SIMPLE INTEREST

SIMPLE INTEREST

Interest is that extra money which is paid by the borrower to the lender for the use of money lent for a specified period. The sum borrowed is called the *Principal* and the total sum of principal and the interest is called the *Amount*. Interest is usually calculated at a *rate per cent* for a certain period (*time*).

If the interest on a certain sum borrowed for a certain period is reckoned uniformly, then it is called *Simple Interest*, denoted by SI = Simple Interest

Thus, if A = Amount, P = Principal, I = Interest, T = Time (in years), R = rate per cent per annum

Then, we can recognized the following useful relations:

1.
$$I = \frac{P \times R \times T}{100}$$
 2. $P = \frac{100 \times SI}{T \times R}$

3.
$$T = \frac{100 \times \text{SI}}{P \times R}$$
 4. $R = \frac{100 \times \text{SI}}{P \times T}$

5.
$$P = \frac{100 \times A}{100 + RT}$$
 6. $A = P + SI$

Short-Cut

 $SI = (Rate \times Time)$ per cent of Principal Rate = Interest as the percentage of the Principal.

EXERCISE

- 1. At what rate per cent, a sum of money doubles itself in 15 years?
 - (a) 25%
- (b) 6%
- (c) 6.66%
- (d) 8%
- (e) None of these
- **2.** A sum becomes 28/25 of itself in 5 years, find the rate of interest.
 - (a) 3%
- (b) 5%
- (c) 12%
- (d) 2.40%
- (e) None of these
- 3. If ₹ 900 amounts to ₹ 1,080 in 4 years at simple interest, what sum will amount to ₹ 1,275 in 5 years at the same rate?
 - (a) ₹ 1,020
- (b) ₹ 1.050
- (c) ₹ 1,080
- (*d*) ₹ 1,200
- (e) None of these
- 4. A sum of money doubles itself in 7 years, in

how many years it will become four fold?

- (a) 10 years
- (b) 35 years
- (c) 14 years
- (*d*) 21 years
- (e) 28 years
- 5. A certain sum of money amounted to ₹ 575 at 5% in a time in which ₹ 750 amounted to ₹ 840 at 4%. The rate being the simple interest, what was the sum?
 - (a) ₹ 650
- (*b*) ₹ 625
- (c) ₹ 500
- (*d*) ₹ 475
- (e) None of these
- 6. ₹ 4,000 is divided into two parts such that if one part be put out at 3 % and the other at 5%, the annual interest from both the investments be ₹ 144. Find the first part.
 - (a) ₹ 3,000
- (*b*) ₹ 2,800
- (*c*) ₹ 2,500
- (d) ₹ 1,200
- (e) None of these

- 7. A sum of money amounts to ₹ 767 in 3 years and ₹ 806 in 4 years at the rate of 6%. What is the sum?
 - (a) ₹ 600
- (*b*) ₹ 650
- (c) ₹ 700
- (*d*) ₹ 675
- (e) None of these
- **8.** In how many years will a sum of money double itself at 12% per annum?
 - (a) 6 years 9 months (b) 8 years 4 months
 - (c) 7 years 6 months
- (d) 8 years 6 months
- (e) None of these

- 9. What annual payment will discharge a debt of ₹580 due in 5 years, the rate being 8% per annum?
 - (a) ₹ 166.40
- (*b*) ₹ 65.60
- (*c*) ₹ 100
- (d) ₹ 120
- (e) None of these
- **10.** A lent ₹ 600 to B for 2 years and ₹ 150 to C for 4 years and received altogether from both ₹ 90 as simple interest. The rate of interest is:
 - (a) 12%
- (b) 4%
- (c) 5%
- (d) 10%
- (e) None of these

EXPLANATORY ANSWERS

1. (c): Suppose principal = P, \therefore Amount = 2P

$$SI = 2P - P = P, P = \frac{P \times 15 \times r}{100}$$

Where r = rate

So, r = 100/15 = 20/3 = 6.66%.

Trick: Rate = $100/\tan = 100/15 = 6.66\%$

2. (d): Suppose, principal = P

Amount =
$$28/25 P$$

$$SI = \frac{28}{25}P - P = 3P/25$$

$$\frac{3P}{25} = \frac{P \times 5 \times r}{100}$$

$$\Rightarrow$$
 $r = \frac{3 \times 100}{25 \times 5} = \frac{12}{5} = 2.4\%$

3. (a): SI = ₹ 180

$$r = \frac{180 \times 100}{4 \times 900} = 5\%$$

Let P = ₹ 100

SI =
$$\frac{100 \times 5 \times 5}{100}$$
 = ₹ 25
A = 100 + 25 = 125

when amount is 125 then, P = 100

when amount is 1275 then, $P = \frac{100}{125} \times 1275$ = ₹ 1020

4. (*d*): Trick: Rate = 100 / 7

So, Time =
$$\frac{3 \times 100 \times 7}{100} = 21 \text{ years}$$

5. (c): SI = 840 - 750 = ₹90

$$T = \frac{90 \times 100}{750 \times 4} = 3 \text{ years}$$

- P = $\frac{100 \times 575}{100 + 3 \times 5}$ = $\frac{57500}{115}$ = ₹ 500.
- 6. (b): Trick:

Let first part be *x*

second part = 4000 - x

According to the question,

$$\frac{x \times 3 \times 1}{100} + \frac{(4000 - x) \times 5 \times 1}{100} = 144$$

$$\Rightarrow \frac{3x}{100} + \frac{20000}{100} - \frac{5x}{100} = 144$$

$$\Rightarrow \frac{-2x}{100} = 144 - 200$$

$$\Rightarrow \qquad x = \frac{5600}{2} = 2800$$

Hence, first part x = 32800

7. (**b**): S.I. = 806 - 767 = 39

$$\therefore P = \frac{39 \times 100}{1 \times 6} = \text{ } 650.$$

- **8.** (b): Time = 100/ rate = 100/12 = 25/3 years = 8 years 4 months.
- 9. (c): Suppose, every instalment = ₹ 100 So, $(100+8\times4)+(100+8\times3)+(100+8\times2)$ $+(100+8\times1)+100=₹580$ When it is ₹ 580 then instalment = ₹ 100.

10. (c):
$$\frac{600 \times r \times 2}{100} + \frac{150 \times r \times 4}{100} = ₹90$$
⇒
$$12r + 6r = 90$$

$$\Rightarrow r = \frac{90}{18} = 5\%$$

So,
$$r = 5\%$$
.