
Electric Charges And Fields 
 
Electric Charges, Conductors and Insulators, Charging By Induction 

Electrostatics 

Branch of science that deals with the study of forces, fields, and potentials arising from the static 
charges 

Electric Charge 

• In 600 B.C., the Greek Philosopher Thales observed that amber, when rubbed with wool, acquires 
the property of attracting objects such as small bits of paper, dry leaves, dust particles, etc. 

• This kind of electricity developed on objects, when they are rubbed with each other, is called 
frictional electricity. 

• The American scientist Benjamin Franklin introduced the concept of positive and negative charges 
in order to distinguish the two kinds of charges developed on different objects when they are 
rubbed with each other. 

• In the table given below, if an object in the first column is rubbed against the object given in second 
column, then the object in the first column will acquire positive charge while that in second column 
will acquire negative charge. 

I II 

Woollen cloth Rubber shoes 

Woollen cloth Amber 

Woollen cloth Plastic object 

Fur Ebonite rod 



•  

Electric charge − The additional property of protons and electrons, which gives rise to electric force 
between them, is called electric charge. 

Electric charge is a scalar quantity. A proton possesses positive charge while an electron possesses 
an equal negative charge (where e = 1.6 × 10−19 coulomb). 

• Like charges repel each other whereas unlike charges attract each other. 

• A simple apparatus used to detect charge on a body is the gold-leaf electroscope. 

Conductors and Insulators 

Conductors 

• The substances which allow electricity to pass through them easily are called conductors. 

Example − All the metals are good conductors. 

• Conductors have electrons that can move freely inside the material. 

• When some charge is transferred to a conductor, it readily gets distributed over the entire surface 
of the conductor. 

• When a charged body is brought in contact with the earth, all the excess charge on the body 
disappears by causing a momentary current to pass to the ground through the connecting 
conductor (such as our body). This process is known as earthing. 

Insulators 

• The substances which do not allow electricity to pass through them easily are called 
insulators. 

• Most of the non-metals such as porcelain, wood, nylon, etc. are examples of insulator. 

• If some charge is put on an insulator, then it stays at the same place. 

Charging By Induction 

A conductor may be charged permanently by induction in the following steps. 

Glass rod Silk cloth 



Step I 

 

To charge a conductor AB negatively by induction, bring a positively charged glass rod close to it. 
The end A of the conductor becomes negatively charged while the far end B becomes positively 
charged. It happens so because when positively charged glass rod is brought near the conductor 
AB, it attracts the free electrons present in the conductor towards it. As a result, the electron 
accumulates at the near end A and therefore, this end becomes negatively charged and end B 
becomes deficient of electrons and acquires positive charge. 

Step II 

 

The conductor is now connected to the earth. The positive charges induced will disappear. The 
negative induced charge on end A of the conductor remains bound to it due to the attractive forces 
exerted by the positive glass rod. 

Step III 



 

The conductor is disconnected from the earth keeping the glass rod still in its position. End A of the 
conductor continues to hold the negative induced charge. 

Step IV 

 

Finally, when the glass rod is removed, the negative induced charge on the near end spreads 
uniformly over the whole conductor. 

 

 

Basic Properties of Electric Charges and Coulomb's Law 

Basic Properties of Electric Charges 

• Additive nature of charges − The total electric charge on an object is equal to the algebraic sum of 
all the electric charges distributed on the different parts of the object. If q1, q2, q3, … are electric 
charges present on different parts of an object, then total electric charge on the 
object, q = q1 + q2 + q3 + … 

• Charge is conserved − When an isolated system consists of many charged bodies within it, due to 
interaction among these bodies, charges may get redistributed. However, it is found that the total 
charge of the isolated system is always con`erved. 



• Quantization of charge − All observable charges are always some integral multiple of elementary 
charge, e (= ± 1.6 × 10−19 C). This is known as quantization of charge. 

 

Coulomb’s Law 

 

• Two point charges attract or repel each other with a force which is directly proportional to the 
product of the magnitudes of the charges and inversely proportional to the square of the distance 
between them. 

 

 

 

Where,  [In SI, when the two charges are located in vacuum] 

− Absolute permittivity of free space = 8.854 × 10−12 C2 N−1 m−2 

 

We can write equation (i) as 

 

• The force between two charges q1 and q2 located at a distance r in a medium may be expressed as

 



Where − Absolute permittivity of the medium 

 

The ratio is denoted by εr, which is called relative permittivity of the medium with respect to 
vacuum. It is also denoted by k, called dielectric constant of the medium. 

 

ε = kε0 

 

Coulomb’s Law in Vector Form 

 

Consider two like charges q1 and q2 present at points A and B in vacuum at a distance r apart. 

According to Coulomb’s law, the magnitude of force on charge q1 due to q2 (or on charge q2 due 
to q1) is given by, 

 

Let 

− Unit vector pointing from charge q2 to q1 

− Unit vector pointing from charge q1 to q2 



 [ is force on charge  q1 due to charge q2 ,along the direction of unit 

vector   ] …(ii) 

[ is force on charge q2 due to charge q1  ,along the direction of unit 

vector  ] …(iii) 

 

∴Equation (ii) becomes 

 

On comparing equation (iii) with equation (iv), we obtain 

 

Forces between Multiple Charges 

Superposition Principle 
 
Force on any charge due to a number of other charges is the vector sum of all the forces on that 
charge due to the other charges, taken one at a time. The individual forces are unaffected due to the 
presence of other charges. 

 



Consider that n point charges q1, q2, q3, … qn are distributed in space in a discrete manner. The 

charges are interacting with each other. Let the charges q2, q3, … qn exert forces on 
charge q1. Then, according to principle of superposition, the total force on charge q1 is given by, 

 

If the distance between the charges q1 and q2 is denoted as r12; and is unit vector from 
charge q2 to q1, then 

 

Similarly, the force on charge q1 due to other charges is given by, 

 

 

Substituting these in equation (i), 

 

 

 

 

Electric Field, Electric Field Lines and Continuous Charge Distribution 

Electric Field 

So, we can define electric field as the space around a charge, in which any other charge experiences 
electrostatic force of attraction and repulsion.  
 
Electric Field Intensity 
 
The electric field intensity at a point due to a source charge is defined as the force experienced per 
unit positive test charge placed at that point without disturbing the source charge. 



 

Where, 

→ Electric field intensity 

Force experienced by the test charge q0 

Its SI unit is NC−1. 

Electric Field Due To a Point Charge 

 

We have to find electric field at point P due to point charge +q placed at the origin such that  

To find the same, place a vanishingly small positive test charge q0 at point P. 

According to Coulomb’s law, force on the test charge q0 due to charge q is 

 

If is the electric field at point P, then 

 



The magnitude of the electric field at point P is given by, 

 

Representation of Electric Field 

 

Electric Field Due To a System of Charges 

 

Consider that n point charges q1, q2, q3, … qn exert forces on the test charge placed at 
origin O. 

Let be force due to ith charge qi on q0. Then, 

 

Where, ri is the distance of the test charge q0 from qi 



The electric field at the observation point P is given by, 

 

If  is the electric field at point P due to the system of charges, then by principal of superposition 
of electric fields, 

 

Using equation (i), we obtain 

 

Electric Field Lines 

Thus, an electric line of force is the path along which a unit positive charge would move, if it is free 
to do so. 

Properties of Electric Field Lines 
 
Properties of electric field lines are given below:    

• These start from the positive charge and end at the negative charge. 

• They always originate or terminate at right angles to the surface of the charge. 

• They can never intersect each other because it will mean that at that particular point, electric field 
has two directions. It is not possible. 

• They do not pass through a conductor. 

• They contract longitudinally. 

• They exert a lateral pressure on each other. 



 
Representation of Electric Field Lines 

• Field lines in case of isolated point charges 

 

• Field lines in case of a system of two charges 

 

 
Continuous Charge Distribution 

• Linear charge density − When charge is distributed along a line, the charge distribution is called 
linear. 

 

 

Where, 

λ → Linear charge density 



q → Charge distributed along a line 

L → Length of the rod 

• Surface charge density 

 

 

Where, 

σ → Surface charge density 

q → Charge distributed on area A 

• Volume charge density 

 

 

Where, 

δ → Volume charge density 

V → Volume of the conductor 

q → Charge on conductor 

 



Electric Dipole and Dipole in a Uniform External Field 

Electric Dipole 
  
Electric dipole is a system of two equal and opposite charges separated by a certain small distance. 

 

Electric Dipole Moment − It is a vector quantity, with magnitude equal to the product of either of 
the charges and the length of the electric dipole 

 

Its direction is from the negative charge to the positive charge. 

Electric Field on Axial Line of an Electric Dipole 
 
 

 

Let P be at distance r from the centre of the dipole on the side of charge q. Then, 

 

Where, is the unit vector along the dipole axis (from − q to q). Also, 

E+q = q4πεo(r−a)2p⌢E+q = q4πεo(r-a)2p⏜ 

The total field at P is 

 

For r >> a 



 
  

Electric Field for Points on the Equatorial Plane 
 
  

 

The magnitudes of the electric field due to the two charges +q and −q are given by, 

 

The directions of E+q and E−q are as shown in the figure. The components normal to the dipole axis 
cancel away. The components along the dipole axis add up. 

∴ Total electric field 

 [Negative sign shows that field is opposite to ] 

 



At large distances (r >> a), this reduces to 

 

Dipole in a Uniform External Field 

 

Consider an electric dipole consisting of charges −q and +q and of length 2a placed in a uniform 

electric field making an angle θ with electric field. 

Force on charge −q at (opposite to ) 

Force on charge +q at (along ) 

Electric dipole is under the action of two equal and unlike parallel forces, which give rise to a 
torque on the dipole. 

τ = Force × Perpendicular distance between the two forces 

τ = qE (AN) = qE (2a sin θ) 

τ = q(2a) E sinθ 

τ = pE sinθ 

 

 

 



Electric Flux and Gauss Law 

Electric Flux 
 
The electric flux, through a surface, held inside an electric field represents the total number of 
electric lines of force crossing the surface in a direction normal to the surface. 

Electric flux is a scalar quantity and is denoted by Φ. 

 

SI unit − Nm2 C−1 
 
Gauss's Law: Proof  

It states that the total electric flux through a closed surface enclosing a charge is equal to times 
the magnitude of the charge enclosed. 

 

However,  

∴Gauss theorem may be expressed as 

 

Proof 

 

Consider that a point electric charge q is situated at the centre of a sphere of radius ‘a’. 



According to Coulomb’s law, 

 

Where, is unit vector along the line OP 

The electric flux through area element is given by, 

 

 

Therefore, electric flux through the closed surface of the sphere, 

 

It proves the Gauss theorem in electrostatics. 

 

 

Applications of Gauss Law 

Electric Field Due To a Line Charge 



 

Consider a thin, infinitely long straight line charge of linear charge density λ. 

Let P be the point at a distance a from the line. To find the electric field at point P, draw a 
cylindrical surface of radius ‘a’ and length l. 

If E is the magnitude of electric field at point P, then electric flux through the Gaussian surface, 

Φ = E × Area of the curved surface of a cylinder of radius r and length l 
 
As electric lines of force are parallel to end faces (circular caps) of the cylinder, there is no 
component of the field along the normal to the end faces. 
 
Φ = E × 2πal … (i) 

According to Gauss's Theorem, 

 

From equations (i) and (ii), we get: 

 

Electric Field Due to an Infinite Plane Sheet of Charge 



 

Consider an infinite thin plane sheet of positive charge with a uniform surface charge density σ on 
both sides of the sheet. Let P be the point at a distance a from the sheet at which the electric field is 
required. Draw a Gaussian cylinder of area of cross-section A through point P. 

The electric flux crossing through the Gaussian surface, 

Φ = E × Area of the circular caps of the cylinder 
 
Since electric lines of force are parallel to the curved surface of the cylinder, the flux due to the 
electric field of the plane sheet of charge passes only through the two circular caps of the cylinder. 
 
Φ = E × 2A … (i) 

According to Gauss' Theorem, 

 

Here, the charge enclosed by the Gaussian surface, 

q = σA 

 

From equations (i) and (ii), we get: 

 

Electric Field Due to a Uniformly Charged Thin Spherical Shell 



 

• When Point P Lies Outside the Spherical Shell: 

Suppose, we have to calculate the electric field at the point P at a distance r (r > R) from its centre. 
Draw the Gaussian surface through point P to enclose the charged spherical shell. The Gaussian 
surface is a spherical shell of radius r and centre O. 

Let be the electric field at point P. Then, the electric flux through area element , 

 

Since is also along the normal to the surface, 

dΦ = E ds 

∴ Total electric flux through the Gaussian surface, 

 

Now, 

 

Since the charge enclosed by the Gaussian surface is q, according to Gauss' Theorem, 

 

From equations (i) and (ii), we get: 



 

• When Point P Lies Inside the Spherical Shell: 

In such a case, the Gaussian surface encloses no charge. 

According to Gauss' Law, 

E × 4πr2 = 0 

i.e. = E = 0 (r < R) 
 
Mechanical Force Acting on Unit Area of a Charged Conductor 

 
A - point just near and outside the positively charged conductor 
B - point just near and inside the positively charged conductor 
ds - infinitesimal area of the charged conductor. 
E→E→ - electric field intensity at point A 
E1−→E1→ - electric field intensity due to charges on ds 
E2−→E2→ - electric field intensity due to charges on remaining area of the conductor 
σ - surface charge density over ds 
  
Take a positively charged conductor of an arbitrary shape that is kept in a medium of 
permittivity ε. The electric field intensity at point A, 
E=σεE=σε 
The resultant magnitude of electric intensity E at the point has two components E1 and E2. 
∴ E = E1 + E2 
E1+E2=σεE1+E2=σε ...(1) 
The direction of the component E1−→E1→ at A and B is opposite, whereas the 
component E2−→E2→ for points A and B is in the outwards direction.The magnitude of the 
resultant intensity at point B is 
∣∣∣E1−→−E2−→∣∣∣E1→-E2→ 



As the electric field inside a conductor is zero, point B being inside the conductor will have zero 
magnetic field. 
∴ ∣∣∣E1−→−E2−→∣∣∣E1→-E2→=0 
⇛ E1 = E2   .....(2) 
 
From equations (1) and (2), we get: 
2E2=σε∴E2=σ2ε2E2=σε∴E2=σ2ε 
∴ E1=E2=σ2εE1=E2=σ2ε 
 
The charged element experiences a force perpendicular to its surface and it is directed outwards 
and its magnitude, 
F=(σds)(E2)⇒F=(σds)×σ2ε=σ2ds2εF=(σds)(E2)⇒F=(σds)×σ2ε=σ2ds2ε 
Force per unit area, 
f=Fds=σ22εf=Fds=σ22ε 
The above expression can also be expressed as 
f=(εE)22ε=12εE2f=(εE)22ε=12εE2 
 
Energy Density of a Medium 

 
 
The electrostatic energy stored in the electric field per unit volume is called energy density. 
 
E→E→ - Electric intensity at a point just near and outside the surface of a positively charged 
conductor 
ds - infinitesimal area of a charged conductor 
dl - infinitesimal displacement of area ds 
 
The mechanical force per unit area, 
f=12εE2f=12εE2 
The force acting normally outwards on the area ds of the charged conductor, 
F=12εE2dsF=12εE2ds 
 
When ds is pushed through a certain distance dl by a mechanical force, to restore the element back 
to the surface, an equal and opposite force F must be applied on it. 
Work done by the force, 
dW=F.dldW=F.dl  ... (4) 



 
On substituting the value of F in equation (4), we get: 
dW=12εE2dsdl =12εE2dvdW=12εE2dsdl =12εE2dv    (dv = ds.dl = volume swept by the element) 
 
The work done is stored in the electric field in the form of electrostatic energy. Thus, electrostatic 
energy, 
du=12εE2dvdu=12εE2dv 
Energy density, 
dudv=12εE2dudv=12εE2 


