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Chapter 9

MOTION IN THREE DIMENSIONS

125. To find the accelerations of a particle in terms of polar coordi-
nates.

Let the coordinates of any point P be r,θ , and φ , where r is the
distance of P from a fixed origin O, θ is the angle that OP makes
with a fixed axis Oz, and φ is the angle that the plane zOP makes
with a fixed plane zOx.

Draw PN perpendicular to the plane xOy and let ON = ρ.

Then the accelerations of P are
d2x
dt2 ,

d2y
dt2 and

d2z
dt2 , where, x,y and

z are the coordinates of P.

P

M

N

K

O

L

y

x

z

r

q

r

f

Since the polar coordinates of N, which is always in the plane xOy,
are ρ and π , its accelerations are, as in Art. 49,

223
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d2ρ
dt2 −ρ

(
dφ
dt

)2

along ON, and

1
ρ

d
dt

(
ρ2dφ

dt

)2

perpendicuar to ON.

Also the acceleration of P relative to N is
d2z
dt2 along NP.

Hence the accelerations of P are
d2ρ
dt2 −ρ

(
dφ
dt

)2

along LP,

1
ρ

d
dt

(
ρ2dφ

dt

)
perpendicuar to the plane zPK, and

d2z
dt2 parallel to Oz.

Now, since z = r cosθ and ρ = r sinθ , it follows, as in Art. 50,

that accelerations
d2z
dt2 and

d2ρ
dt2 , along and perpendicular to Oz

in the plane zPK, are equivalent
d2r
dt2 − r

(
dθ
dt

)2

along OP and

1
r

d
dt

(
r2dθ

dt

)
perpendicular to OP in the plane zPK.

Also the acceleration −ρ
(

r2dθ
dt

)2

along LP is equivalent to

−ρ sinθ
(

dφ
dt

)2

along OP and −ρ cosθ
(

dφ
dt

)2

perpendicular to

OP.
Hence if α,β ,γ be the accelerations of P respectively along OP,

perpendicular to OP in the plane zPK in the direction of θ increas-
ing, and perpendicular to the plane zPK in the direction of φ increas-
ing, we have

α =
d2r
dt2 − r

(
dθ
dt

)2

−ρ sinθ
(

dφ
dt

)2

=
d2r
dt2 − r

(
dθ
dt

)2

− r sin2 θ
(

dφ
dt

)2

...(1),
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β =
1
r

d
dt

(
r2dθ

dt

)
−ρ cosθ

(
dφ
dt

)2

=
1
r

d
dt

(
r2dθ

dt

)
− r sinθ cosθ

(
dφ
dt

)2

...(2),

and γ =
1
ρ

d
dt

(
r2dφ

dt

)
=

1
r sinθ

d
dt

(
r2 sin2 θ

dφ
dt

)
...(3).

126. Cylindrical coordinates.
It is sometimes convenient to refer the motion of P to the coordi-

nates z, ρ , and φ , which are called cylindrical coordinates.
As in the previous article the accelerations are then

d2ρ
dt2 −ρ

(
dφ
dt

)2

along LP,
1
ρ

d
dt

(
ρ2dφ

dt

)
perpendicular to the plane

zPK, and
d2z
dt2 parallel to Oz.

127. A particle is attached to one end of a string, of length l, the
other end of which is tied to a fixed point O. When the string is in-
clined at an acute angle α to the downward-drawn vertical the par-
ticle is projected horizontally and perpendicular to the string with a
velocity V ; to find the resulting motion.

In the expressions (1), (2) and (3) of Art. 125 for the accelerations
we here have r = l.

The equations of motion are thus

−l
.

θ 2− l sin2 θ
.

φ 2 =−T
m

+gcosθ ...(1),

l
..
θ 2− l cosθ sinθ

.
φ 2 =−gsinθ ...(2),

and
1

sinθ
d
dt

(sin2 θ
.

φ) = 0 ...(3).



226 Chapter 9: Motion in Three Dimensions

O

T

N

P

mg

q

f

The last equation gives

sin2 θ
.

φ = constant = sin2 α[
.

φ ]0 =
V sinα

l
...(4).

On substituting for φ in (2), we have

..
θ−V 2 sin2 α

l2
cosθ
sin3 θ

=−g
l

sinθ ...(5).

∴
.

θ 2 +
V 2 sin2 α

l2 .
1

sin2 θ
=

2g
l

cosθ +A,

where 0+
V 2 sin2 α

l2 .
1

sin2 α
=

2g
l

cosα +A

∴
.

θ 2 =
V 2 sin2 α

l2 .

[
1

sin2 α
− 1

sin2 θ

]
− 2g

l
(cosα− cosθ) ...(6)

=
2g
l

(cosα−cosθ)
(

2n2cosα + cosθ
sin2 θ

−1
)

, where V 2 = 4lgn2.

Hence
.

θ again zero when 2n2(cosα + cosθ) = sin2 θ ,

i.e. when cosθ =−n2±
√

1−2n2 cosα +n4.
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The lower sign gives an inadmissible value for θ . The only incli-
nation at which

.
θ again vanishes is when θ = θ1,

where cosθ1 =−n2 +
√

1−2n2 cosα +n4.

The motion is therefore confined between values α and θ1, of θ .

The motion of the particle is always above or below the starting
point, according as θ1 ≶ α,

i.e. according as cosθ1 ≶ α,

i.e. ” ”
√

1−2n2 cosα +n4 ≶ n2 + cosα,

i.e. ” ” 1−2n2 cosα ≶ cos2 α +2n2 cosα,

i.e. ” ” n2 ≷ sin2 α
4cosα

,

i.e. ” ” V 2 ≷ lgsinα tanα
The tension of the string at any instant is now given by equation

(1). In the foregoing it is assumed that T does not vanish during the
motion.

The square of the velocity at any instant

= (l
.

θ)2 +(l sinθ
.

φ)2 = l2(
.

θ 2 +
.

φ 2 sin2 θ).

Hence the Principle of Energy gives

1
2

ml2(
.

θ 2 +
.

φ 2 sin2 θ) =
1
2

mV 2−mgl(cosα− cosθ).

[On substituting for
.

φ from (4) we have equation (6).]
(1) then gives
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T
m

= gcosθ +
(vel.)2

l

= gcosθ +
V 2−2gl(cosα− cosθ)

l

=
V 2

l
+g(3cosθ −2cosα).

128. In the previous example
..
θ is zero when θ = a., i.e. the particle

revolves at a constant depth below the centre O as in the ordinary

conical pendulum, if V 2 = gl
sin2 α
cosα

.

Suppose the particle to have been projected with this velocity, and
when it is revolving steadily let it receive a small displacement in the
plane NOP, so that the value of

.
φ was not instantaneously altered.

Putting θ = α + ψ, where Ψ is small, the equation (5) of the last
article gives

..
ψ =

gsin4 α
l cosα

cos(α +ψ)
sin3(α +ψ)

− g
l

sin(α +Ψ)

=
gsinα

l

[
1−Ψ tanα

(1+Ψ cotα)3 − (1+Ψ cotα)
]
,

neglecting squares of Ψ ,

=−gsinα
l

ψ(tanα +4cotα)

=−g
l

1+3cos2 α
cosα

ψ ,

so that the time of a small oscillation about the position of relative

equilibrium is 2π

√
l
g

cosα
1+3cos2 α

.

Again, from (4), on putting θ = α +ψ , we have
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.
φ =

√
g

l cosα
1

(1+ψ cotα)2 =
√

g
l cosα

[1−2ψ cotα],

so that during the oscillation there is a small change in the value of
φ whose period is the same as that of Ψ .

129. A particle moves on the inner surface of a smooth cone, of
vertical angle 2α , being acted on by a force towards the vertex of
the cone, and its direction of motion always cuts the generators at a
constant angle β ; find the motion and the law of force.

Let F.m he the force, where m is the mass of the particle, and R the
reaction of the cone. Then in the accelerations of Art. 125 we have
θ = α and therefore

.
θ = 0.

R

N

PFm

O

a

f

Hence the equations of motion are

d2r
dt2 − r sin2 α

(
dφ
dt

)2

=−F ...(1),
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−r sinα cosα
(

dφ
dt

)2

=−R
m

...(2),

and
sinα

r
d
dt

(
r2dφ

dt

)
= 0 ...(3).

Also, since the direction of motion always cuts OP at an angle β ,

∴ r sinα
.

φ
.
r

= tanβ ...(4).

(3) gives r2dφ
dt

= constant = A ...(5),

and therefore, from (4),
dr
dt

= sinα cotβ .
A
r

...(6).
Substituting in (1), we have

−F =−sin2 α cot2 β .
A2

r3 − sin2 α.
A2

r3 ,

i.e. F =
A2 sin2 α

sin2 β
.

1
r3 =

µ
r3 ...(7).

Also v2 =
(

dr
dt

)2

+r2 sin2 α
(

dφ
dt

)2

=
A2 sin2 α
r2 sin2 β

, so that v =
√µ

r
.

Again, (2) gives
R
m

=
A2 sinα cosα

r3 = F
sin2 β cosα

sinα
.

From (4), the path is given by r = r0.esinα cotβ .φ .

EXAMPLES

1. A heavy particle moves in a smooth sphere; show that, if the veloc-
ity be that due to the level of the centre, the reaction of the surface
will vary as the depth below the centre.

2. A particle is projected horizontally along the interior surface of
a smooth hemisphere whose axis is vertical and whose vertex is
downwards; the point of projection being at an angular distance β



LONEY’S DYNAMICS OF A PARTICLE WITH SOLUTION MANUAL (Kindle edition) 231

from the lowest point, show that the initial velocity so that the par-
ticle may just ascend to the rim of the hemisphere is

√
2agsecβ .

3. A heavy particle is projected horizontally along the inner surface

of a smooth spherical shell of radius
a√
2

with velocity

√
7ag
3

at

a depth
2a
3

below the centre. Show that it will rise to a height
a
3

above the centre, and that the pressure on the sphere just vanishes
at the highest point of the path.

4. A particle moves on a smooth sphere under no forces except the
pressure of the surface; show that its path is given by the equation
cotθ = cotβ cosφ , where θ and φ are its angular coordinates.

5. A heavy particle is projected with velocity V from the end of a
horizontal diameter of a sphere of radius a along the inner surface,
the direction of projection making an angle β with the equator. If
the particle never leaves the surface, prove that

3sin2 β < 2+
(

V 2

3ga

)2

.

6. A particle constrained to move on a smooth spherical surface is
projected horizontally from a point at the level of the centre so
that its angular velocity relative to the centre is ω . If ω2a be very
great compared with g, show that its depth z below the level of the

centre at time t is
2g
ω2 sin2 ωt

2
approximately.

7. A thin straight hollow smooth tube is always inclined at an an-
gle α to the upward drawn vertical, and revolves with uniform
velocity ω about a vertical axis which intersects it. A heavy par-
ticle is projected from the stationary point of the tube with ve-
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locity
g
ω

cotα; show that in time t it has described a distance
gcosα

ω2 sin2 α
[1− eω sinα.t]. Find also the reaction of the tube.

8. A smooth hollow right circular cone is placed with its vertex down-
ward and axis vertical, and at a point on its interior surface at a
height h above the vertex a particle is projected horizontally along

the surface with a velocity

√
2gh

n2 +n
. Show that the lowest point of

its path will be at a height
h
n

above the vertex of the cone.
9. A smooth circular cone, of angle 2a, has its axis vertical and its

vertex, which is pierced with a small hole, downwards. A mass M
hangs at rest by a string which passes through the vertex, and a
mass m attached to the upper end describes a horizontal circle on
the inner surface of the cone. Find the time T of a complete rev-
olution, and show that small oscillations about the steady motion

take place in the time T cosec α
√

M +m
3m

.

10. A smooth conical surface is fixed with its axis vertical and vertex
downwards. A particle is in steady motion on its concave side in a
horizontal circle and is slightly disturbed. Show that the time of a

small oscillation about this state of steady motion is 2π

√
1

3gcosα
,

where α is the semi-vertical angle of the cone and l is the length
of the generator to the circle of steady motion.

11. Three masses m1,m2 and m3 are fastened to a string which passes
through a ring, and m1 describes a horizontal circle as a conical
pendulum while m2 and m3 hang vertically. If m3 drop off, show
that the instaneous change of tension of the string is

gm1m3

m1 +m2
.
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12. A particle describes a rhumb-line on a sphere in such a way that its
longitude increases uniformly; show that the resultant acceleration
varies as the cosine of the latitude and that its direction makes with
the normal an angle equal to the latitude.
[A Rhumb-hne is a curve on the sphere cutting all the meridians at

a constant angle α; its equation is

.
φ sinθ

.
θ

= tanα.]

13. A particle moves on a smooth right circular cone under a force
which is always in a direction perpendicular to the axis of the
cone; if the particle describe on the cone a curve which cuts all
the generators at a given constant angle, find the law of force and
the initial velocity, and show that at any instant the reaction of the
cone is proportional to the acting force.

14. A point moves with constant velocity on a cone so that its direction
of motion makes a constant angle with a plane perpendicular to the
axis of the cone. Show that the resultant acceleration is perpendic-
ular to the axis of the cone and varies inversely as the distance of
the point from the axis.

15. At the vertex of a smooth cone of vertical angle 2a, fixed with its
axis vertical and vertex downwards, is a centre of repulsive force

µ
(distance)4 . A weightless particle is projected horizontally with

velocity

√
2µ sin3 α

c3 from a point, distant c from the axis, along

the inside of the surface. Show that it will describe a curve on the
cone whose projection on a horizontal plane is

1− c
r

= 3tanh
(

θ
2

sinα
)

.
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16. Investigate the motion of a conical pendulum when disturbed from
its state of steady motion by a small vertical harmonic oscillation
of the point of support. Can the steady motion be rendered unstable
by such a disturbance?

17. A particle moves on the inside of a smooth sphere, of radius a,
under a force perpendicular to and acting from a given diameter,

which equals µ
sinθ

cos4 θ
when the particle is at an angular distance θ

from that diameter; if when the angular distance of the particle is γ ,
it is projected with velocity

√µasecγ in a direction perpendicular
to the plane through itself and the given diameter, show that its
path is a small circle of the sphere, and find the reaction of the
sphere.

18. A particle moves on the surface of a smooth sphere along a rhumb-
line, being acted on by a force parallel to the axis of the rhumb-
line. Show that the force varies inversely as the fourth power of the
distance from the axis and directly as the distance from the medial
plane perpendicular to the axis.

19. A particle moves on the surface of a smooth sphere and is acted on
by a force in the direction of the perpendicular from the particle on
a diameter and equal to

µ
(distance)3 . Show that it can be projected

so that its path will cut the meridians at a constant angle.
20. A particle moves on the interior of a smooth sphere, of radius a,

under a force producing an acceleration µωn along the perpendic-
ular or drawn to a fixed diameter. It is projected with velocity V
along the great circle to which this diameter is perpendicular and
is slightly disturbed from its path; show that the new path will cut

the old one m times in a revolution, where m2 = 4
[

1− µan+1

V 2

]
.
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21. A particle moves on a smooth cone under the action of a force
to the vertex varying inversely as the square of the distance. If the
cone be developed into a plane, show that the path becomes a conic
section.

22. A particle, of mass m, moves on the inner surface of a cone of
revolution, whose semi-vertical angle is α , under the action of a
repulsive force

µ
(distance)3 from the axis; the moment of momen-

tum of the particle about the axis being m
√µ tanα, show that its

path is an arc of a hyperbola whose eccentricity is sec α.

[With the notation of Art. 129 we obtain
.

φ 2 =
µ

cos2 α sin2 α
.

1
r4 and

..
r =

µ
cos2 α sin2 α

.
1
r3 , giving

..
r2 =

µ
cos2 α sin2 α

(
1
d3 −

1
r2

)
, where

d is a constant. Hence
(

dr
dφ

)2

= r2.
r2−d2

d2 .

Hence φ = γ− sin−1 d
r
.

∴ d
r

= sin(γ−φ) = cosφ , if the initial plane for φ be properly
chosen. This is the plane x = d sinα , which is a plane parallel to
the axis of the cone. The locus is thus a hyperbolic section of the
cone, the parallel section of which through the vertex consists of
two straight lines inclined at 2α . Hence, etc.]

23. If a particle move on the inner surface of a right circular cone under
the action of a force from the vertex, the law of repulsion being

mµ
[

acos2 α
r3 − 1

2r2

]
,
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where 2a is the vertical angle of the cone, and if it be projected

from an apse at distance a with velocity
√

µ
a

sinα , show that the

path will be a parabola.
[Show that the plane of the motion is parallel to a generator of the
cone.]

24. A particle is constrained to move on a smooth conical surface of
vertical angle 2a, and describes a plane curve under the action of
an attraction to the vertex, the plane of the orbit cutting the axis of
the cone at a distance a from the vertex. Show that the attractive
force must vary as

1
r2 −

acosα
r3 .

25. A particle moves on a rough circular cylinder under the action of
no external forces. Initially the particle has a velocity V in a direc-
tion making an angle α with the transverse plane of the cylinder;
show that the space described in time t is

asec2 α
µ

log
[

1+
µV cos2 α

a
t
]
.

[Use the equations of Art. 126.]

130. A point is moving along any curve in three dimensions; to find
its accelerations along (1) the tangent to the curve, (2) the principal
normal, and (3) the binormal.

If (x,y,z) be the coordinates of the point at time t, the accelerations
parallel to the axes of coordinates are

..
x,

..
y and

..
z .

Now
dx
dt

=
dx
ds

ds
dt

. ∴ d2x
dt2 =

dx
ds

d2s
dt2 +

d2x
ds2

(
ds
dt

)2

...(1).

So
d2y
dt2 =

dy
ds

d2s
dt2 +

d2y
ds2

(
ds
dt

)2

...(2)
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and
d2z
dt2 =

dz
ds

d2s
dt2 +

d2z
ds2

(
ds
dt

)2

...(3).

The direction cosines of the tangent are
dx
ds

,
dy
ds

and
dz
ds

.

Hence the acceleration along it

=
dx
ds

d2x
dt2 +

dy
ds

d2y
dt2 +

dz
ds

d2z
dt2

=
d2s
dt2

[(
dx
ds

)2

+
(

dy
ds

)2

+
(

dz
ds

)2
]

+
(

dy
dt

)2 [
dx
ds

d2x
ds2 +

dy
ds

d2y
ds2 +

dz
ds

d2z
ds2

]

=
d2s
dt2 ...(4),

since
(

dx
ds

)2

+
(

dy
ds

)2

+
(

dz
ds

)2

= 1, and

∴ dx
ds

d2x
ds2 +

dy
ds

d2y
ds2 +

dz
ds

d2z
ds2 = 0.

The direction cosines of the principal normal are ρ
d2x
ds2 , ρ

d2y
ds2 and

ρ
d2z
ds2 , where ρ is the radius of curvature.

Hence the acceleration along it

= ρ
d2x
ds2

d2x
dt2 +ρ

d2y
ds2

d2y
dt2 +ρ

d2z
ds2

d2z
dt2

= ρ
d2s
dt2

[
dx
ds

d2x
ds2 +

dy
ds

d2y
ds2 +

dz
ds

d2z
ds2

]

+ρ
(

ds
dt

)2
[(

d2x
ds2

)2

+
(

d2y
ds2

)2

+
(

d2z
ds2

)2
]
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= ρ
(

ds
dt

)2

× 1
ρ2 =

1
ρ

(
ds
dt

)2

...(5)

The direction cosines of the binormal are proportional to
dy
ds

d2z
ds2 −

dz
ds

d2y
ds2 ,

dz
ds

d2x
ds2 −

dx
ds

d2z
ds2 and

dx
ds

d2y
ds2 −

dy
ds

d2x
ds2 .

On multiplying (1), (2) and (3) in succession by these and adding,
the result is zero, i.e. the acceleration in the direction of the binormal
vanishes.

The foregoing results might have been seen at once from equa-
tions (1), (2), (3). For if (l1,m1,n1), (l2,m2,n2) and (l3,m3,n3) are
the direction cosines of the tangent, the principal normal, and the
binormal, these equations may be written

d2x
dt2 = l1

d2s
dt2 + l2

{
1
ρ

(
ds
dt

)2
}

,

d2y
dt2 = m1

d2s
dt2 +m2

{
1
ρ

(
ds
dt

)2
}

, and

d2z
dt2 = n1

d2s
dt2 +n2

{
1
ρ

(
ds
dt

)2
}

.

These equations show that the accelerations along the axes are the

components of an acceleration
d2s
dt2 along the tangent, an acceleration

1
ρ

(
ds
dt

)2

along the principal normal, and nothing in the direction of

the binormal.
We therefore see that, as in the case of a particle describing a plane

curve, the accelerations are
d2s
dt2 , or v

dv
ds

, along the tangent and
v2

ρ
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along the principal normal, which lies in the osculating plane of the
curve.

131. A particle moves in a curve, there being no friction, under
forces such as occur in nature. Show that the change in its kinetic
energy as it passes from one position to the other is independent of
the path pursued and depends only on its initial and final positions.

Let X ,Y,Z be the components of the forces. By the last article,
resolving along the tangent to the path, we have

m
d2s
dt2 = X

dx
ds

+Y
dy
ds

+Z
dz
ds

. ∴ 1
2
.m

(
ds
dt

)2

=
∫

(Xdx+Y dy+Zdz).

Now, by Art. 95, since the forces are such as occur in nature, i.e.
are one-valued functions of distances from fixed points, the quantity
Xdx +Y dy + Zdz is the differential of some function φ(x,y,z), so
that

1
2

mv2 =
1
2

m
(

d2s
dt2

)2

= φ(x,y,z)+C,

where
1
2

mv2
0 = φ(x0,y0,z0)+C, (x0,y0,z0) being the starting point

and v0 the initial velocity.

Hence
1
2

mv2− 1
2

mv2
0 = φ(x,y,z)−φ(x0,y0,z0).

The right-hand member of this equation depends only on the po-
sition of the initial point and on that of the point of the path under
consideration, and is quite independent of the path pursued.

The reaction R of the curve in the direction of the principal normal
is given by the equation

v2

ρ
= R, where ρ is the radius of curvature of the curve.
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132. Motion on any surface. If the particle move on a surface whose
equation is f (x,y,z) = 0, let the direction cosines at any point (x,y,z)
of its path be (l1,m1,n1), so that

l1
d f
dx

=
m1
d f
dy

=
n1
d f
dz

=
1√(

d f
dx

)2

+
(

d f
dy

)2

+
(

d f
dz

)2
.

Then, if R be the normal reaction, we have

m
d2x
dt2 = X +Rl1, m

d2y
dt2 = Y +Rm1, and m

d2z
dt2 = Z +Rn1,

where X ,Y,Z are the components of the impressed forces.

Multiplying these equations by
dx
dt

,
dy
dt

,
dz
dt

and adding, we have

1
2

m
d
dt

[(
dx
dt

)2

+
(

dy
dt

)2

+
(

dz
dt

)2
]

= X
dx
dt

+Y
dy
dt

+Z
dz
dt

; for the coefficient of R

= l1
dx
dt

+m1
dy
dt

+n1
dz
dt

=
(

l1
dx
ds

+m1
dy
ds

+n1
dz
ds

)
ds
dt

=
ds
dt
×

(
the cosine of the angle between a tangent
line to the surface and the normal

)

= 0
Hence, on integration,

1
2

mv2 =
∫

(Xdx+Y dy+Zdz),

as in the last article.
Also, on eliminating R, the path on the surface is given by
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m
d2x
dt2 −X

l1
=

m
d2y
dt2 −Y

m1
=

m
d2z
dt2 −Z

n1
,

giving two equations from which, by eliminating t, we should get a
second surface cutting the first in the required path.

133. Motion under gravity of a particle on a smooth surface of rev-
olution whose axis is vertical.

Use the coordinates z,ρ and φ of Art. 126, the z-axis being the
axis of revolution of the surface. The second equation of that article
gives
1
ρ

d
dt

(
ρ2dφ

dt

)
= 0. i.e. ρ2dφ

dt
= constant = h ...(1).

A

R

P

x

mg
z

z

r
f

Also, if s be the arc AP measured from any fixed point A, the ve-

locities of P are
ds
dt

along the tangent at P to the generating curve,

and ρ
dφ
dt

perpendicular to the plane zAP.
Hence the Principle of Energy gives

1
2

{(
ds
dt

)2

+ρ2
(

dφ
dt

)2
}

= const. −gz ...(2)
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Equations (1) and (2) give the motion.
Equation (1) states that the moment of the momentum of the par-

ticle about the axis of z is constant.

By equating the forces parallel to Oz to m
d2z
dt2 , we easily have the

value of the reaction R.

If the equation to the generating curve be z = f (ρ) then, since

.
s2 =

.
z2 +

.
ρ2 = [1+{ f ′(ρ)}2]

(
dρ
dφ

)2 .
φ 2,

equation (2) easily given

1
ρ4

(
dρ
dφ

)2

[1+{ f ′(ρ)}2]+
1

ρ2 = constant − 2g
h2 f (ρ),

which gives the differential equation of the projection of the motion
on a horizontal plane.

EXAMPLES

1. A smooth helix is placed with its axis vertical and a small bead
slides down it under gravity; show that it makes its first revolution

from rest in time 2
√

πa
gsinα cosα

, where α is the angle of the

helix.
2. A particle, without weight, slides on a smooth helix of angle α

and radius a under a force to a fixed point on the axis equal to
mµ (distance). Show that the reaction of the curve cannot vanish
unless the greatest velocity of the particle is a

√µ sec α.

3. A smooth paraboloid is placed with its axis vertical and vertex
downwards, the latus-rectum of the generating parabola being 4a.
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A heavy particle is projected horizontally with velocity V at a
height h above the lowest point; show that the particle is again

moving horizontally when its height is
V 2

2g
Show also that the re-

action of the paraboloid at any point is inversely proportional to
the corresponding radius of curvature of the generating parabola.

4. A particle is describing steadily a circle, of radius b, on the inner
surface of a smooth paraboloid of revolution whose axis is vertical
and vertex downwards, and is slightly disturbed by an impulse in
a plane through the axis; show that its period of oscillation about

the steady motion is π

√
l2 +b2

gl
, where l is the semi-latus-rectum

of the paraboloid.
5. A particle moving on a paraboloid of revolution under a force par-

allel to the axis crosses the meridians at a constant angle; show
that the force varies inversely as the fourth power of the distance
from the axis.

6. A particle moves on a smooth paraboloid of revolution under the
action of a force directed to the axis which varies inversely as the
cube of the distance from the axis; show that the equation of the
projection of the path on the tangent plane at the vertex of the
paraboloid may, under certain conditions of projection, be writ-

ten
√

4a2 + r2+a log

√
4a2 + r2−2a√
4a2 + r2 +2a

= k.θ . where 4a is the latus-

rectum of the generating parabola.
7. A particle moves on a right circular cone under no forces; show

that, whatever be the initial motion, the projection of the path on
a plane perpendicular to the axis is one of the similar curves given
by r sinnθ = c.
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8. A smooth heavy particle moves on a surface of revolution formed
by the revolution of the curve x2y = a3 about the axis of y, which
is vertical with its positive direction downwards. Show that, if pro-
jected with a suitable speed from any point, the particle will cross
all the meridians at the same angle.

9. A heavy particle is projected horizontally along a smooth surface
of revolution whose equation in cylindrical coordinates is 8z3 =
27ar2, the axis of z being vertical and upwards.
Prove that, if the normal at the point of projection is inclined at 45o

to the vertical and the particle leaves the surface where the normal
is inclined at 60o to the vertical, the velocity of projection must be√

ga
525

.

ANSWERS WITH HINTS

Art. 129 EXAMPLES
7. Let R and S are reactions of the tube in and perpendicular to the
vertical plane through tube. We get R = m(gsinα + r sinα cosαω2)

S =
1

r sinα
d
dt

(r2 sin2 αω) where r =
gcosα

ω2 sin2 α
(1− e−ω sinαt)

9. m(
..
r−r sin2 α

.
φ

2
) =−T1−mgcosα ,

1
r sinα

d
dt

(r2 sin2 α
.

φ) = 0, and M
d2

dt2(l− r) = Mg−T1

13.
µ
r3 ,

√
µ sinα

a
16. Unstable
17.

mµ
cos4 θ
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