Ratio of Areas of Two Similar Triangles

Objective

To verify **"The ratio of the areas of two similar triangles is equal to the ratio of the square of their corresponding sides**" by performing an activity.

Prerequisite Knowledge

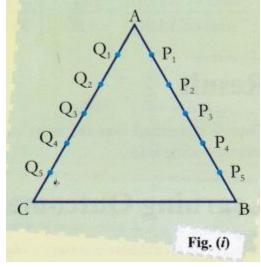
- 1. Concept of parallel lines.
- 2. Division of a line in a given ratio.

Materials Required

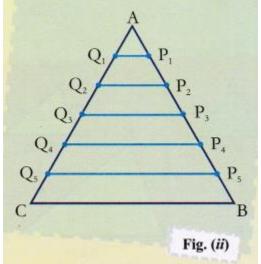
Chart paper, construction box, coloured pens, a pair of scissors, fevicol.

Procedure

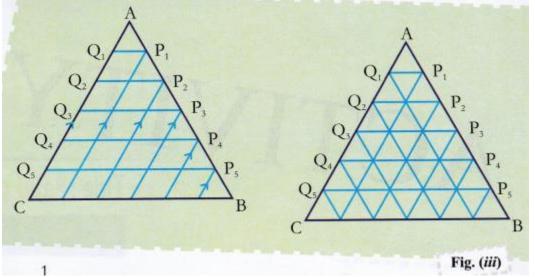
- 1. Take a chart paper and cut a $\triangle ABC$ with AB = 6cm, BC = 6cm, CA = 6cm.
- 2. Mark 5 points P_1 , P_2 , ..., P_5 at a distance of 1cm each on side AB and Q_1 , Q_2 ,..., Q_5 at a distance of 1cm each on side AC as shown in fig.(i).



3. Join P_1Q_1 , P_2Q_2 , ..., P_5Q_5 as shown in fig. (ii).

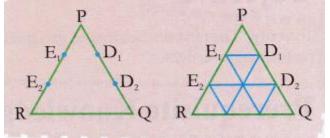


4. Draw lines parallel to AC from P₁, P₂, P₅ and also draw lines parallel to AB from the points Q₁, Q₂,, Q₅ as shown in fig. (iii).



- 5. Thus $\triangle ABC$ is divided into 36 smaller triangles and all are similar to each other and of equal area.
- 6. Construct a $\triangle PQR$ with PQ = $\frac{1}{2}$ of AB, PR = $\frac{1}{2}$ of AC and QR = $\frac{1}{2}$ of BC i.e. 3cm each on another chart paper.
- 7. Mark D_1 , D_2 and E_1 , E_2 on sides PQ and PR respectively.
- 8. Repeat steps 3 and 4.

9. Thus $\triangle PQR$ is divided into 9 smaller similar triangles equal in area.



Observation

- 1. area of $\triangle ABC$ = area of 36 smaller \triangle 's
- 2. area of $\triangle PQR$ = area of 9 smaller \triangle 's
- 3. $\frac{PQ}{AB} = \frac{3}{6} = \frac{1}{2} = \frac{PR}{AC}$ 4. $\frac{Area \quad of \quad \Delta PQR}{Area \quad of \quad \Delta ABC} = \frac{PQ^2}{AB^2}$
- 4. $\overline{Area \quad of \quad \Delta ABC} = \overline{AB^2}$ = [9 smaller Δ 's/36 smaller Δ 's = $\frac{1}{4}$ = (1/2)² (because $\Delta ABC \sim \Delta PQR$)

Result

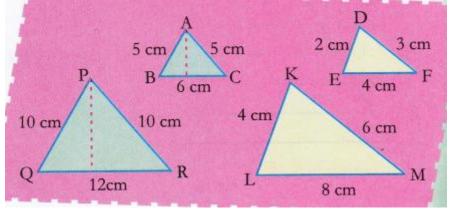
Thus it is verified that the ratio of the areas of two similar triangles is equal to the ratio of the square of their corresponding sides.

Learning Outcome

Concept of area theorem is clear to the students through this activity.

Activity Time

1. Take isosceles similar triangles and scalene similar triangles and try to verify this activity. Here isosceles triangles, $\triangle ABC \sim \triangle PQR$. Scalene triangle $\triangle DEF \sim \triangle KLM$



Viva Voce

Question 1.

What are the criteria for two triangles to be similar ? **Answer:**

Two triangles are said to be similar, if

- their corresponding angles are equal.
- their corresponding sides are in proportion

Question 2.

 \triangle ABC ~ \triangle DEF and their areas are respectively 64 cm² and 121 cm². If EF = 15.4 cm, then findBC.

Answer:

11.2 cm

Question 3.

Is it true, if the areas of two similar triangles are equal, then they are congruent ? **Answer:**

Yes

Question 4.

What is the ratio of the area of an equilateral triangle described on one side of a square to the area of an equilateral triangle described on one of its diagonal ?

Answer:

1:2

Question 5.

Are a square and a rhombus of side 3 cm similar ? Answer: No

Question 6.

Is a rhombus of side 3 cm congruent to another rhombus of side 4 cm ? Answer:

No

Question 7.

Is the ratio of the areas of two similar triangles equal to the square of the ratio of their corresponding medians ?

Answer:

Yes

Multiple Choice Questions

Question 1.

ABC and BDE are two equilateral triangles, such that D is the mid-point of BC. The ratio of the areas of \triangle ABC and \triangle BDE is

(a) 2:1

(b) 1:2

(c) 4:1

(d) 1:4

Question 2.

Sides of two similar triangles are in the ratio 4 : 9. Areas of these triangles are in the ratio

(a) 2:3

(b) 4:9

(c) 81:16

(d) 16:81

Question 3.

If in two similar triangles PQR and LMN, if QR = 15 cm and MN = 10 cm, then the ratio of the areas of triangles is

(a) 3:2

(b) 9:4

(c) 5:4

(d) 7:4

Question 4.

Two isosceles triangles have equal vertical angles and their areas are in the ratio 16 : 25. Then the ratio of their corresponding heights is

(a) 16 : 25

(b) 256 : 625

(c) 4 : 5

(d) none of these

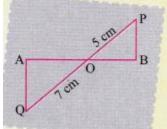
Question 5.

 $\triangle ABC \sim \triangle DEF$. If AC = 19 cm and DF = 8 cm, then the ratio of the areas of the two triangles is (a) 361 : 64 (b) 19 : 8 (c) 19 : 4 (d) none of these

Question 6.

In the given figure, PB and QA are perpendicular to segment AB. If PO = 5 cm, QO = 7

cm and area ($\triangle POB$) = 150 cm², then area of $\triangle QOA$ is



(a) 254 cm²

- (b) 294 cm²
- (c) 244 cm²
- (d) 49 cm²

Question 7.

Diagonals of a trapezium ABCD with AB || DC intersect each other at the point O. If AB = 2CD, find the ratio of the areas of triangles AOB and COD.

- (a) 4:1
- (b) 1:4
- (c) 4:4
- (d) 2:4

Question 8.

ABC and DBC are two triangles on the same base BC. If AD intersects BC at O, then the ratio of area ($\triangle ABC$) to area ($\triangle DBC$) is

- (a) $\frac{AO}{DO}$
- (b) $\frac{AO}{DB}$
- (c) $\frac{AC}{DO}$

(d) None of these

Question 9.

Area (\triangle ABC) : Area (\triangle DEF) = 25 : 36. Then AB : DE is (a) 625 : 1296 (b) 25 : 36 (c) 6 : 5 (d) 5 : 6

Question 10.

 $\triangle DEF \sim \triangle ABC$; If DE : AB = 2 : 3 and area $\triangle DEF$ is equal to 44 square units, then area (ΔABC) is (a) 120 sq. units (b) 99 sq. units (c) 66 sq. units (d) none of these

Answers

- 1. (c) 2. (d)
- 3. (b)
- 4. (c)
- 5. (a) 6. (b)
- 7. (a)
- 8. (a) 9. (d) 10.(b)