

DPP No. 13

Total Marks : 24

Max. Time : 27 min.

Topics : Fundamentals of Mathematics, Quadratic Equation				
	М.М.,	Min.		
(3 marks, 3 min.)	[9,	9]		
		3]		
(4 marks, 5 min.)	[12,	15]		
	(3 marks, 3 min.) (3 marks, 3 min.) (4 marks, 5 min.)	(3 marks, 3 min.) [3,		

COMPREHENSION (For Q.No. 1 to 3)

Let $y = ax^2 + bx + c$ be a quadratic expression having its vertex at (3, -2) and value of c = 10, then

- 1. Value of 'b' is equal to
 - (A) 6 (B) -6 (C) 8 (D) -8
- 2. One of the roots of the equation $ax^2 + bx + c = 0$ is

(A)
$$\frac{6+\sqrt{6}}{2}$$
 (B) $\frac{3+\sqrt{6}}{2}$ (C) $3-\sqrt{6}$ (D) $3+\sqrt{6}$

- **3.** If $y \ge -\frac{2}{3}$, then
 - (A) $x \in (-\infty, 2] \cup [4, \infty)$ (B) $x \in (-\infty, 3] \cup [4, \infty)$

 (C) $x \in (-\infty, 1] \cup [3, \infty)$ (D) $x \in (-\infty, 4] \cup [6, \infty)$

4. Find the set of values of ' α ' for which the expression y = $\frac{\alpha x^2 + 6x - 8}{\alpha + 6x - 8x^2}$ have a common linear factor in numerator and denominator

(A) {14}	(B) {2}	(C) {-8, 2, 14}	(D) {0, 2, 14}

- 5. Solve the following equations $x^2 + xy + xz = 18$, $y^2 + yz + yx + 12 = 0$ and $z^2 + zx + zy = 30$
- 6. Solve the following inequations
 - (i) (x-5)(x+9)(x-8) < 0 (ii) $x^2 4x + 9 > 0$
 - (iii) $x^4 5x^2 + 4 < 0$ (iv) $\frac{3}{x-2} < 1$
- 7. Consider the quadratic polynomial, $f(x) = x^2 4ax + 5a^2 6a$.
 - (a) Find the smallest positive integral value of 'a' for which f(x) is positive for every real x.
 - (b) Find the largest distance between the roots of the equation f(x) = 0.

Answers Key

- **1.** (D) **2.** (A) **3.** (A) **4.** (C)
- **5.** x = 3, y = -2, z = 5; x = -3, y = 2, z = -5
- 6. (i) $x \in (-\infty, -9) \cup (5, 8)$ (ii) $x \in (-\infty, \infty)$ (iii) $x \in (-2, -1) \cup (1, 2)$ (iv) $x \in (-\infty, 2) \cup (5, \infty)$
- 7. (a) 7 (b) 6