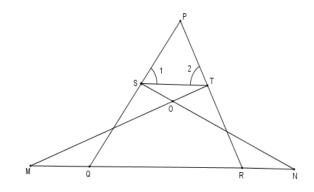
Class X Mathematics Sample Question Paper 2018-19

Time allowed: 3 Hours Max. Marks: 80


General Instructions:

- 1. All the questions are compulsory.
- 2. The questions paper consists of 30 questions divided into 4 sections A, B, C and D.
- 3. Section A comprises of 6 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each. Section D comprises of 8 questions of 4 marks each.
- 4. There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, four questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- 5. Use of calculators is not permitted.

	Section-A	
1.	Find the value of a, for which point P ($\frac{a}{3}$, 2) is the mid-point of the line segment joining the points Q(-5,4) and R(-1,0).	1
2.	Find the value of k, for which one root of the quadratic equation $kx^2-14x+8=0$ is 2.	1
	Find the value(s) of k for which the equation $x^2 + 5kx + 16 = 0$ has real and equal roots.	_
3.	Write the value of $\cot^2 \theta - \frac{1}{\sin^2 \theta}$	1
	OR	1
	If $sin\theta = cos\theta$, then find the value of $2tan\theta + cos^2\theta$	
4.	If nth term of an A.P. is (2n+1), what is the sum of its first three terms?	1
5.	In figure if AD= 6cm, DB=9cm, AE = 8cm and EC = 12cm and \angle ADE = 48°. Find \angle ABC	1
	B	
6.	After how many decimal places will the decimal expansion of $\frac{23}{2^4 \times 5^3}$ terminate?	1
	2.×2.	

	Section-B	
7.	The HCF and LCM of two numbers are 9 and 360 respectively. If one number is 45, find the other number.	2
	OR	
	Show that $7 - \sqrt{5}$ is irrational, give that $\sqrt{5}$ is irrational.	-
8.	Find the 20 th term from the last term of the AP 3,8,13,,253	2
	OR	
	If 7 times the 7 th term of an A.P is equal to 11 times its 11 th term, then find its 18 th term.	
9.	Find the coordinates of the point P which divides the join of A(-2,5) and B(3,-5) in the ratio 2:3	2
10.	A card is drawn at random from a well shuffled deck of 52 cards. Find the probability of getting neither a red card nor a queen.	2
11.	Two dice are thrown at the same time and the product of numbers appearing on them is noted. Find the probability that the product is a prime number	2
12.	For what value of p will the following pair of linear equations have infinitely many solutions $ (p-3)x+3y=p \\ px+py=12 $	2
	Section-C	
13.	Use Euclid's Division Algorithm to find the HCF of 726 and 275.	3
14.	Find the zeroes of the following polynomial: $5\sqrt{5}x^2+30x+8\sqrt{5}$	3
15.	Places A and B are 80 km apart from each other on a highway. A car starts from A and another from B at the same time. If they move in same direction they meet in 8 hours and if they move towards each other they meet in 1 hour 20 minutes. Find the speed of cars.	3
16.	The points $A(1,-2)$, $B(2,3)$, $C(k,2)$ and $D(-4,-3)$ are the vertices of a parallelogram. Find the value of k .	3
	OR	
	Find the value of k for which the points (3k-1,k-2), (k,k-7) and (k-1,-k-2) are collinear.	
17.	Prove that $\cot \theta - \tan \theta = \frac{2\cos^2 \theta - 1}{\sin \theta \cos \theta}$	3
	OR]
	Prove that $sin\theta(1 + tan\theta) + cos\theta(1 + cot\theta) = sec\theta + cosec\theta$	
18.	The radii of two concentric circles are 13 cm and 8 cm. AB is a diameter of the bigger circle and BD is a tangent to the smaller circle touching it at D and intersecting the larger circle at P on producing. Find the length of AP.	3

19. In figure $\angle 1 = \angle 2$ and $\triangle NSQ \cong \triangle MTR$, then prove that $\triangle PTS \sim \triangle PRQ$.



OR

3

3

In $\triangle ABC$, if AD is the median, then show that $AB^2 + AC^2 = 2(AD^2 + BD^2)$

20. Find the area of the minor segment of a circle of radius 42cm, if length of the corresponding arc is 44cm.

21. Water is flowing at the rate of 15 km per hour through a pipe of diameter 14cm into a rectangular tank which is 50 m long and 44 m wide. Find the time in which the level of water in the tank will rise by 21 cm.

OR

A solid sphere of radius 3 cm is melted and then recast into small spherical balls each of diameter 0.6cm. Find the number of balls.

22. The table shows the daily expenditure on grocery of 25 households in a locality. Find the modal daily expenditure on grocery by a suitable method.

Daily	100-150	150-200	200-250	250-300	300-350
Expenditure					
(in Rs.)					
No of	4	5	12	2	2
households					

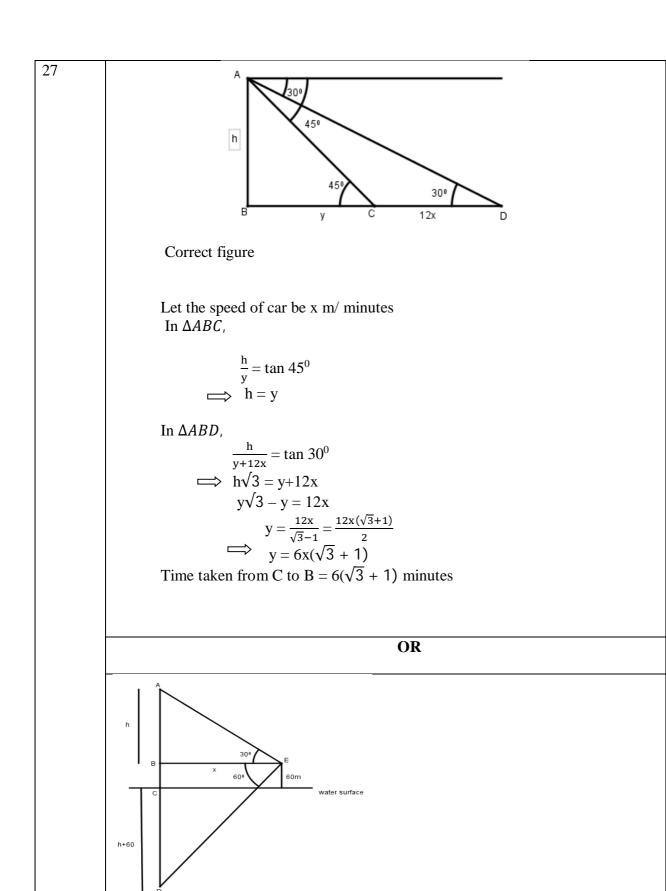
		Section-D						
23.	A train takes 2 hours less for a journ usual speed. Find the usual speed of	ney of 300km if its speed is increased by 5 km/h from its f the train.	4					
	OR							
	Solve for x: $\frac{1}{(a+b+x)} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$, [2	$a \neq 0, b \neq 0, x \neq 0, x \neq -(a + b)$						
24.	An AP consists of 50 terms of which 3 rd term is 12 and the last term is 106. Find the 29 th term.							
25.	Prove that in a right angled triangle of other two sides.	square of the hypotenuse is equal to sum of the squares	4					
26.	Draw a $\triangle ABC$ with sides 6cm, 8cm and 9 cm and then construct a triangle similar to $\triangle ABC$ whose sides are $\frac{3}{5}$ of the corresponding sides of $\triangle ABC$.							
27.	A man on the top of a vertical observation tower observes a car moving at a uniform speed coming directly towards it. If it takes 12 minutes for the angle of depression to change from 30° to 45°, how long will the car take to reach the observation tower from this point?							
		OR						
	The angle of elevation of a cloud from a point 60 m above the surface of the water of a lake is 30^{0} and the angle of depression of its shadow from the same point in water of lake is 60^{0} . Find the height of the cloud from the surface of water.							
28.	The median of the following data is 100.	525. Find the values of x and y if the total frequency is	4					
	Class Interval	Frequency						
	0-100	2						
	100-200	5						
	200-300	X						
	300-400	12						
	400-500	17						
	500-600	20						
	600-700	Y						
	700-800	9						
	800-900	7						
	900-1000	4						

	Marks	Number of students	
	0-10	5	_
	10-20	3	_
	20-30	4	
	30-40	3	1
	40-50	4	
	50-60	4	
	60-70	7	7
	70-80	9	
	80-90	7	
	90-100	8	
Draw less tha	n type ogive for the data	above and hence find the media	in.

Class: X Mathematics Marking Scheme 2018-19

Time allowed: 3hrs Maximum Marks: 80

Q No	SECTION A	Marks
1	$\left(\frac{-5+(-1)}{2}, \frac{4+0}{2}\right) = \left(\frac{a}{3}, 2\right)$ $\frac{a}{3} = \frac{-6}{2} \Longrightarrow a = -9 \Longrightarrow$	1
2	4K -28+8 = 0 K= 5	1/ ₂ 1/ ₂
	For roots to be real and equal, $b^2 - 4ac = 0$ $\implies (5k)^2 - 4 \times 1 \times 16 = 0$ $k = \pm \frac{8}{5}$	1/ ₂ 1/ ₂
3	$\cot^2\theta - \frac{1}{\sin^2\theta} \cdot = \cot^2\theta - \csc^2\theta$ $= -1$	1 1/2 1/2
	$ sin\theta = cos\theta \theta = 45^{\circ} $ $ \therefore 2tan\theta + cos^{2}\theta = 2 + \frac{1}{2} = \frac{5}{2} $	
4	$a_1 = 3, a_3 = 7$ $s_3 = \frac{3}{2}(3 + 7) = 15$	1/ ₂ 1/ ₂
5	$\frac{AD}{DB} = \frac{AE}{EC} \qquad DE \parallel BC$ $\implies \angle ADE = \angle ABC = 48^{\circ}$	1/ ₂ 1/ ₂
6	4 places	1
	SECTION B	
7	HCF × LCM = Product of two numbers $9 \times 360 = 45 \times 2^{nd}$ number 2^{nd} number = 72	1
	OR	


	Let us assume, to the contrary that $7 - \sqrt{5}$ is irrational	
	$7 - \sqrt{5} = \frac{p}{a}$, Where p & q are co-prime and $q \neq 0$	
	_ 4	1
	$=\sqrt{5}=\frac{7q-p}{q}$	
	$\frac{7q-p}{q}$ is rational = $\sqrt{5}$ is rational which is a contradiction	1
	Hence $7 - \sqrt{5}$ is irrational	
8	20^{th} term from the end = $l - (n-1)d$	1/2
	$= 253-19 \times 5$	
	= 158	$\begin{vmatrix} 1 \\ 1/2 \end{vmatrix}$
		, 2
	OR	
	$7a_7 = 11a_{11} \implies 7(a+6d) = 11(a+10d)$	
		1
	$\implies a + 17d = 0 :: a_{18} = 0$	1
9	$X = \frac{6-6}{5} = 0$	1
	$Y = \frac{-10+15}{5} = 1$	
	5 5	1
10	Probability of either a red card or a queen	1
	$=\frac{26+2}{52}=\frac{28}{52}$	
		1
	P(neither red car nor a queen) = $1 - \frac{28}{52}$	
	$=\frac{24}{52} or \frac{7}{13}$	
11	Total number of outcomes $= 36$	1
	Favourable outcomes are (1,2), (2,1), (1,3), (3,1), (1,5), (5,1) i.e. 6	1
	Required probability = $\frac{6}{36}$ or $\frac{1}{6}$	
10		1,
12	For infinitely many solutions	1/2
	$\frac{p-3}{p} = \frac{3}{p} = \frac{-p}{-12}$	
	$\implies p^2-3p = 3p \qquad \text{or} \qquad 12 \times 3 = p^2$	1
	$\implies p^2 - 6p = 0 \qquad \text{or} \qquad p = \pm 6$	
	p = 0.6	
	$\Longrightarrow p = 6$	
	SECTION: C	
13	By Euclid's Division lemma	6 ×
	$726 = 275 \times 2 + 176$	1/2 =
	$275 = 176 \times 1 + 99$	3
	$176 = 99 \times 1 + 77$	
	$99 = 77 \times 1 + 22$	
	$77=22 \times 3 + 11$	
	$22 = 11 \times 2 + 0$	
	HCF = 11	

14	$5\sqrt{5}x^2+30x+8\sqrt{5}$	1
	$=5\sqrt{5}x^2+20x+10x+8\sqrt{5}$	
	$= 5x(\sqrt{5}x + 4) + 2\sqrt{5}(\sqrt{5}x + 4)$	
	$=(\sqrt{5}x + 4)(5x+2\sqrt{5})$	1
	Zeroes are $\frac{-4}{\sqrt{5}} = \frac{-4\sqrt{5}}{5}$ and $\frac{-2\sqrt{5}}{5}$	1
15	Let the speed of car at A be x km/h	1
	And the speed of car at B be y km/h Case 1 8x-8y = 80	
	x-y=10	
	Case 2 $\frac{4}{3}X + \frac{4}{3}y = 80$	
	x+y=60	1
	on solving $x=35$ and $y=25$	1
	Hence, speed of cars at A and B are 35 km/h and 25 km/h respectively.	_
16		11/2
	(-4,-3) D C (k,2)	1/2
	A B	
	Diagonals of parallelogram bisect each other	
	\implies midpoint of AC = midpoint of BD	1/2
	$(\frac{1+k}{2}, \frac{-2+2}{2}) = (\frac{-4+2}{2}, \frac{-3+3}{2})$	
		1
	OR	-
	For collinearity of the points, area of the triangle formed by given Points is zero.	1
	$\implies \frac{1}{2} \{ (3k-1)(k-7+k+2) + k(-k-2-k+2) + (k-1)(k-2-k+2) \}$	1
	7) = 0	1
	$\implies \{(3k-1)(2k-5)-2k^2+5k-5\}=0$	1
	$\Rightarrow 4k^2 - 12k = 0$	1
	$\implies \qquad k = 0 \; , \; 3$	
17	LHS = $\cot \theta$ - $\tan \theta$	1
	$=\frac{\cos\theta}{\sin\theta}$ - $\frac{\sin\theta}{\cos\theta}$	
	$ \frac{\sin\theta}{\cos^2\theta - \sin^2\theta} $	1/2
	$\sin \theta \cos \theta$ $\cos^2 \theta - 1 + \cos^2 \theta$	1
	$={\sin\theta\cos\theta}$	1/2
	$= \frac{2\cos^2\theta - 1}{\sin\theta\cos\theta} = RHS$	/2
]
	OR	
<u> </u>	I	

	LHS = $sin\theta(1 + tan\theta) + cos\theta(1 + cot\theta)$	1
		1
	$= \sin\theta \left(1 + \frac{\sin\theta}{\cos\theta} \right) + \cos\theta \left(1 + \frac{\cos\theta}{\sin\theta} \right)$	
	$= \sin\theta \left(\frac{\cos\theta + \sin\theta}{\cos\theta} \right) + \cos\theta \left(\frac{\sin\theta + \cos\theta}{\sin\theta} \right)$	1
	$= (\cos\theta + \sin\theta) \left(\frac{\sin^2\theta + \cos^2\theta}{\cos\theta \sin\theta} \right)$	
		4
	$= \frac{\cos\theta + \sin\theta}{\cos\theta \sin\theta} = \csc\theta + \sec\theta = RHS$	1
	SECTION: E	
18		
	A O D	1
	$\angle APB = 90^{0}$ (angle in semi-circle) $\angle ODB = 90^{0}$ (radius is perpendicular to tangent)	1/2
	$\triangle ABP \sim \triangle OBD$	
	$\implies \frac{AB}{OB} = \frac{AP}{OD}$	1
	OB OD	1
	$\Longrightarrow \frac{26}{13} = \frac{AP}{8}$ $\Longrightarrow AP = 16cm$	
19	$ \angle 1 = \angle 2 $ $ \Rightarrow PT=PS \qquad (i) $ $ \Delta NSQ \cong \Delta MTR $ $ \Rightarrow \angle NQS = \angle MRT $ $ \Rightarrow \angle PQR = \angle PRQ $ $ \Rightarrow PR=PQ \qquad (ii) $ From (i) and (ii) $ \frac{PT}{PR} = \frac{PS}{PQ} $	1
	Also, $\frac{1}{PR} = \frac{1}{PQ}$ $ \angle TPS = \angle RPQ \text{ (common)} $	1
	$\Rightarrow \Delta PTS \sim \Delta PRQ$	1
	OR	-

	AD is median, So BD=DC.	1
	$AB^{2}=AE^{2}+BE^{2}$ $AC^{2}=AE^{2}+EC^{2}$	1
	Adding both, $AB^{2}+AC^{2} = 2AE^{2}+BE^{2}+CE^{2}$ $= 2(AD^{2}-ED^{2})+(BD-ED)^{2}+(DC+ED)^{2}$ $= 2AD^{2}-2ED^{2}+BD^{2}+ED^{2}-2BD.ED+DC^{2}+ED^{2}+2CD.ED$ $= 2AD^{2}+BD^{2}+CD^{2}$ $= 2(AD^{2}+BD^{2})$	1
20	$r = 42cm$ $\frac{2\pi r\theta}{360^{\circ}} = 44$ $\theta = \frac{44 \times 360 \times 7}{2 \times 22 \times 42} = 60^{0}$	1
	Area of minor segment = area of sector – area of corresponding triangle $= \frac{\pi r^2 \theta}{360^{\circ}} - \frac{\sqrt{3}}{4} r^2$ $= r^2 \left[\frac{22}{7} \times \frac{60}{360} - \frac{\sqrt{3}}{4} \right]$	1/2
	$= 42 \times 42 \left[\frac{11}{21} - \frac{\sqrt{3}}{4} \right]$ $= 42 \times 42 \times \left[\frac{44 - 21\sqrt{3}}{84} \right]$	1/ ₂
	$= 21 (44 - 21\sqrt{3}) \text{ cm}^2$	
21	Volume of water flowing through pipe in 1 hour $= \frac{22}{7} \times 15 \times 1000 \times \frac{7}{100} \times \frac{7}{100}$ $= 231 \text{ m}^3$	1
	Volume of rectangular tank = $50 \times 44 \times \frac{21}{100}$	1
	$= 22 \times 21 \text{ m}^3$ Time taken to flow 231 m³ of water = 1 hours ∴ Time taken to flow 22 × 21 m³ of water = $\frac{1}{231}$ × 22 × 21 = 2 hours	1
	OR	
	Number of balls = $\frac{\text{Volume of solid sphere}}{\text{Volume of 1 spherical ball}}$	1
	$= \frac{\frac{4}{3} \times \pi \times 3 \times 3 \times 3}{\frac{4}{3} \times \pi \times 0.3 \times 0.3 \times 0.3}$	1
	= 1000	1
		1
1		i

22	200-250 is the modal class	1
	Mode = $l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$	1
	$=200+\frac{12-5}{24-5-2}\times 50$	$\begin{vmatrix} 1/2 \\ 1/2 \end{vmatrix}$
	= 200+20.59 = Rs. 220.59	/ 2
	Continu D	
	Section D	
23	Let the usual speed of the train be x km/h	2
	$\frac{300}{x} - \frac{300}{x+5} = 2$	
	$\implies x^2 + 5x - 750 = 0 (x + 30)(x - 25) = 0$	1
	$(x+30)(x-25) = 0$ $\Rightarrow x = -30,25$	
	∴ Usual Speed of the train = 25 km/h	1
	OR	
	$\frac{1}{(a+b+x)} - \frac{1}{x} = \frac{1}{a} + \frac{1}{b}$ $\Longrightarrow \frac{x-a-b-x}{x(a+b+x)} = \frac{b+a}{ab}$	1
	${x(a+b+x)} - {ab}$ $\Rightarrow -ab = x^2 + (a+b)x$	1
	$\Rightarrow x^2 + ax + bx + ab = 0$	1
	$\Rightarrow (x+a)(x+b) = 0$ $\Rightarrow x = -a, -b$	1
24	$n=50$, $a_3=12$ and $a_{50}=106$	1/2
	a+2d = 12 a+49d = 106	1
	on solving, d=2 and a=8	1
	$a_{29} = a + 28d$	1/2
	$= 8+28\times 2 = 64$	1
25	Correct given, To prove, figure and construction	1/2
		× 4 = 2
	Correct proof	2
26	Correct construction of ΔABC	1
	Correct construction of similar triangle	3

Correct figure

In
$$\triangle ABE$$
,
 $\frac{h}{x} = \tan 30^{\circ}$
 $\implies x = h\sqrt{3}$

1/2

1

1

1

1

1/2

1/2

	In $\triangle BDE$, $\frac{h+60+60}{x} = \tan \theta$ $h+120 = x\sqrt{3}$ $h+120 = h\sqrt{3} \times \sqrt{3}$ $2h = 120$ $h = 60$ $\therefore height of cloud from$		· = (60 + 60) <i>m</i> = 120 <i>r</i>	
28	Class Interval	Frequency	cf	1
	0-100	2	2	
	100-200	5	7	
	200-300	X	7+x	
	300-400	12	19+x	
	400-500	17	36+x	
	500-600	20	56+x	
	600-700	у	56+x+y	
	700-800	9	65+x+y	
	800-900	7	72+x+y	
	900-1000	4	76+x+y	
	N=100 \Longrightarrow 76+x+y=100 \Longrightarrow x+y=24 Median = 525 \Longrightarrow 500 - 6 60-80 is the median class Median = $l + \frac{\frac{n}{2} - cf}{f} \times h$ \Longrightarrow 500 + $\left(\frac{50 - 36 - x}{20}\right) \times 10$ \Longrightarrow (14 - x) × 5 = 25 \Longrightarrow x = 9 \Longrightarrow from (1), y = 5.9	00 is median class 00 = 525	(i)	1/ ₂ 1/ ₂ 1
		OR		

		Marks	Number of students	cf			
		0-10	5	5			
		10-20	3	8			
		20-30	4	12	ı		
		30-40	3	15			
		40-50	3	18			
		50-60	4	22			
		60-70	7	29			
		70-80	9	38			
		80-90	7	45			
		90-100	8	53			
	Correct table Drawing correct Ogive Median=64						
29	$r_1 = 15 \text{cm}$, $r_2 = 5 \text{cm}$ h = 24 cm $l = \sqrt{h^2 + (r_1 - r_2)^2}$ $= \sqrt{24^2 + 10^2} = 26 \text{cm}$					1	
	Curved surface area of bucket = $\pi(r_1 + r_2)l$ = $\frac{22}{7} \times (15 + 5) \times 26$ = $\frac{22 \times 20 \times 26}{2}$					1	
	$= \frac{11440}{7} \text{ cm}^2 \text{ or } 1634.3 \text{ cm}^2$					1	
30	1. $Sec\theta + tan\theta = p$ $\frac{1}{cos\theta} + \frac{sin\theta}{cos\theta} = p$ $1 + sin\theta = pcos\theta$ $= p \sqrt{1 - sin^2\theta}$					1	
	$(1+\sin\theta)^2 = p^2(1-\sin^2\theta)$ $1 + \sin^2\theta + 2\sin\theta = p^2 - p^2\sin^2\theta$ $(1+p^2)\sin^2\theta + 2\sin\theta + (1-p^2) = 0$ $D = 4 - 4(1+p^2)(1-p^2)$ $= 4 - 4(1-p^4) = 4p^4$					1	
	$Sin\theta = \frac{-2 \pm \sqrt{4p^4}}{2(1+p^2)} = \frac{-1 \pm p^2}{(1+p^2)}$ $= \frac{p^2 - 1}{p^2 + 1}, -1$					1 1/2	
	$\therefore Cosec \ \theta = \frac{p^2+1}{p^2-1} \ , -1$					1	