Principle of Mathematical Induction

- Problems Based on Sum of Series, Problems Based on Inequality and
- Consider the statement: "P(n): n² n + 41 is prime." Then which one of the following is true? [Jan. 10, 2019 (II)]
 (a) Both P(3) and P(5) are true.
 - (b) P(3) is false but P(5) is true.

Divisibility

TOPIC 1

- (c) Both P(3) and P(5) are false.
- (d) P(5) is false but P(3) is true.
- 2. Let $S(K) = 1 + 3 + 5... + (2K 1) = 3 + K^2$. Then which of the following is true [2004]

- (a) Principle of mathematical induction can be used to prove the formula
- (b) $S(K) \Rightarrow S(K+1)$
- (c) $S(K) \Rightarrow S(K+1)$
- (d) S(1) is correct
- 3. If $a_n = \sqrt{7 + \sqrt{7 + \sqrt{7 + \dots}}}$ having n radical signs then by methods of mathematical induction which is true [2002]
 - (a) $a_n > 7 \forall n \ge 1$ (b) $a_n < 7 \forall n \ge 1$ (c) $a_n < 4 \forall n \ge 1$ (d) $a_n < 3 \forall n \ge 1$

Hints & Solutions

EBD 83

- (a) $P(n) = n^2 n + 41$ 1. \Rightarrow P(3)=9-3+41=47 (prime)
 - & P(5) = 25 5 + 41 = 61 (prime)
- \therefore P(3) and P(5) are both prime i.e., true. 2.
 - **(b)** $S(K) = 1+3+5+...+(2K-1) = 3+K^2$
 - S(1): 1 = 3 + 1, which is not true
 - $\therefore S(1)$ is not true.
 - .:. P.M.I cannot be applied
 - Let S(K) is true, i.e.
 - $S(K): 1+3+5...+(2K-1)=3+K^2$

Adding 2K + 1 on both sides $\Rightarrow 1+3+5\dots+(2K-1)+2K+1$ $=3+K^{2}+2K+1=3+(K+1)^{2}=S(K+1)$ $\therefore S(K) \Rightarrow S(K+1)$

(b) For n = 1, $a_1 = \sqrt{7} < 7$. Let $a_m < 7$. 3. Then $a = \sqrt{7 + a}$

I hen
$$a_{m+1} = \sqrt{4} + a_m$$

 $\Rightarrow a_{m+1}^2 = 7 + a_m < 7 + 7 < 14.$

 $\Rightarrow a_{m+1} < \sqrt{14} < 7$; So, by the principle of mathematical induction $a_n < 7$, $\forall n$.