Maximum Marks: 200

Time allowed: 45 minutes

General Instructions:

- The examination will consist of Objective Type with Multiple Choice Questions (MCQs).
- (ii) Section A consists of 15 questions. All are compulsory.
- (iii) Section B (B1) consists of 35 questions, out of which 25 questions are to be attempted.
- (iv) Each question carries 5 marks.
- (v) There is negative marking of one mark for every incorrect answer.
- (vi) Use of calculator and log tables is not permitted.

Section-A

Choose the correct option:

1. If $[m \ n] \begin{bmatrix} m \\ n \end{bmatrix} = [25]$ and m < n, then (m, n) is equal to

(d) None of these

(d) None

3. The inverse of the matrix $\begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$ is

(a)
$$\begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 4/11 & 1/11 \\ -3/11 & 2/11 \end{bmatrix}$$
 (c) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

(c)
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

(d) $\begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$

4. If $f(x) = e^{x^2}$ then f'(x) is equal to

(a)
$$2e^{x^2}(1+2x^2)$$

(b)
$$e^{x^2}(1+2x^2)$$

(c)
$$2e^{x^2}(1+2x)$$

(d)
$$e^{x^2}(1+2x)$$

5. The interval in which the function f given by $f(x) = x^2 e^{-x}$ is strictly increasing, is

$$(a) (-\infty, \infty)$$

(b)
$$(-\infty, 0)$$

$$(d)$$
 $(0, 2)$

6. The anti derivative of $\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)$ equals

(a)
$$\frac{1}{3}x^{1/3} + 2x^{1/2} + C$$

(b)
$$\frac{2}{3}x^{2/3} + \frac{1}{3}x^2 + C$$

(c)
$$\frac{2}{3}x^{3/2} + 2x^{1/2} + C$$

(a)
$$\frac{1}{3}x^{1/3} + 2x^{1/2} + C$$
 (b) $\frac{2}{3}x^{2/3} + \frac{1}{3}x^2 + C$ (c) $\frac{2}{3}x^{3/2} + 2x^{1/2} + C$ (d) $\frac{3}{2}x^{3/2} + \frac{1}{2}x^{1/2} + C$

7.	$\int \frac{(\sin^2 x - \cos^2 x)}{\sin^2 x \cos^2 x} dx \text{ is equal to}$							
	(a) $\tan x + \cot x + C$	(b) $\tan x + \csc x + C$	(c) $-\tan x + \cot x + C$	(d) $\tan x + \sec x + C$				
8.	$\int e^x \left(\frac{1-x}{1+x^2}\right)^2 dx \text{ is equal to}$							
	(a) $\frac{e^x}{1+x^2} + C$	(b) $\frac{-e^x}{1+x^2}+C$	(c) $\frac{e^x}{(1+x^2)^2} + C$	(d) $\frac{-e^x}{(1+x^2)^2} + C$				
9.	$\int_{1}^{\sqrt{3}} \frac{dx}{1+x^2}$ is equal to							
	(a) $\frac{\pi}{3}$	(b) $\frac{2\pi}{3}$	(c) $\frac{\pi}{6}$	(d) $\frac{\pi}{12}$				
10.	The area enclosed by the circle $x^2 + y^2 = 2$ is equal to							
	(a) 4π sq. units	(b) $2\sqrt{2}\pi$ sq. units	(c) $4\pi^2$ sq. units	(d) 2π sq. units				
11.	The degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^2 = x \sin\left(\frac{dy}{dx}\right)$ is							
	(a) 1	(b) 2	(c) 3	(d) not defined				
12.	The integrating factor of differential equation $\cos x \frac{dy}{dx} + y \sin x = 1$ is							
	(a) $\cos x$	(b) tan x	(c) sec x	(d) sin x				
13.	Corner points of the feasible region determined by the system of linear constraints are $(0, 3)$, $(1, 1)$ and $(3, 0)$. Let $Z = px + qy$, where $p, q > 0$. Condition on p and q so that the minimum of Z occurs at $(3, 0)$ and $(1, 1)$ is							
	(a) $p = 2q$	(b) $p = \frac{q}{2}$	(c) $p = 3q$	(d) $p = q$				
14.	Let <i>X</i> denote the number of time tail appear in <i>n</i> tosses of a fair coin. If $P(X = 1)$, $P(X = 2)$ and $P(X = 3)$ are if AP, then the value of <i>n</i> is							
	(a) 9	(b) 2	(c) 7	(d) none of these				
15.	the transfer of the transfer o							
	(a) ${}^{9}C_{5} \times \frac{1}{2^{5}}$	(b) $\frac{{}^{9}C_{4}}{2^{10}}$	(c) $\frac{{}^{9}C_{5}}{2^{9}}$	(d) none of these				
		Section-	B (B1)					
16.	Let A be the finite set cor	ntaining n distinct elements	s. The number of relations th	hat can be defined on A is				
	(a) 2 ⁿ	(b) n^2	(c) 2 n ²	$(d) 2^{n-1}$				
17.	If * is a binary operation	on set Z of integers $a * b =$	3a - b the 2 * 3					
	(a) 2	(b) 4	(c) 3	(d) None of these				
18.	Let R be the relation defi R is	ned on the set N of natural	numbers by the rule $x R y$ i	ff $x + 2y = 8$, then domain of				
	(a) {2,4,8}	(b) {2,4,6}	(c) {2,4,6,8}	(d) {1,2,3,4}				
19.	If $f: R \to R$ be defined by	$f(x) = \frac{1}{x}, \forall x \in R$. Then $f(x) = \frac{1}{x}$	is					
	(a) One - One	(b) Onto	(c) Bijective	(d) f is not defined				
20.	If $f: R \to R$ be defined by $f(x) = 3x^2 - 5$ and $g: R \to R$ by $g(x) = \frac{x}{x^2 + 1}$, then gof is							
	(a) $\frac{3x^2 - 5}{9x^4 - 30x^2 + 26}$	(b) $\frac{3x^2 - 5}{9x^4 - 6x^2 + 26}$	(c) $\frac{3x^2}{x^4 + 2x^2 - 4}$	$(d) \ \frac{3x^2}{9x^4 + 30x^2 - 2}$				

21.	Which of the fo	llowing is the pr	incipal value	branch of	cos ⁻¹ x?
	(a) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$	(b) (0,	π)	(c)	$[0,\pi]$

(d)
$$(0, \pi) - \left\{\frac{\pi}{2}\right\}$$

22. If $3 \tan^{-1} x + \cot^{-1} x = \pi$, then x is equal to

(b) 1

(c) - 1

(d) $\frac{1}{2}$

23. The value of $\sin^{-1} \left[\cos \left(\frac{33\pi}{5} \right) \right]$ is

(a)
$$\frac{3\pi}{5}$$

(b)
$$\frac{-7\pi}{5}$$

(c) $\frac{\pi}{10}$

24. The domain of the function cos⁻¹ (2x – 1) is

(d) [0, π]

25. If $A = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$, $B = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$, where $i = \sqrt{-1}$, then the correct relation is

$$(a)\ A+B=0$$

(b)
$$A^2 = B^2$$

(c)
$$A - B = 0$$

(d)
$$A^2 + B^2 = 0$$

26. Which is true about matrix multiplication?

(a) It is commutative

(b) It is associative

(c) Both (a) and (b)

(d) None of these

27. The value of $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 3A - B$ then the values of A and B are

(a)
$$A = 2abc$$
, $B = a+b+c$

(b)
$$A = 0$$
, $B = a^2+b^2+c^2$

(c)
$$A = 3abc$$
, $B = a+b+c$

(d)
$$A = abc$$
, $B = a^3 + b^3 + c^3$

28. If A is an invertible matrix of order 3 and |A| = 5, then |adj A| is

29. The function $f: R \to R$ given by f(x) = -|x-1| is

(a) continuous as well as differentiable at x = 1

(b) not continuous but differentiable at x = 1

(c) continuous but not differentiable at x = 1

(d) neither continuous nor differentiable at x = 1

The function f(x) = [x], where [x] denotes the greatest integer function, is continuous at

Differential coefficient of sec (tan⁻¹x) w.r.t. x is

(a)
$$\frac{x}{\sqrt{1+x^2}}$$

(b)
$$\frac{x}{1+x^2}$$

(c)
$$x\sqrt{1+x^2}$$

(d)
$$\frac{1}{\sqrt{1+x^2}}$$

32. If $y = \log \sqrt{\tan x}$, then the value of $\frac{dy}{dx}$ at $x = \frac{\pi}{4}$ is

(c)
$$\frac{1}{2}$$

33. $f(x) = x^x$ has a stationary point at

(a)
$$x = e$$

(b)
$$x = \frac{1}{e}$$

(c)
$$x = 1$$

(d)
$$x = \sqrt{e}$$

34. $\int \frac{dx}{\sqrt{9x-4x^2}}$ is equal to

(a)
$$\frac{1}{9} \sin^{-1} \left(\frac{9x - 8}{8} \right) + C$$

(b)
$$\frac{1}{2} \sin^{-1} \left(\frac{8x - 9}{9} \right) + C$$

(b) $\frac{1}{2} \sin^{-1} \left(\frac{8x - 9}{9} \right) + C$

(d) $\frac{1}{2} \sin^{-1} \left(\frac{9x - 8}{9} \right) + C$

(a) $\frac{1}{9}\sin^{-1}\left(\frac{9x-8}{8}\right)+C$

(c) $\frac{1}{3}\sin^{-1}\left(\frac{9x-8}{8}\right)+C$

49. If two events are independent, then

- (a) they must be mutually exclusive.
- (b) the sum of their probabilities must be equal to 1.
- (c) Both (a) and (b) are correct.
- (d) None of the above is correct.

50 If A and B are two events such that $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$ and $P(A/B) = \frac{1}{4}$, then $P(A' \cap B')$ is equals to

- (a) $\frac{1}{12}$
- (b) $\frac{3}{4}$ (c) $\frac{1}{4}$

(d) $\frac{3}{16}$

