HOTS (Higher Order Thinking Skills)

Que 1. In cricket match, a batsman hits a boundary 12 times out of 48 balls he plays. Find the probability that he does not hit a boundary in the next ball.

Sol. Let E be the event 'the batsman hits a boundary'.

Then, \overline{E} is the event 'the batsmen does hit a boundary'.

:.
$$P(E) = \frac{12}{48} = \frac{1}{4}$$

 \Rightarrow P (\overline{E}) = 1 - P(E) = 1 - $\frac{1}{4} = \frac{3}{4}$

Que 2. An Insurance company selected 2000 drivers at random in a particular city to find a relationship between age and accidents. The data obtained are given in the following table:

Age of drivers	Accidents in one year								
(in years)	0	1	2	3	Over 3				
18-29	440	160	110	61	35				
30 - 50	505	125	60	22	18				
Above 50	360	45	35	15	9				

Find the probabilities of the following events for a driver chosen at random from the city:

(i) Being 18-29 years of age having exactly 3 accidents in one years.

(ii) Being 30-50 years of age and having one or more accidents in a years.

(iii) Having no accident in one years.

Sol. Total number of drivers = 2000

(i) Number of drivers who are 18-29 years old and have exactly 3 accidents in one years is 61

So, P (driver is 18-29 years old with exactly 3 accidents) = $\frac{61}{2000}$

$$= 0.0305 \approx 0.031$$

(ii) Number of drivers having 30-50 years of age and having one or more accidents in one year = 125 + 60 + 22 + 18 = 225

So, P (driver is 30-35 years of age and having one or more accidents)

$$=\frac{225}{2000}=0.1125=0.113$$

(iii) Number of drivers having no accident in one year = 440 + 505 + 360

So, P (drivers with no accident) = $\frac{1305}{2000} = 0.6525 = 0.653$

Que 3. The percentage of marks obtained by a student in monthly unit tests are given below.

Test	Ι	II	III	IV	V	VI
percentage of marks	52	60	65	75	80	72

Find the probability that in the next test the student gets

(i) more than 70% marks, (ii) less than 70% marks,

(iii) at least 60% marks.

Sol. (i) Number of tests in which the student scored more than 70% marks = 3

 $\therefore P \text{ (more than 70\% marks)} = \frac{3}{6} = \frac{1}{2}$

(ii) Number of tests in which the student scored less than 70% marks = 3

 $\therefore P(\text{less than 70\% marks}) = \frac{3}{6} = \frac{1}{2}$

(iii) Number of tests in which the student scored at least 60% marks = 5

 \therefore P (at least 60% marks) = $\frac{5}{6}$