NO_3^- and NH_4^+ are linear trigonal planar and tetrahedral respectively. Thus the hybridization of atomic orbitals of nitrogen in these species are sp, sp^2 and sp^3 respectively.
- 24. (a) *NO* has one unpaired electron with Nitrogen.

$$: N :: O :$$

...
(b) $-O - Cl - O$


- **25.** (b) ${}^{-}O Cl O$
- **26.** (b) Bond energy of Cl_2 is highest among all halogen molecule. Bond energies of F_2 , Cl_2 , Br_2 , I_2 are 37, 58, 46 and 36 Kcal mol⁻¹ respectively.
- **27.** (c) $O_2^{2^-}$ have bond order one

B.O. =
$$\frac{1}{2}[10-8] = \frac{2}{2} = 1$$
.


- **28.** (b) Electron lost from antibonding π orbital.
- **29.** (a) In ice each water molecule forms four hydrogen bond through which each water

152 Chemical Bonding

molecule is tetrahedrally attached with other water molecule.

- **30.** (c) Hydrogen bonding is present in molecules which have *F*, *O*, or *N* atoms.
- **31.** (d) Structure of $K_4[Fe(CN)_6]$ is

32. (c) Sodium cyanide contain ionic, covalent and coordinate bond.