Mathematics

(Chapter - 5) (Continuity and Differentiability) (Exercise 5.1) (Class - XII)

Question 1:

Prove that the function f(x) = 5x - 3 is continuous at x = 0, at x = -3 and at x = 5.

Answer 1:

Given function f(x) = 5x - 3

At
$$x = 0$$
, $f(0) = 5(0) - 3 = -3$

LHL =
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (5x - 3) = -3$$

RHL =
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} (5x - 3) = -3$$

Here, at
$$x = 0$$
, LHL = RHL = $f(0) = -3$

Hence, the function f is continuous at x = 0.

At
$$x = -3$$
, $f(-3) = 5(-3) - 3 = -18$

LHL =
$$\lim_{x \to -3^{-}} f(x) = \lim_{x \to -3^{-}} (5x - 3) = -18$$

RHL =
$$\lim_{x \to -3^+} f(x) = \lim_{x \to -3^+} (5x - 3) = -18$$

Here, at
$$x = -3$$
, LHL = RHL = $f(-3) = -18$

Hence, the function f is continuous at x = -3.

At
$$x = 5$$
, $f(5) = 5(5) - 3 = 22$

LHL =
$$\lim_{x \to 5^{-}} f(x) = \lim_{x \to 5^{-}} (5x - 3) = 22$$

RHL =
$$\lim_{x \to 5^+} f(x) = \lim_{x \to 5^+} (5x - 3) = 22$$

Here, at
$$x = 5$$
, LHL = RHL = $f(5) = 22$

Hence, the function f is continuous at x = 5.

Question 2:

Examine the continuity of the function $f(x) = 2x^2 - 1$ at x = 3.

Answer 2:

Given function
$$f(x) = 2x^2 - 1$$
. At $x = 3$, $f(3) = 2(3)^2 - 1 = 17$

LHL =
$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (2x^{2} - 1) = 17$$

RHL =
$$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} (2x^2 - 1) = 17$$

Here, at
$$x = 3$$
, LHL = RHL = $f(3) = 17$

Hence, the function f is continuous at x = 3.

Question 3:

Examine the following functions for continuity:

$$(a) f(x) = x - 5$$

(c)
$$f(x) = \frac{x^2 - 25}{x + 5}, x \neq -5$$

(b)
$$f(x) = \frac{1}{x-5}, x \neq 5$$

(d)
$$f(x) = |x - 5|$$

Answer 3:

(a) Given function f(x) = x - 5

Let, k be any real number. At x = k, f(k) = k - 5

LHL =
$$\lim_{x \to k^{-}} f(x) = \lim_{x \to k^{-}} (x - 5) = k - 5$$

RHL =
$$\lim_{x \to k^+} f(x) = \lim_{x \to k^+} (x - 5) = k - 5$$

At,
$$x = k$$
, LHL = RHL = $f(k) = k - 5$

Hence, the function f is continuous for all real numbers.

(b) Given function $f(x) = \frac{1}{x-5}, x \neq 5$

Let, k ($k \neq 5$) be any real number. At x = k, $f(k) = \frac{1}{k-5}$

LHL =
$$\lim_{x \to k^{-}} f(x) = \lim_{x \to k^{-}} \left(\frac{1}{x-5} \right) = \frac{1}{k-5}$$

RHL =
$$\lim_{x \to k^+} f(x) = \lim_{x \to k^+} \left(\frac{1}{x-5} \right) = \frac{1}{k-5}$$

At,
$$x = k$$
, LHL = RHL = $f(k) = \frac{1}{k-5}$

Hence, the function f is continuous for all real numbers (except 5).

(c) Given function $f(x) = \frac{x^2 - 25}{x + 5}$, $x \neq -5$

Let, $k (k \neq -5)$ be any real number.

At
$$x = k$$
, $f(k) = \frac{k^2 - 25}{k+5} = \frac{(k+5)(k-5)}{(k+5)} = (k-5)$

LHL =
$$\lim_{x \to k^{-}} f(x) = \lim_{x \to k^{-}} \left(\frac{x^{2} - 25}{x + 5} \right) = \lim_{x \to k^{-}} \left(\frac{(k+5)(k-5)}{(k+5)} \right) = k - 5$$

RHL =
$$\lim_{x \to k^+} f(x) = \lim_{x \to k^+} \left(\frac{x^2 - 25}{x + 5} \right) = \lim_{x \to k^+} \left(\frac{(k+5)(k-5)}{(k+5)} \right) = k - 5$$

At,
$$x = k$$
, LHL = RHL = $f(k) = k - 5$

Hence, the function f is continuous for all real numbers (except – 5).

(d) Given function
$$f(x) = |x - 5| = \begin{cases} 5 - x, & x < 5 \\ x - 5, & x \ge 5 \end{cases}$$

Let, k be any real number. According to question, k < 5 or k = 5 or k > 5.

First case: If, k < 5,

$$f(k) = 5 - k$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (5 - x) = 5 - k$, Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers less than 5.

Second case: If, k = 5,

$$f(k) = k - 5$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (x - 5) = k - 5$, Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous at x = 5.

Third case: If, k > 5,

$$f(k) = k - 5$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (x - 5) = k - 5$, Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers greater than 5.

Hence, the function f is continuous for all real numbers.

Question 4:

Prove that the function $f(x) = x^n$, is continuous at x = n, where n is a positive integer.

Answer 4:

Given function $f(x) = x^n$.

At
$$x = n$$
, $f(n) = n^n$

$$\lim_{x \to n} f(x) = \lim_{x \to n} (x^n) = n^n$$

Here, at
$$x = n$$
, $\lim_{x \to n} f(x) = f(n) = n^n$

Hence, the function f is continuous at x = n, where n is positive integer.

Question 5:

Is the function f defined by $f(x) = \begin{cases} x, & x \le 1 \\ 5, & x > 1 \end{cases}$ continuous at x = 0? At x = 1? At x = 2?

Answer 5:

Given function $f(x) = \begin{cases} x, & x \le 1 \\ 5, & x > 1 \end{cases}$

At
$$x = 0$$
, $f(0) = 0$

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} (x) = 0$$

Here,
$$x = 0$$
, $\lim_{x \to 0} f(x) = f(0) = 0$

Hence, the function f is discontinuous at x = 0.

At
$$x = 1$$
, $f(1) = 1$

LHL =
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x) = 1$$

RHL =
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (5) = 5$$

Here, at x = 1, LHL \neq RHL. Hence, the function f is discontinuous at x = 1.

At
$$x = 2$$
, $f(2) = 5$

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} (5) = 5$$

Here, at
$$x = 2$$
, $\lim_{x \to 2} f(x) = f(2) = 5$

Hence, the function f is continuous at x = 2.

Find all points of discontinuity of f, where f is defined by

Question 6:

$$f(x) = \begin{cases} 2x + 3, & \text{If } x \le 2 \\ 2x - 3, & \text{If } x > 2 \end{cases}$$

Answer 6:

Let, k be any real number. According to question, k < 2 or k = 2 or k > 2 First case: यदि, k < 2,

$$f(k) = 2k + 3$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (2x + 3) = 2k + 3$, Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers smaller than 2.

Second case: If,
$$k = 2$$
, $f(2) = 2k + 3$

LHL =
$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (2x + 3) = 7$$

RHL =
$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (2x - 3) = 1$$

Here, at x = 2, LHL \neq RHL. Hence, the function f is discontinuous at x = 2.

Third case: If, k > 2,

$$f(k) = 2k - 3$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (2x - 3) = 2k - 3$, Here, $\lim_{x \to k} f(x) = f(k)$

Therefore, the function f is continuous for all real numbers greater than 2.

Hence, the function f is discontinuous only at x = 2.

Question 7:

$$f(x) = \begin{cases} |x| + 3, & \text{If } x \le -3 \\ -2x, & \text{If } -3 < x < 3 \\ 6x + 2, & \text{If } x \ge 3 \end{cases}$$

Answer 7:

Let, k be any real number. According to question,

$$k < -3 \text{ or } k = -3 \text{ or } -3 < k < 3 \text{ or } k = 3 \text{ or } k > 3$$

First case: If, k < -3,

$$f(k) = -k + 3$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (-x + 3) = -k + 3$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers less than -3.

Second case: If,
$$k = -3$$
, $f(-3) = -(-3) + 3 = 6$

LHL =
$$\lim_{x \to -3^{-}} f(x) = \lim_{x \to -3^{-}} (-x + 3) = -(-3) + 3 = 6$$

RHL =
$$\lim_{x \to -3^+} f(x) = \lim_{x \to -3^+} (-2x) = -2(-3) = 6$$
. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous at x = -3.

Third case: If, -3 < k < 3,

$$f(k) = -2k$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (-2x) = -2k$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous at -3 < x < 3.

Fourth case: If k = 3,

LHL =
$$\lim_{x \to k^{-}} f(x) = \lim_{x \to k^{-}} (-2x) = -2k$$

RHL =
$$\lim_{x \to k^+} f(x) = \lim_{x \to k^+} (6x + 2) = 6k + 2$$
,

Here, at x = 3, LHL \neq RHL. Hence, the function f is discontinuous at x = 3.

Fifth case: If, k > 3,

$$f(k) = 6k + 2$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (6x + 2) = 6k + 2$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all numbers greater than 3.

Hence, the function f is discontinuous only at x = 3.

Question 8:

$$f(x) = \begin{cases} \frac{|x|}{x}, & \text{If } x \neq 0 \\ 0, & \text{If } x = 0 \end{cases}$$

Answer 8:

After redefining the function f, we get

$$f(x) = \begin{cases} -\frac{x}{x} = -1, & \text{If } x < 0 \\ 0, & \text{If } x = 0 \\ \frac{x}{x} = 1, & \text{If } x > 0 \end{cases}$$

Let, k be any real number. According to question, k < 0 or k = 0 or k > 0. First case: If, k < 0,

$$f(k) = -\frac{k}{k} = -1$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} \left(-\frac{x}{x} \right) = -1$. Here, $\lim_{x \to k} f(x) = f(k)$ Hence, the function f is continuous for all real numbers smaller than 0.

Second case: If, k = 0, f(0) = 0

LHL =
$$\lim_{x \to k^-} f(x) = \lim_{x \to k^-} \left(-\frac{x}{x}\right) = -1$$
 and RHL = $\lim_{x \to k^+} f(x) = \lim_{x \to k^+} \left(\frac{x}{x}\right) = 1$,

Here, at x = 0, LHL \neq RHL. Hence, the function f is discontinuous at x = 0.

Third case: If, k > 0,

$$f(k) = \frac{k}{k} = 1$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} \left(\frac{x}{x}\right) = 1$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers greater than 0.

Therefore, the function f is discontinuous only at x = 0.

Question 9:

$$f(x) = \begin{cases} \frac{x}{|x|}, & \text{If } x < 0 \\ -1, & \text{If } x \ge 0 \end{cases}$$

Answer 9:

Redefining the function, we get

$$f(x) = \begin{cases} \frac{x}{|x|} = \frac{x}{-x} = -1, & \text{If } x < 0 \\ -1, & \text{If } x \ge 0 \end{cases}$$

Here, $\lim_{x\to k} f(x) = f(k) = -1$, where k is a real number.

Hence, the function f is continuous for all real numbers.

Question 10:

$$f(x) = \begin{cases} x + 1, & \text{If } \ge 1 \\ x^2 + 1, & \text{If } x < 1 \end{cases}$$

Answer 10:

Let, k be any real number. According to question, k < 1 or k = 1 or k > 1 First case: If, k < 1,

$$f(k) = k^2 + 1$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (x^2 + 1) = k^2 + 1$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers smaller than 1.

Second case: If,
$$k = 1$$
, $f(1) = 1 + 1 = 2$

LHL =
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x^{2} + 1) = 1 + 1 = 2$$

RHL =
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x+1) = 1+1=2$$
,

Here, at x = 1, LHL = RHL = f(1). Hence, the function f is continuous at x = 1.

Third case: If, k > 1,

$$f(k) = k + 1$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (x + 1) = k + 1$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers greater than 1.

Therefore, the function *f* is continuous for all real numbers.

Question 11:

$$f(x) = \begin{cases} x^3 - 3, & \text{If } x \le 2 \\ x^2 + 1, & \text{If } x > 2 \end{cases}$$

Answer 11:

Let, k be any real number. According to question, k < 2 or k = 2 or k > 2

First case: If,
$$k < 2$$
,

$$f(k) = k^3 - 3$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (x^3 - 3) = k^3 - 3$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers less than 2.

Second case: If,
$$k = 2$$
, $f(2) = 2^3 - 3 = 5$

LHL =
$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (x^{3} - 3) = 2^{3} - 3 = 5$$

RHL =
$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (x^2 + 1) = 2^2 + 1 = 5$$
,

Here, at
$$x = 2$$
, LHL = RHL = $f(2)$

Hence, the function f is continuous at x = 2.

Third case: If, k > 2,

$$f(k) = k^2 + 1$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (x^2 + 1) = k^2 + 1$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for real numbers greater than 2.

Hence, the function f is continuous for all real numbers.

Question 12:

$$f(x) = \begin{cases} x^{10} - 1, & \text{If } x \le 1 \\ x^2, & \text{If } x > 1 \end{cases}$$

Answer 12:

Let, k be any real number. According to question, k < 1 or k = 1 or k > 1 First case: If, k < 1,

$$f(k) = k^{10} - 1$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (x^{10} - 1) = k^{10} - 1$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers less than 1.

Second case: If,
$$k = 1$$
, $f(1) = 1^{10} - 1 = 0$
LHL = $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x^{10} - 1) = 0$
RHL = $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (x^{2}) = 1$,

Here, at x = 1, LHL \neq RHL. Hence, the function f is discontinuous at x = 1.

Third case: If, k > 1,

$$f(k) = k^2$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (x^2) = k^2$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real values greater than 1.

Hence, the function f is discontinuous only at x = 1.

Question 13:

Is the function defined by $f(x) = \begin{cases} x + 5, & \text{if } x \le 1 \\ x - 5, & \text{if } x > 1 \end{cases}$ a continuous function?

Answer 13:

Let, k be any real number. According to question, k < 1 or k = 1 or k > 1 First case: If, k < 1,

$$f(k) = k + 5$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (x + 5) = k + 5$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers less than 1.

Second case: If,
$$k = 1$$
, $f(1) = 1 + 5 = 6$
LHL = $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x + 5) = 6$
RHL = $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (x - 5) = -4$,

Here, at x = 1, LHL \neq RHL. Hence, the function f is discontinuous at x = 1.

Third case: If,
$$k > 1$$
, $f(k) = k - 5$ and $\lim_{x \to k} f(x) = \lim_{x \to k} (x - 5) = k - 5$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers greater than 1.

Hence, the function f is discontinuous only at x = 1.

Discuss the continuity of the function f, where f is defined by:

Question 14:

$$f(x) = \begin{cases} 3, & \text{If } 0 \le x \le 1 \\ 4, & \text{If } 1 < x < 3 \\ 5, & \text{If } 3 \le x \le 10 \end{cases}$$

Answer 14:

Let, k be any real number. According to question,

$$0 \le k \le 1$$
 or $k = 1$ or $1 < k < 3$ or $k = 3$ or $3 \le k \le 10$

First case: If, $0 \le k \le 1$,

$$f(k) = 3$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (3) = 3$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for $0 \le x \le 1$.

Second case: If, k = 1, f(1) = 3

LHL =
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (3) = 3$$

RHL =
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (4) = 4$$
,

Here, at x = 1, LHL \neq RHL. Hence, the function f is discontinuous at x = 1.

Third case: If, 1 < k < 3,

$$f(k) = 4$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (4) = 4$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for 1 < x < 3.

Fourth case: If k = 3,

LHL =
$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (4) = 4$$
 and RHL = $\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} (5) = 5$,

Here, at x = 3, LHL \neq RHL. Hence, the function f is discontinuous at x = 3.

Fifth case: If, $3 \le k \le 10$,

$$f(k) = 5$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (5) = 5$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for $3 \le x \le 10$.

Hence, the function f is discontinuous only at x = 1 and x = 3.

Question 15:

$$f(x) = \begin{cases} 2x, & \text{If } x < 0 \\ 0, & \text{If } 0 \le x \le 1 \\ 4x & \text{If } x > 1 \end{cases}$$

Answer 15:

Let, k be any real number. According to question,

$$k < 0 \text{ or } k = 0 \text{ or } 0 \le k \le 1 \text{ or } k = 1 \text{ or } k > 1$$

First case: If, k < 0,

$$f(k) = 2k$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (2x) = 2k$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers less than 0.

Second case: If, k = 0, f(0) = 0

LHL =
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (2x) = 0$$

RHL =
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (0) = 0$$
. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous at x = 0.

Third case: If, $0 \le k \le 1$,

$$f(k) = 0$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (0) = 0$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous at $0 \le x \le 1$.

Fourth case: If k = 1,

LHL =
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (0) = 0$$

RHL =
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (4x) = 4$$
,

Here, at x = 1, LHL \neq RHL.

Hence, the function f is discontinuous at x = 1.

Fifth case: If, k > 1,

$$f(k) = 4k$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (4x) = 4k$.

Here,
$$\lim_{k \to \infty} f(x) = f(k)$$

Hence, the function f is continuous for all real numbers greater than 1. Therefore, the function f is discontinuous only at x = 1.

Question 16:

$$f(x) = \begin{cases} -2, & \text{If } x \le -1 \\ 2x, & \text{If } -1 < x \le 1 \\ 2, & \text{If } x > 1 \end{cases}$$

Answer 16:

Let, k be any real number.

According to question, k < -1 or k = -1 or $-1 < x \le 1$ or k = 1 or k > 1

First case: If, k < -1,

$$f(k) = -2$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (-2) = -2$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers less than -1.

Second case: If,
$$k = -1$$
, $f(-1) = -2$

LHL =
$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} (-2) = -2$$

RHL =
$$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} (2x) = -2$$
. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous at x = -1.

Third case: If, $-1 < x \le 1$,

$$f(k) = 2k$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (2x) = 2k$. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous at $-1 < x \le 1$.

Fourth case: If, k = 1,

LHL =
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (2x) = 2$$

RHL =
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (2) = 2$$
. Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous at x = 1.

Fifth case: If, k > 1,

$$f(k) = 2$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (2) = 2$.

Here,
$$\lim_{x \to k} f(x) = f(k)$$

Hence, the function f is continuous for all real numbers greater than 1.

Therefore, the function f is continuous for all real numbers.

Question 17:

Find the relationship between a and b so that the function f defined by

$$f(x) = \begin{cases} ax + 1, & \text{If } x \le 3 \\ bx + 3, & \text{If } x > 3 \end{cases}$$

is continuous at x = 3.

Answer 17:

Given that the function is continuous at x = 3. Therefore, LHL = RHL = f(3)

$$\Rightarrow \lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = f(3)$$

$$\Rightarrow \lim_{x \to 3^{-}} ax + 1 = \lim_{x \to 3^{+}} bx + 3 = 3a + 1$$

$$\Rightarrow 3a + 1 = 3b + 3 = 3a + 1 \Rightarrow 3a = 3b + 2 \Rightarrow a = b + \frac{2}{3}$$

Question 18:

For what value of λ is the function defined by

$$f(x) = \begin{cases} \lambda(x^2 - 2x), & \text{if } x \le 0 \\ 4x + 1, & \text{if } x > 0 \end{cases}$$

continuous at x = 0? What about continuity at x = 1?

Answer 18:

Given that the function is continuous at x = 0. Therefore, LHL = RHL = f(0)

$$\Rightarrow \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0)$$

$$\Rightarrow \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0)$$
$$\Rightarrow \lim_{x \to 0^{-}} \lambda(x^{2} - 2x) = \lim_{x \to 0^{+}} 4x + 1 = \lambda[(0)^{2} - 2(0)]$$

$$\Rightarrow \lambda[(0)^2 - 2(0)] = 4(0) + 1 = \lambda(0)$$

$$\Rightarrow 0.\lambda = 1 \Rightarrow \lambda = \frac{1}{0}$$

Hence, there is no real value of λ for which the given function be continuous.

If,
$$x = 1$$
,

$$f(1) = 4(1) + 1 = 5$$
 and $\lim_{x \to 1} f(x) = \lim_{x \to 1} 4(1) + 1 = 5$, Here, $\lim_{x \to 1} f(x) = f(1)$

Hence, the function f is continuous for all real values of λ .

Question 19:

Show that the function defined by g(x) = x - [x] is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x.

Answer 19:

Let, k be any integer.

LHL =
$$\lim_{x \to k^{-}} f(x) = \lim_{x \to k^{-}} x - [x] = k - (k - 1) = 1$$

RHL =
$$\lim_{x \to k^+} f(x) = \lim_{x \to k^+} x - [x] = k - (k) = 0$$
,

Here, at x = k, LHL \neq RHL. Hence, the function f is discontinuous for all integers.

Question 20:

Is the function defined by $f(x) = x^2 - \sin x + 5$ continuous at $x = \pi$.

Answer 20:

Given function: $f(x) = x^2 - \sin x + 5$,

At
$$x = \pi$$
, $f(\pi) = \pi^2 - \sin \pi + 5 = \pi^2 - 0 + 5 = \pi^2 + 5$

$$\lim_{x \to n} f(x) = \lim_{x \to n} x^2 - \sin x + 5 = \pi^2 - \sin \pi + 5 = \pi^2 - 0 + 5 = \pi^2 + 5$$

Here, at
$$x = \pi$$
, $\lim_{x \to \pi} f(x) = f(\pi) = \pi^2 + 5$

Hence, the function f is continuous at $x = \pi$.

Question 21:

Discuss the continuity of the following functions:

(a)
$$f(x) = \sin x + \cos x$$

(b)
$$f(x) = \sin x - \cos x$$

(c)
$$f(x) = \sin x \cdot \cos x$$

Answer 21:

Let,
$$g(x) = \sin x$$

Let, k be any real number. At
$$x = k$$
, $g(k) = \sin k$

LHL =
$$\lim_{x \to k^-} g(x) = \lim_{x \to k^-} \sin x = \lim_{h \to 0} \sin(k - h) = \lim_{h \to 0} \sin k \cos h - \cos k \sin h = \sin k$$

RHL =
$$\lim_{x \to k^+} g(x) = \lim_{x \to k^+} \sin x = \lim_{h \to 0} \sin(k + h) = \lim_{h \to 0} \sin k \cos h + \cos k \sin h = \sin k$$

Here, at
$$x = k$$
, LHL = RHL = $g(k)$.

Hence, the function *g* is continuous for all real numbers.

Let,
$$h(x) = \cos x$$

Let, k be any real number. At x = k, $h(k) = \cos k$

LHL = $\lim_{x \to k^{-}} h(x) = \lim_{x \to k^{-}} \cos x = \lim_{h \to 0} \cos(k - h) = \lim_{h \to 0} \cos k \cos h + \sin k \sin h = \cos k$

RHL = $\lim_{x \to k^+} h(x) = \lim_{x \to k^+} \cos x = \lim_{h \to 0} \cos(k + h) = \lim_{h \to 0} \cos k \cos h - \sin k \sin h = \cos k$

Here, at x = k, LHL = RHL = h(k).

Hence, the function h is continuous for all real numbers.

We know that if g and h are two continuous functions, then the functions g + h, g - h and gh also be a continuous functions.

Hence, (a) $f(x) = \sin x + \cos x$ (b) $f(x) = \sin x - \cos x$ and (c) $f(x) = \sin x \cdot \cos x$ are continuous functions.

Question 22:

Discuss the continuity of the cosine, cosecant, secant and cotangent functions.

Answer 22:

Let $g(x) = \sin x$

Let, k be any real number. At x = k, $g(k) = \sin k$

LHL = $\lim_{x \to k^-} g(x) = \lim_{x \to k^-} \sin x = \lim_{h \to 0} \sin(k - h) = \lim_{h \to 0} \sin k \cos h - \cos k \sin h = \sin k$

RHL = $\lim_{x \to k^+} g(x) = \lim_{x \to k^+} \sin x = \lim_{h \to 0} \sin(k + h) = \lim_{h \to 0} \sin k \cos h + \cos k \sin h = \sin k$

Here, at x = k, LHL = RHL = g(k).

Hence, the function g is continuous for all real numbers.

Let $h(x) = \cos x$

Let, k be any real number. At x = k, $h(k) = \cos k$

LHL = $\lim_{x \to k^{-}} h(x) = \lim_{x \to k^{-}} \cos x = \lim_{h \to 0} \cos(k - h) = \lim_{h \to 0} \cos k \cos h + \sin k \sin h = \cos k$

RHL = $\lim_{x \to k^+} h(x) = \lim_{x \to k^+} \cos x = \lim_{h \to 0} \cos(k + h) = \lim_{h \to 0} \cos k \cos h - \sin k \sin h = \cos k$

Here, at x = k, LHL = RHL = h(k).

Hence, the function *h* is continuous for all real numbers.

We know that if g and h are two continuous functions, then the functions $\frac{g}{h}$, $h \neq 0$, $\frac{1}{h}$, $h \neq 0$ and $\frac{1}{g}$, $g \neq 0$ be continuous functions.

Therefore, $cosec \ x = \frac{1}{\sin x}$, $\sin x \neq 0$ is continuous $\Rightarrow x \neq n\pi \ (n \in \mathbb{Z})$ is continuous.

Hence, cosec x is continuous except $x = n\pi$ ($n \in Z$).

 $\sec x = \frac{1}{\cos x}$, $\cos x \neq 0$ is continuous. $\Rightarrow x \neq \frac{(2n+1)\pi}{2}$ $(n \in \mathbb{Z})$ is continuous.

Hence, sec x is continuous except $x = \frac{(2n+1)\pi}{2}$ $(n \in Z)$.

 $\cot x = \frac{\cos x}{\sin x}$, $\sin x \neq 0$ is continuous. $\Rightarrow x \neq n\pi$ $(n \in Z)$ is continuous.

Hence, cot x is continuous except $x = n\pi$ ($n \in \mathbb{Z}$).

Question 23:

Find all points of discontinuity of f, where

$$f(x) = \begin{cases} \frac{\sin x}{x}, & \text{If } x < 0 \\ x + 1, & \text{If } x \ge 0 \end{cases}$$

Answer 23:

Let, k be any real number. According to question, k < 0 or k = 0 or k > 0 First case: If, k < 0,

$$f(k) = \frac{\sin k}{k}$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} \left(\frac{\sin x}{x}\right) = \frac{\sin k}{k}$, Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers less than 0.

Second case: If,
$$k = 0$$
, $f(0) = 0 + 1 = 1$

LHL =
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x+1) = 0+1=1$$

RHL =
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} (x+1) = 0+1=1$$
,

Here, at x = 0, LHL = RHL = f(0).

Hence, the function f is continuous at x = 0.

Third case: If, k > 0,

$$f(k) = k + 1$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} (x + 1) = k + 1$, Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for all real numbers greater than 0.

Therefore, the function *f* is continuous for all real numbers.

Question 24:

Determine if *f* defined by

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{If } x \neq 0 \\ 0, & \text{If } x = 0 \end{cases}$$

is a continuous function?

Answer 24:

Let, k be any real number. According to question, $k \neq 0$ or k = 0

First case: If, $k \neq 0$,

$$f(k) = k^2 \sin \frac{1}{k}$$
 and $\lim_{x \to k} f(x) = \lim_{x \to k} \left(x^2 \sin \frac{1}{x} \right) = k^2 \sin \frac{1}{k}$, Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous for $k \neq 0$.

Second case: If,
$$k = 0$$
, $f(0) = 0$

LHL =
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left(x^{2} \sin \frac{1}{x} \right) = \lim_{x \to 0} \left(x^{2} \sin \frac{1}{x} \right)$$

We know that,
$$-1 \le \sin \frac{1}{x} \le 1$$
, $x \ne 0$ $\Rightarrow -x^2 \le \sin \frac{1}{x} \le x^2$

$$\Rightarrow \lim_{x \to 0} (-x^2) \le \lim_{x \to 0} \sin \frac{1}{x} \le \lim_{x \to 0} x^2$$

$$\Rightarrow \lim_{x \to 0} (-x^2) \le \lim_{x \to 0} \sin \frac{1}{x} \le \lim_{x \to 0} x^2$$

$$\Rightarrow 0 \le \lim_{x \to 0} \sin \frac{1}{x} \le 0 \quad \Rightarrow \lim_{x \to 0} \sin \frac{1}{x} = 0 \quad \Rightarrow \lim_{x \to 0^-} x^2 \sin \frac{1}{x} = 0 \quad \Rightarrow \lim_{x \to 0^-} f(x) = 0$$

Similarly, RHL =
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(x^2 \sin \frac{1}{x} \right) = \lim_{x \to 0} \left(x^2 \sin \frac{1}{x} \right) = 0$$
,

Here, at
$$x = 0$$
, LHL = RHL = $f(0)$

Hence, atx = 0, f is continuous.

Hence, the function *f* is continuous for all real numbers.

Question 25:

Examine the continuity of *f*, where *f* is defined by

$$f(x) = \begin{cases} \sin x - \cos x, & \text{If } x \neq 0 \\ -1, & \text{If } x = 0 \end{cases}$$

Answer 25:

Let, k be any real number. According to question, $k \neq 0$ or k = 0

First case: If,
$$k \neq 0$$
, $f(0) = 0 - 1 = -1$

LHL =
$$\lim_{k \to 0^{-}} f(x) = \lim_{k \to 0^{-}} (\sin x - \cos x) = 0 - 1 = -1$$

RHL =
$$\lim_{k\to 0^+} f(x) = \lim_{k\to 0^+} (\sin x - \cos x) = 0 - 1 = -1$$
,

Hence, at $x \neq 0$, LHL = RHL = f(x)

Hence, the function f is continuous at $x \neq 0$.

Second case: If,
$$k = 0$$
, $f(k) = -1$
and $\lim_{x \to k} f(x) = \lim_{x \to k} (-1) = -1$, Here, $\lim_{x \to k} f(x) = f(k)$

Hence, the function f is continuous at x = 0.

Therefore, the function f is continuous for all real numbers.

Find the values of k so that the function f is continuous at the indicated point in exercises 26 to 29.

Question 26:

$$f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x}, & \text{If } x \neq \frac{\pi}{2} \\ 3, & \text{If } x = \frac{\pi}{2} \end{cases} \quad \text{at } x = \frac{\pi}{2}$$

Answer 26:

Given that the function is continuous at $x = \frac{\pi}{2}$. Therefore, LHL = RHL = $f\left(\frac{\pi}{2}\right)$

$$\Rightarrow \lim_{x \to \frac{\pi}{2}^{-}} f(x) = \lim_{x \to \frac{\pi}{2}^{+}} f(x) = f\left(\frac{\pi}{2}\right)$$

$$\Rightarrow \lim_{x \to \frac{\pi}{2}} \frac{k \cos x}{\pi - 2x} = \lim_{x \to \frac{\pi}{2}^+} \frac{k \cos x}{\pi - 2x} = 3 \Rightarrow \lim_{h \to 0} \frac{k \cos \left(\frac{\pi}{2} - h\right)}{\pi - 2\left(\frac{\pi}{2} - h\right)} = \lim_{h \to 0} \frac{k \cos \left(\frac{\pi}{2} + h\right)}{\pi - 2\left(\frac{\pi}{2} + h\right)} = 3$$

$$\Rightarrow \lim_{h \to 0} \frac{k \sin h}{2h} = \lim_{h \to 0} \frac{-k \sin h}{-2h} = 3$$

$$\Rightarrow \frac{k}{2} = \frac{k}{2} = 3$$
 \[\text{: } \lim_{h \to 0} \frac{\sin h}{h} = 1 \]

$$\Rightarrow k = 6$$

Question 27:

$$f(x) = \begin{cases} kx^2, & \text{If } x \le 2 \\ 3, & \text{If } x > 2 \end{cases} \text{ at } x = 2$$

Answer 27:

Given that the function is continuous at x = 2.

Therefore, LHL = RHL = f(2)

$$\Rightarrow \lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = f(2)$$

$$\Rightarrow \lim_{x \to 2^{-}} kx^{2} = \lim_{x \to 2^{+}} 3 = k(2)^{2}$$

$$\Rightarrow 4k = 3 = 4k \quad \Rightarrow k = \frac{3}{4}$$

Question 28:

$$f(x) = \begin{cases} kx + 1, & \text{If } x \le \pi \\ \cos x, & \text{If } x > \pi \end{cases} \text{ at } x = \pi$$

Answer 28:

Given that the function is continuous at $x = \pi$.

Therefore, LHL = RHL = $f(\pi)$

$$\Rightarrow \lim_{x \to \pi^{-}} f(x) = \lim_{x \to \pi^{+}} f(x) = f(\pi)$$

$$\Rightarrow \lim_{x \to \pi^-} kx + 1 = \lim_{x \to \pi^+} \cos x = k(\pi) + 1$$

$$\Rightarrow k(\pi) + 1 = \cos \pi = k\pi + 1 \Rightarrow k\pi + 1 = -1 = k\pi + 1$$

$$\Rightarrow \pi k = -2 \qquad \Rightarrow k = -\frac{2}{\pi}$$

Question 29:

$$f(x) = \begin{cases} kx + 1, & \text{If } x \le 5 \\ 3x - 5, & \text{If } x > 5 \end{cases} \text{ at } x = 5$$

Answer 29:

Given that the function is continuous at x = 5.

Therefore, LHL = RHL = f(5)

$$\Rightarrow \lim_{x \to 5^{-}} f(x) = \lim_{x \to 5^{+}} f(x) = f(5)$$

$$\Rightarrow \lim_{x \to 5^{-}} kx + 1 = \lim_{x \to 5^{+}} 3x - 5 = 5k + 1$$

$$\Rightarrow 5k + 1 = 15 - 5 = 5k + 1$$

$$\Rightarrow 5k = 9 \qquad \Rightarrow k = \frac{9}{5}$$

Question 30:

Find the values of a and b such that the function defined by

$$f(x) = \begin{cases} 5, & \text{If } x \le 2\\ ax + b, & \text{If } 2 < x < 10\\ 21, & \text{If } x \ge 10 \end{cases}$$

is a continuous function.

Answer 30:

Given that the function is continuous at x = 2. Therefore, LHL = RHL = f(2)

$$\Rightarrow \lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = f(2)$$

$$\Rightarrow \lim_{x \to 2^{-}} 5 = \lim_{x \to 2^{+}} ax + b = 5$$

$$\Rightarrow 2a + b = 5$$

Given that the function is continuous at x = 10. Therefore, LHL = RHL = f(10)

$$\Rightarrow \lim_{x \to 10^{-}} f(x) = \lim_{x \to 10^{+}} f(x) = f(10)$$

$$\Rightarrow \lim_{x \to 10^{-}} ax + b = \lim_{x \to 10^{+}} 21 = 21$$

$$\Rightarrow 10a + b = 21$$

Solving the equation (1) and (2), we get

$$a = 2$$
 $b = 1$

Question 31:

Show that the function defined by $f(x) = \cos(x^2)$ is a continuous function.

Answer 31:

Assuming that the functions are well defined for all real numbers, we can write the given function f in the combination of g and h (f = goh). Where, $g(x) = \cos x$ and $h(x) = x^2$. If g and h both are continuous function then f also be continuous.

$$[\because goh(x) = g(h(x)) = g(x^2) = \cos(x^2)]$$

Function $g(x) = \cos x$

Let, k be any real number. At x = k, $g(k) = \cos k$

$$\lim_{x \to k} g(x) = \lim_{x \to k} \cos x = \lim_{h \to 0} \cos(k + h) = \lim_{h \to 0} \cos k \cos h - \sin k \sin h = \cos k$$

Here, $\lim_{x\to k} g(x) = g(k)$, Hence, the function g is continuous for all real numbers.

Function $h(x) = x^2$

Let, k be any real number. At x = k, $h(k) = k^2$

$$\lim_{x \to k} h(x) = \lim_{x \to k} x^2 = k^2$$

Here, $\lim_{x \to b} h(x) = h(k)$, Hence, the function h is continuous for all real numbers.

Therefore, g and h both are continuous function. Hence, f is continuous.

Question 32:

Show that the function defined by $f(x) = |\cos x|$ is a continuous function.

Answer 32:

Assuming that the functions are well defined for all real numbers, we can write the given function f in the combination of g and h (f = goh). Where, g(x) = |x| and $h(x) = \cos x$. If g and h both are continuous function then f also be continuous.

$$[\because goh(x) = g(h(x)) = g(\cos x) = |\cos x|]$$

Function g(x) = |x|

Rearranging the function g, we get

$$g(x) = \begin{cases} -x, & \text{If } x < 0 \\ x, & \text{If } x \ge 0 \end{cases}$$

Let, k be any real number. According to question, k < 0 or k = 0 or k > 0

First case: If, k < 0,

$$g(k) = 0$$
 and $\lim_{x \to k} g(x) = \lim_{x \to k} (-x) = 0$, here, $\lim_{x \to k} g(x) = g(k)$

Hence, the function g is continuous for all real numbers less than 0.

Second case: If,
$$k = 0$$
, $g(0) = 0 + 1 = 1$

LHL=
$$\lim_{x\to 0^{-}} g(x) = \lim_{x\to 0^{-}} (-x) = 0$$

RHL =
$$\lim_{x\to 0^+} g(x) = \lim_{x\to 0^+} (x) = 0$$
,

Here, at
$$x = 0$$
, LHL = RHL = $g(0)$

Hence, the function g is continuous at x = 0.

Third case: If, k > 0,

$$g(k) = 0$$
 and $\lim_{x \to k} g(x) = \lim_{x \to k} (x) = 0$, Here, $\lim_{x \to k} g(x) = g(k)$

Hence, the function *g* is continuous for all real numbers greater than 0.

Hence, the function *g* is continuous for all real numbers.

Function $h(x) = \cos x$

Let, k be any real number. At x = k, $h(k) = \cos k$

$$\lim_{x \to k} h(x) = \lim_{x \to k} \cos x = \cos k$$

Here, $\lim_{x\to k} h(x) = h(k)$, Hence, the function h is continuous for all real numbers.

Therefore, g and h both are continuous function. Hence, f is continuous.

Question 33:

Examine that $\sin |x|$ is a continuous function.

Answer 33:

Assuming that the functions are well defined for all real numbers, we can write the given function f in the combination of g and h (f = hog). Where, $h(x) = \sin x$ and g(x) = |x|. If g and h both are continuous function then f also be continuous.

$$[\because hog(x) = h(g(x)) = h(|x|) = \sin|x|]$$

Function
$$h(x) = \sin x$$

Let, k be any real number. At x = k, $h(k) = \sin k$

$$\lim_{x \to k} h(x) = \lim_{x \to k} \sin x = \sin k$$

Here, $\lim_{x\to k}h(x)=h(k)$, Hence, the function h is continuous for all real numbers.

Function g(x) = |x|

Redefining the function g, we get

$$g(x) = \begin{cases} -x, & \text{If } x < 0 \\ x, & \text{If } x \ge 0 \end{cases}$$

Let, k be any real number. According to question, k < 0 or k = 0 or k > 0

First case: If, k < 0,

$$g(k) = 0$$
 and $\lim_{x \to k} g(x) = \lim_{x \to k} (-x) = 0$, Here, $\lim_{x \to k} g(x) = g(k)$

Hence, the function g is continuous for all real numbers less than 0.

Second case: If,
$$k = 0$$
, $g(0) = 0 + 1 = 1$

LHL =
$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} (-x) = 0$$

RHL =
$$\lim_{x\to 0^+} g(x) = \lim_{x\to 0^+} (x) = 0$$
,

Here, at x = 0, LHL = RHL = g(0)

Hence, at x = 0, the function g is continuous.

Third case: If, k > 0,

$$g(k) = 0$$
 and $\lim_{x \to k} g(x) = \lim_{x \to k} (x) = 0$, Here, $\lim_{x \to k} g(x) = g(k)$

Hence, the function g is continuous for all real numbers greater than 0.

Hence, the function g is continuous for all real numbers.

Therefore, g and h both are continuous function. Hence, f is continuous.

Question 34:

Find all the points of discontinuity of f defined by f(x) = |x| - |x + 1|.

Answer 34:

Assuming that the functions are well defined for all real numbers, we can write the given function f in the combination of g and h (f = g - h), where, g(x) = |x| and h(x) = |x + 1|. If g and h both are continuous function then f also be continuous.

Function g(x) = |x|

Redefining the function g, we get,

$$g(x) = \begin{cases} -x, & \text{If } x < 0 \\ x, & \text{If } x \ge 0 \end{cases}$$

Let, k be any real number. According to question, k < 0 or k = 0 or k > 0

First case: If, k < 0,

$$g(k) = 0$$
 and $\lim_{x \to k} g(x) = \lim_{x \to k} (-x) = 0$, Here, $\lim_{x \to k} g(x) = g(k)$

Hence, the function *g* is continuous for all real numbers less than 0.

Second case: If,
$$k = 0$$
, $g(0) = 0 + 1 = 1$

LHL =
$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} (-x) = 0$$
 and RHL = $\lim_{x \to 0^{+}} g(x) = \lim_{x \to 0^{+}} (x) = 0$,

Here, at x = 0, LHL = RHL = g(0)

Hence, the function g is continuous at x = 0.

Third case: If, k > 0,

$$g(k) = 0$$
 and $\lim_{x \to k} g(x) = \lim_{x \to k} (x) = 0$, Here, $\lim_{x \to k} g(x) = g(k)$

Hence, the function *g* is continuous for all real numbers more than 0.

Hence, the function *g* is continuous for all real numbers.

Function h(x) = |x + 1|

Redefining the function h, we get

$$h(x) = \begin{cases} -(x+1), & \text{If } x < -1 \\ x+1, & \text{If } x \ge -1 \end{cases}$$

Let, k be any real number. According to question, k < -1 or k = -1 or k > -1

First case: If, k < -1,

$$h(k) = -(k+1)$$
 and $\lim_{x \to k} h(x) = \lim_{x \to k} -(k+1) = -(k+1)$, Here, $\lim_{x \to k} h(x) = h(k)$

Hence, the function g is continuous for all real numbers less than – 1.

Second case: If,
$$k = -1$$
, $h(-1) = -1 + 1 = 0$

LHL =
$$\lim_{x \to -1^{-}} h(x) = \lim_{x \to -1^{-}} - (-1+1) = 0$$

RHL =
$$\lim_{x \to -1^+} h(x) = \lim_{x \to -1^+} (x+1) = -1+1=0$$
,

Here, at
$$x = -1$$
, LHL = RHL = $h(-1)$

Hence, the function h is continuous at x = -1.

Third case: If,
$$k > -1$$
,

$$h(k) = k + 1$$
 and $\lim_{x \to k} h(x) = \lim_{x \to k} (k + 1) = k + 1$, Here, $\lim_{x \to k} h(x) = h(k)$

Hence, the function g is continuous for all real numbers greater than -1. Hence, the function h is continuous for all real numbers.

Therefore, g and h both are continuous function. Hence, f is continuous.

Mathematics

(Chapter - 5) (Continuity and Differentiability) (Exercise 5.2)
(Class - XII)

Differentiate the functions with respect to x in Exercises 1 to 8.

Question 1:

$$\sin(x^2 + 5)$$

Answer 1:

Let $y = \sin(x^2 + 5)$

Therefore,

$$\frac{dy}{dx} = \cos(x^2 + 5) \cdot \frac{d}{dx}(x^2 + 5) = \cos(x^2 + 5) \cdot 2x$$

Question 2:

$$\cos(\sin x)$$

Answer 2:

Let $y = \cos(\sin x)$

Therefore,
$$\frac{dy}{dx} = -\sin(\sin x) \cdot \frac{d}{dx}(\sin x) = -\sin(\sin x) \cdot \cos x$$

Question 3:

sin(ax + b)

Answer 3:

Let $y = \sin(ax + b)$

Therefore,

$$\frac{dy}{dx} = \cos(ax+b) \cdot \frac{d}{dx}(ax+b) = \cos(ax+b) \cdot a$$

Question 4:

$$sec(tan(\sqrt{x}))$$

Answer 4:

Let $y = \sec(\tan(\sqrt{x}))$

Therefore,
$$\frac{dy}{dx} = \sec(\tan\sqrt{x})\tan(\tan\sqrt{x}) \cdot \frac{d}{dx}(\tan\sqrt{x}) = \sec(\tan\sqrt{x})\tan(\tan\sqrt{x}) \cdot \sec^2\sqrt{x} \cdot \frac{d}{dx}(\sqrt{x})$$

= $\sec(\tan\sqrt{x})\tan(\tan\sqrt{x}) \cdot \sec^2\sqrt{x} \cdot \left(\frac{1}{2\sqrt{x}}\right)$

Question 5:

$$\frac{\sin(ax+b)}{\cos(cx+d)}$$

Answer 5:

Let,
$$y = \frac{\sin(ax+b)}{\cos(cx+d)}$$

Therefore,
$$\frac{dy}{dx} = \frac{\cos(cx+d) \cdot \frac{d}{dx} \sin(ax+b) - \sin(ax+b) \cdot \frac{d}{dx} \cos(cx+d)}{[\cos(cx+d)]^2}$$

$$=\frac{\cos(cx+d).\sin(ax+b).\frac{d}{dx}(ax+b)-\sin(ax+b).[-\sin(cx+d).\frac{d}{dx}(cx+d)]}{\cos^2(cx+d)}$$

$$= \frac{\cos(cx+d).\sin(ax+b).a + \sin(ax+b).\sin(cx+d)c}{\cos^2(cx+d)}$$

Question 6:

$$\cos x^3 \cdot \sin^2(x^5)$$

Answer 6:

Let $y = \cos x^3 \cdot \sin^2(x^5)$

Therefore,

$$\frac{dy}{dx} = \cos x^3 \cdot \frac{d}{dx} \sin^2(x^5) + \sin^2(x^5) \cdot \frac{d}{dx} \cos x^3$$

$$= \cos x^3 \cdot 2 \sin x^5 \cos x^5 \cdot \frac{d}{dx} x^5 + \sin^2(x^5) \left[-\sin x^3 \right] \cdot \frac{d}{dx} x^3$$

$$= \cos x^3 \cdot 2 \sin x^5 \cos x^5 \cdot 5x^4 - \sin^2(x^5) \sin x^3 \cdot 3x^2$$

Question 7:

$$2\sqrt{\cot(x^2)}$$

Answer 7:

Let $y = 2\sqrt{\cot(x^2)}$

Therefore,

$$\frac{dy}{dx} = 2 \cdot \frac{1}{2\sqrt{\cot(x^2)}} \cdot \frac{d}{dx} \left[\cot(x^2)\right]$$

$$= \frac{1}{\sqrt{\cot(x^2)}} \cdot \left[-\cos\sec x^2\right] \cdot \frac{d}{dx} x^2$$

$$= \frac{1}{\sqrt{\cot(x^2)}} \cdot \left[-\cos\sec x^2\right] \cdot 2x$$

Question 8:

$$\cos(\sqrt{x})$$

Answer 8:

Let $y = \cos(\sqrt{x})$

Therefore,

$$\frac{dy}{dx} = -\sin(\sqrt{x}) \cdot \frac{d}{dx} \sqrt{x}$$
$$= -\sin(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}$$

Question 9:

Prove that the function f given by $f(x) = |x - 1|, x \in R$, is not differentiable at x = 1.

Answer 9:

At x=1,

$$LHD = \lim_{h \to 0} \frac{f(1-h) - f(1)}{-h} = \lim_{h \to 0} \frac{|1-h-1| - |1-1|}{-h} = \lim_{h \to 0} \frac{h}{-h} = -1$$

$$RHD = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{|1+h-1| - |1-1|}{h} = \lim_{h \to 0} \frac{h}{h} = 1$$

Here, LHD \neq RHD, therefore, the function $f(x) = |x - 1|, x \in \mathbb{R}$, is not differentiable at x = 1.

Question 10:

Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3, is not differentiable at x = 1 and x = 2.

Answer 10:

At
$$x=1$$
,

$$LHD = \lim_{h \to 0} \frac{f(1-h) - f(1)}{-h}$$

$$= \lim_{h \to 0} \frac{[1-h] - |1|}{-h}$$

$$= \lim_{h \to 0} \frac{0-1}{-h} = \infty$$

$$RHD = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

$$= \lim_{h \to 0} \frac{[1+h] - [1]}{h}$$

$$=\lim_{h\to 0}\frac{1-1}{h}=0$$

Here, LHD \neq RHD, therefore, the function f(x) = [x], 0 < x < 3, is not differentiable at x = 1.

At
$$x=2$$
,

$$LHD = \lim_{h \to 0} \frac{f(1-h) - f(1)}{-h}$$

$$= \lim_{h \to 0} \frac{[2-h] - [2]}{-h}$$

$$=\lim_{h\to 0}\frac{1-2}{-h}=\infty$$

$$RHD = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

$$= \lim_{h \to 0} \frac{[2+h] - [2]}{h}$$

$$=\lim_{h\to 0}\frac{2-2}{h}=0$$

Here, LHD \neq RHD, therefore, the function f(x) = [x], 0 < x < 3, is not differentiable at x = 2.

Mathematics

(Chapter - 5) (Continuity and Differentiability) (Exercise 5.3) (Class - XII)

Find $\frac{dy}{dx}$ in the following:

Question 1:

$$2x + 3y = \sin x$$

Answer 1:

$$2x + 3y = \sin x$$

Differentiating both sides with respect to x, we get

$$\frac{d}{dx}(2x) + \frac{d}{dx}(3y) = \frac{d}{dx}\sin x$$

$$\Rightarrow 2 + 3\frac{dy}{dx} = \cos x \qquad \Rightarrow \frac{dy}{dx} = \frac{\cos x - 2}{3}$$

Question 2:

$$2x + 3y = \sin y$$

Answer 2:

$$2x + 3y = \sin y$$

Differentiating both sides with respect to x, we get

$$\frac{d}{dx}(2x) + \frac{d}{dx}(3y) = \frac{d}{dx}\sin y \qquad \Rightarrow 2 + 3\frac{dy}{dx} = \cos y \frac{dy}{dx}$$
$$\Rightarrow \frac{dy}{dx}(\cos y - 3) = 2 \qquad \Rightarrow \frac{dy}{dx} = \frac{2}{\cos y - 3}$$

Question 3:

$$ax + by^2 = \cos y$$

Answer 3:

$$ax + by^2 = \cos y$$

Differentiating both sides with respect to x, we get

$$\frac{d}{dx}(ax) + \frac{d}{dx}(by^2) = \frac{d}{dx}\cos y$$

$$\Rightarrow a + 2by\frac{dy}{dx} = -\sin y\frac{dy}{dx}$$

$$\Rightarrow \frac{dy}{dx}(2by + \sin y) = -a \qquad \Rightarrow \frac{dy}{dx} = -\frac{a}{2by + \sin y}$$

Question 4:

$$xy + y^2 = \tan x + y$$

Answer 4:

$$xy + y^2 = \tan x + y$$

$$\frac{d}{dx}(xy) + \frac{d}{dx}(y^2) = \frac{d}{dx}\tan x + \frac{dy}{dx}$$

$$\Rightarrow x\frac{dy}{dx} + y + 2y\frac{dy}{dx} = \sec^2 x + \frac{dy}{dx}$$

$$\Rightarrow \frac{dy}{dx}(x+2y-1) = \sec^2 x - y$$

$$\Rightarrow \frac{dy}{dx} = \frac{\sec^2 x - y}{x+2y-1}$$

Question 5:

$$x^2 + xy + y^2 = 100$$

Answer 5:

$$x^2 + xy + y^2 = 100$$

Differentiating both sides with respect to x, we get

$$\frac{d}{dx}x^{2} + \frac{d}{dx}(xy) + \frac{d}{dx}y^{2} = \frac{d}{dx}(100)$$

$$\Rightarrow 2x + x\frac{dy}{dx} + y + 2y\frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx}(x+2y) = 2x + y \qquad \Rightarrow \frac{dy}{dx} = \frac{2x+y}{x+2y}$$

Question 6:

$$x^3 + x^2y + xy^2 + y^3 = 81$$

Answer 6:

$$x^3 + x^2y + xy^2 + y^3 = 81$$

Differentiating both sides with respect to x, we get

$$\frac{d}{dx}x^{3} + \frac{d}{dx}(x^{2}y) + \frac{d}{dx}(xy^{2}) + \frac{d}{dx}y^{3} = \frac{d}{dx}81$$

$$\Rightarrow 3x^{2} + x^{2}\frac{dy}{dx} + y \cdot 2x + x \cdot 2y\frac{dy}{dx} + y^{2} \cdot 1 + 3y^{2}\frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx}(x^{2} + 2xy + 3y^{2}) = -(3x^{2} + 2xy + y^{2}) \Rightarrow \frac{dy}{dx} = -\frac{3x^{2} + 2xy + y^{2}}{x^{2} + 2xy + 3y^{2}}$$

Question 7:

$$\sin^2 y + \cos xy = k$$

Answer 7:

$$\sin^2 y + \cos xy = k$$

Differentiating both sides with respect to x, we get

$$\frac{d}{dx}\sin^2 y + \frac{d}{dx}\cos xy = \frac{d}{dx}k$$

$$\Rightarrow 2\sin y\cos y \frac{dy}{dx} - \sin xy \left(x\frac{dy}{dx} + y\right) = 0 \Rightarrow \sin 2y \frac{dy}{dx} - x\sin xy \frac{dy}{dx} - y\sin xy = 0$$

$$\Rightarrow (\sin 2y - x\sin xy) \frac{dy}{dx} = y\sin xy \qquad \Rightarrow \frac{dy}{dx} = \frac{y\sin xy}{\sin 2y - x\sin xy}$$

Question 8:

$$\sin^2 x + \cos^2 y = 1$$

Answer 8:

$$\sin^2 x + \cos^2 y = 1$$

$$\frac{d}{dx}\sin^2 x + \frac{d}{dx}\cos^2 y = \frac{d}{dx}1$$

$$\Rightarrow 2\sin x \cos x + 2\cos y \left(-\sin y\right) \frac{dy}{dx} = 0$$

$$\Rightarrow \sin 2x - \sin 2y \frac{dy}{dx} = 0 \qquad \Rightarrow \frac{dy}{dx} = \frac{\sin 2x}{\sin 2y}$$

Question 9:

$$y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$

Answer 9:

$$y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$

Let, $x = \tan \theta$

Therefore,
$$y = \sin^{-1}\left(\frac{2\tan\theta}{1+\tan^2\theta}\right) = \sin^{-1}(\sin 2\theta) = 2\theta = 2\tan^{-1}x \implies y = 2\tan^{-1}x$$

Differentiating both sides with respect to x, we get

$$\frac{dy}{dx} = \frac{2}{1+x^2}$$

Question 10:

$$y = \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right), -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$$

Answer 10:

$$y = \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right)$$

Let, $x = \tan \theta$

Therefore,
$$y = \tan^{-1} \left(\frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta} \right) = \tan^{-1} (\tan 3\theta) = 3\theta = 3 \tan^{-1} x \implies y = 3 \tan^{-1} x$$

Differentiating both sides with respect to x, we get

$$\frac{dy}{dx} = \frac{3}{1+x^2}$$

Question 11:

$$y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right), 0 < x < 1$$

Answer 11:

$$y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$

Let, $x = \tan \theta$

Therefore,
$$y = \cos^{-1}\left(\frac{1-\tan^2\theta}{1+\tan^2\theta}\right) = \cos^{-1}(\cos 2\theta) = 2\theta = 2\tan^{-1}x \implies y = 2\tan^{-1}x$$

Differentiating both sides with respect to x, we get

$$\frac{dy}{dx} = \frac{2}{1+x^2}$$

Question 12:

$$y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$
, $0 < x < 1$

Answer 12:

$$y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$

Let, $x = \tan \theta$, Therefore,

$$y = \sin^{-1}\left(\frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}\right) = \sin^{-1}(\cos 2\theta) = \sin^{-1}\left\{\sin(\frac{\pi}{2} - 2\theta)\right\} = \frac{\pi}{2} - 2\theta = \frac{\pi}{2} - 2\tan^{-1} x$$

$$\Rightarrow y = \frac{\pi}{2} - 2\tan^{-1} x$$

$$\frac{dy}{dx} = 0 - \frac{2}{1+x^2} = -\frac{2}{1+x^2}$$

Question 13:

$$y = \cos^{-1}\left(\frac{2x}{1+x^2}\right), -1 < x < 1$$

Answer 13:

$$y = \cos^{-1}\left(\frac{2x}{1+x^2}\right)$$

Let, $x = \tan \theta$

Therefore,
$$y = \cos^{-1}\left(\frac{2\tan\theta}{1+\tan^2\theta}\right)$$

$$= \cos^{-1}(\sin 2\theta) = \cos^{-1}\left\{\cos(\frac{\pi}{2} - 2\theta)\right\} = \frac{\pi}{2} - 2\theta = \frac{\pi}{2} - 2\tan^{-1}x$$

$$\Rightarrow y = \frac{\pi}{2} - 2\tan^{-1}x$$

Differentiating both sides with respect to x, we get

$$\frac{dy}{dx} = 0 - \frac{2}{1+x^2} = -\frac{2}{1+x^2}$$

Question 14:

$$y = \sin^{-1}(2x\sqrt{1-x^2}), -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$$

Answer 14:

$$y = \sin^{-1}\left(2x\sqrt{1-x^2}\right)$$

Let, $x = \sin \theta$

Therefore,
$$y = \sin^{-1}(2\sin\theta\sqrt{1-\sin^2\theta})$$

$$=\sin^{-1}(2\sin\theta\cos\theta)=\sin^{-1}(\sin2\theta)=2\theta=2\sin^{-1}x$$

$$\Rightarrow y = 2 \sin^{-1} x$$

Differentiating both sides with respect to x, we get

$$\frac{dy}{dx} = \frac{2}{\sqrt{1 - x^2}}$$

Question 15:

$$y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right), 0 < x < \frac{1}{\sqrt{2}}$$

Answer 15:

$$y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right)$$

Let, $x = \cos \theta$

Therefore,
$$y = \sec^{-1}\left(\frac{1}{2\cos^2\theta - 1}\right) = \sec^{-1}\left(\frac{1}{\cos 2\theta}\right) = \sec^{-1}(\sec 2\theta) = 2\theta = 2\cos^{-1}x$$

$$\Rightarrow y = 2\cos^{-1}x$$

$$\frac{dy}{dx} = -\frac{2}{\sqrt{1-x^2}}$$

Mathematics

(Chapter - 5) (Continuity and Differentiability) (Exercise 5.4) (Class - XII)

Differentiate the following w.r.t. x:

Question 1:

$$\frac{e^x}{\sin x}$$

Answer 1:

Let
$$y = \frac{e^x}{\sin x}$$
, Therefore,

Let
$$y = \frac{e^x}{\sin x}$$
, Therefore,

$$\frac{dy}{dx} = \frac{e^x \cdot \frac{d}{dx} \sin x - \sin x \frac{d}{dx} e^x}{\sin^2 x} = \frac{e^x \cdot \cos x - \sin x \cdot e^x}{\sin^2 x} = \frac{e^x (\cos x - \sin x)}{\sin^2 x}$$

Question 2:

$$e^{\sin^{-1}x}$$

Answer 2:

Let
$$y = e^{\sin^{-1} x}$$
, Therefore,

$$\frac{dy}{dx} = e^{\sin^{-1}x} \cdot \frac{d}{dx} \sin^{-1}x = e^{\sin^{-1}x} \cdot \frac{1}{\sqrt{1-x^2}} = \frac{e^{\sin^{-1}x}}{\sqrt{1-x^2}}$$

Question 3:

$$e^{x^2}$$

Answer 3:

Let
$$y = e^{x^3}$$
, Therefore,

$$\frac{dy}{dx} = e^{x^3} \cdot \frac{d}{dx} x^3 = e^{x^3} \cdot 3x^2 = 3x^2 e^{x^3}$$

Question 4:

$$\sin(\tan^{-1}e^{-x})$$

Answer 4:

Let
$$y = \sin(\tan^{-1} e^{-x})$$
, Therefore,

$$\frac{dy}{dx} = \cos(\tan^{-1}e^{-x}) \cdot \frac{d}{dx} \tan^{-1}e^{-x} = \cos(\tan^{-1}e^{-x}) \cdot \frac{1}{1 + (e^{-x})^2} \cdot \frac{d}{dx} e^{-x}$$

$$= \cos(\tan^{-1}e^{-x}) \cdot \frac{1}{1 + e^{-2x}} \cdot (-e^{-x}) = -\frac{e^{-x}\cos(\tan^{-1}e^{-x})}{1 + e^{-2x}}$$

Question 5:

$$\log(\cos e^x)$$

Answer 5:

Let
$$y = \log(\cos e^x)$$
, therefore,

$$\frac{dy}{dx} = \frac{1}{\cos e^x} \cdot \frac{d}{dx} \cos e^x = \frac{1}{\cos e^x} (-\sin e^x) \frac{d}{dx} e^x = -\tan e^x \cdot e^x$$

Question 6:

$$e^x + e^{x^2} + \dots + e^{x^5}$$

Answer 6:

Let
$$y = e^x + e^{x^2} + e^{x^3} + e^{x^4} + e^{x^5}$$
, Therefore,

$$\frac{dy}{dx} = e^x + e^{x^2} \frac{d}{dx} x^2 + e^{x^3} \frac{d}{dx} x^3 + e^{x^4} \frac{d}{dx} x^4 + e^{x^5} \frac{d}{dx} x^5$$

$$dx$$
 dx dx dx
= $e^x + e^{x^2} . 2x + e^{x^3} . 3x^2 + e^{x^4} . 4x^3 + e^{x^5} . 5x^4$

$$= e^x + 2xe^{x^2} + 3x^2e^{x^3} + 4x^3e^{x^4} + 5x^4e^{x^5}$$

Question 7:

$$\sqrt{e^{\sqrt{x}}}, x > 0$$

Answer 7:

Let
$$y = \sqrt{e^{\sqrt{x}}}$$

Therefore,

$$\frac{dy}{dx} = \frac{1}{2\sqrt{e^{\sqrt{x}}}} \frac{d}{dx} e^{\sqrt{x}}$$

$$\frac{dy}{dx} = \frac{1}{2\sqrt{e^{\sqrt{x}}}} \frac{d}{dx} e^{\sqrt{x}}$$

$$= \frac{1}{2\sqrt{e^{\sqrt{x}}}} \cdot e^{\sqrt{x}} \cdot \frac{d}{dx} \sqrt{x} = \frac{1}{2\sqrt{e^{\sqrt{x}}}} \cdot e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}} = \frac{\sqrt{e^{\sqrt{x}}}}{4\sqrt{x}}$$

Question 8:

 $\log(\log x), x > 1$

Answer 8:

Let
$$y = \frac{e^x}{\sin x}$$

Therefore,

$$\frac{dy}{dx} = \frac{1}{\log x} \cdot \frac{d}{dx} \log x$$

$$= \frac{1}{\log x} \cdot \frac{1}{x} = \frac{1}{x \log x}$$

Question 9:

$$\frac{\cos x}{\log x}, x > 0$$

Answer 9:

Let
$$y = \frac{\cos x}{\log x}$$

Therefore,

$$\frac{dy}{dx} = \frac{\log x \frac{d}{dx} \cos x - \cos x \frac{d}{dx} \log x}{(\log x)^2}$$

$$\frac{dy}{dx} = \frac{\log x \frac{d}{dx} \cos x - \cos x \frac{d}{dx} \log x}{(\log x)^2}$$

$$= \frac{\log x \cdot (-\sin x) - \cos x \cdot \frac{1}{x}}{(\log x)^2} = \frac{-(x \sin x \log x + \cos x)}{x(\log x)^2}$$

Question 10:

$$\cos(\log x + e^x), x > 0$$

Answer 10:

Let
$$y = \cos(\log x + e^x)$$

Therefore,

$$\frac{dy}{dx} = -\sin(\log x + e^x) \cdot \frac{d}{dx} (\log x + e^x)$$

$$= -\sin(\log x + e^x) \cdot \left(\frac{1}{x} + e^x\right)$$

Mathematics

(Chapter - 5) (Continuity and Differentiability) (Exercise 5.5)

(Class - XII)

Differentiate the functions given in Exercises 1 to 11 w.r.t. x.

Question 1:

 $\cos x \cdot \cos 2x \cdot \cos 3x$

Answer 1:

Let $y = \cos x \cdot \cos 2x \cdot \cos 3x$, taking log on both the sides

$$\log y = \log \cos x + \log \cos 2x + \log \cos 3x$$

Therefore,

$$\frac{1}{y}\frac{dy}{dx} = \frac{1}{\cos x} \cdot \frac{d}{dx}\cos x + \frac{1}{\cos 2x} \cdot \frac{d}{dx}\cos 2x + \frac{1}{\cos 3x} \cdot \frac{d}{dx}\cos 3x$$

$$\Rightarrow \frac{dy}{dx} = y \left[\frac{1}{\cos x} \cdot (-\sin x) + \frac{1}{\cos 2x} \cdot (-\sin 2x) \cdot 2 + \frac{1}{\cos 3x} \cdot (-\sin 3x) \cdot 3 \right]$$

$$\Rightarrow \frac{dy}{dx} = \cos x \cdot \cos 2x \cdot \cos 3x \left[-\tan x - 2\tan 2x - 3\tan 3x \right]$$

Question 2:

$$\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$$

Answer 2:

Let
$$y = \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$$
, taking log on both the sides

$$\log y = \frac{1}{2} [\log(x-1) + \log(x-2) - \log(x-3) - \log(x-4) - \log(x-5)]$$

Therefore,

$$\frac{1}{y}\frac{dy}{dx} = \frac{1}{2}\left[\frac{1}{(x-1)} + \frac{1}{(x-2)} - \frac{1}{(x-3)} - \frac{1}{(x-4)} - \frac{1}{(x-5)}\right]$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}} \left[\frac{1}{(x-1)} + \frac{1}{(x-2)} - \frac{1}{(x-3)} - \frac{1}{(x-4)} - \frac{1}{(x-5)} \right]$$

Question 3:

 $(\log x)^{\cos x}$

Answer 3:

Let $y = (\log x)^{\cos x}$, taking log on both the sides

$$\log y = \log(\log x)^{\cos x} = \cos x \cdot \log\log x$$

Therefore,

$$\frac{1}{y}\frac{dy}{dx} = \cos x \cdot \frac{d}{dx}\log\log x + \log\log x \cdot \frac{d}{dx}\cos x$$

$$\Rightarrow \frac{dy}{dx} = y \left[\cos x \cdot \frac{1}{\log x} \cdot \frac{1}{x} + \log \log x \cdot (-\sin x) \right]$$

$$\Rightarrow \frac{dy}{dx} = (\log x)^{\cos x} \left[\frac{\cos x - \sin x \log \log x}{x \log x} \right]$$

Question 4:

$$x^x - 2^{\sin x}$$

Answer 4:

Let $u = x^x$ and $v = 2^{\sin x}$ therefore, y = u - v

Differentiating with respect to x on both sides

$$\frac{dy}{dx} = \frac{du}{dx} - \frac{dv}{dx} \qquad \dots (1)$$

Here, $u = x^x$, taking log on both the sides

 $\log u = x \log x$, therefore,

$$\frac{1}{u}\frac{du}{dx} = x \cdot \frac{d}{dx}\log x + \log x \cdot \frac{d}{dx}x = x \cdot \frac{1}{x} + \log x \cdot 1 = 1 + \log x$$

$$\frac{du}{dx} = u[1 + \log x] = x^x[1 + \log x] \qquad ...(2)$$

and, $v = 2^{\sin x}$, taking log on both the sides

 $\log v = \sin x \log 2$, therefore,

$$\frac{1}{v}\frac{dv}{dx} = \log 2 \cdot \frac{d}{dx}\sin x = \log 2 \cdot \cos x$$

$$\frac{dv}{dx} = v[\cos x \log 2] = 2^{\sin x}[\cos x \log 2] \dots (3)$$

Putting the value of $\frac{du}{dx}$ from (2) and $\frac{dv}{dx}$ from (3) in equation (1), we get

$$\frac{dy}{dx} = x^x [1 + \log x] - 2^{\sin x} [\cos x \log 2]$$

Question 5:

$$(x+3)^2 \cdot (x+4)^3 \cdot (x+5)^4$$

Answer 5:

Let $y = (x + 3)^2 \cdot (x + 4)^3 \cdot (x + 5)^4$, taking log on both the sides

$$\log y = 2\log(x+3) + 3\log(x+4) + 4\log(x+5)$$

Therefore,

$$\frac{1}{y}\frac{dy}{dx} = 2.\frac{1}{(x+3)} + 3.\frac{1}{(x+4)} + 4.\frac{1}{(x+5)}$$

$$\Rightarrow \frac{dy}{dx} = y \left[\frac{2(x+4)(x+5) + 3(x+3)(x+5) + 4(x+3)(x+4)}{(x+3)(x+4)(x+5)} \right]$$

$$\Rightarrow \frac{dy}{dx} = y \left[\frac{2(x^2 + 9x + 20) + 3(x^2 + 8x + 15) + 4(x^2 + 7x + 12)}{(x+3)(x+4)(x+5)} \right]$$

$$\Rightarrow \frac{dy}{dx} = (x+3)^2 \cdot (x+4)^3 \cdot (x+5)^4 \left[\frac{9x^2 + 70x + 133}{(x+3)(x+4)(x+5)} \right]$$

$$\Rightarrow \frac{dy}{dx} = (x+3) \cdot (x+4)^2 \cdot (x+5)^3 (9x^2 + 70x + 133)$$

Question 6:

$$\left(x+\frac{1}{x}\right)^x+x^{\left(1+\frac{1}{x}\right)}$$

Answer 6:

Let
$$u = \left(x + \frac{1}{x}\right)^x$$
 and $v = x^{\left(1 + \frac{1}{x}\right)}$, therefore, $y = u + v$

Differentiating with respect to x, we get

$$\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \qquad \dots (1)$$

Here, $u = \left(x + \frac{1}{x}\right)^x$, taking log on both the sides

$$\log u = x \log \left(x + \frac{1}{x} \right)$$
, therefore,

$$\frac{1}{u}\frac{du}{dx} = x \cdot \frac{d}{dx}\log\left(x + \frac{1}{x}\right) + \log\left(x + \frac{1}{x}\right) \cdot \frac{d}{dx}x$$

$$= x \cdot \frac{1}{\left(x + \frac{1}{x}\right)} \cdot \left(1 - \frac{1}{x^2}\right) + \log\left(x + \frac{1}{x}\right) \cdot 1 = \frac{x^2}{x^2 + 1} \cdot \frac{x^2 - 1}{x^2} + \log\left(x + \frac{1}{x}\right)$$

$$\frac{du}{dx} = \left(x + \frac{1}{x}\right)^x \left[\frac{x^2 - 1}{x^2 + 1} + \log\left(x + \frac{1}{x}\right)\right] \dots (2)$$

and , $v = x^{\left(1 + \frac{1}{x}\right)}$, taking log on both the sides

$$\log v = \left(1 + \frac{1}{r}\right) \log x$$
, therefore,

$$\frac{1}{v}\frac{dv}{dx} = \left(1 + \frac{1}{x}\right) \cdot \frac{d}{dx}\log x + \log x \cdot \frac{d}{dx}\left(1 + \frac{1}{x}\right) = \left(1 + \frac{1}{x}\right) \cdot \frac{1}{x} + \log x \cdot \left(-\frac{1}{x^2}\right)$$

$$\frac{dv}{dx} = v \left[\left(\frac{x^2 + 1}{x} \right) \cdot \frac{1}{x} - \frac{\log x}{x^2} \right] = x^{\left(1 + \frac{1}{x} \right)} \left[\frac{x^2 + 1 - \log x}{x^2} \right] \dots (3)$$

Putting the value of $\frac{du}{dx}$ from (2) and $\frac{dv}{dx}$ from (3) in equation (1), we get

$$\frac{dy}{dx} = \left(x + \frac{1}{x}\right)^x \left[\frac{x^2 - 1}{x^2 + 1} + \log\left(x + \frac{1}{x}\right) \right] + x^{\left(1 + \frac{1}{x}\right)} \left[\frac{x^2 + 1 - \log x}{x^2} \right]$$

Question 7

$$(\log x)^x + x^{\log x}$$

Answer 7:

Let $u = (\log x)^x$ and $v = x^{\log x}$, therefore, y = u + v

Differentiating with respect to x, we get

$$\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \qquad \dots (1)$$

Here, $u = (\log x)^x$, taking log on both the sides

 $\log u = x \log \log x$, therefore,

$$\frac{1}{u}\frac{du}{dx} = x.\frac{d}{dx}\log\log x + \log\log x.\frac{d}{dx}x$$

$$= x \cdot \frac{1}{\log x} \cdot \frac{1}{x} + \log \log x \cdot 1 = \frac{1}{\log x} + \log \log x$$

$$\frac{du}{dx} = (\log x)^x \left[\frac{1 + \log x \cdot \log \log x}{\log x} \right]$$

$$= (\log x)^{x-1} (1 + \log x \cdot \log \log x) \dots (2)$$

and, $v = x^{\log x}$, taking log on both the sides

 $\log v = \log x \log x$, therefore,

$$\frac{1}{v}\frac{dv}{dx} = \log x \cdot \frac{d}{dx}\log x + \log x \cdot \frac{d}{dx}\log x$$

$$= \log x \cdot \frac{1}{x} + \log x \cdot \frac{1}{x}$$

$$\frac{dv}{dx} = v \left[\frac{2 \log x}{x} \right] = x^{\log x} \left[\frac{2 \log x}{x} \right] = x^{\log x - 1} (2 \log x) \quad \dots (3)$$

Putting the value of $\frac{du}{dx}$ from (2) and $\frac{dv}{dx}$ from (3) in equation (1), we get

$$\frac{dy}{dx} = (\log x)^{x-1} (1 + \log x \cdot \log \log x) + x^{\log x - 1} (2 \log x)$$

Question 8:

$$(\sin x)^x + \sin^{-1} \sqrt{x}$$

Answer 8:

Let $u = (\sin x)^x$ and $v = \sin^{-1} \sqrt{x}$, therefore, y = u + v

Differentiating with respect to x, we get

$$\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \qquad \dots (1)$$

Here, $u = (\sin x)^x$, taking log on both the sides

 $\log u = x \log \sin x$, therefore,

$$\frac{1}{u}\frac{du}{dx} = x.\frac{d}{dx}\log\sin x + \log\sin x.\frac{d}{dx}x$$

$$= x \cdot \frac{1}{\sin x} \cdot \cos x + \log \sin x \cdot 1 = x \cot x + \log \sin x$$

$$\frac{du}{dx} = (\sin x)^x (x \cot x + \log \sin x) \qquad \dots (2)$$

and, $v = \sin^{-1} \sqrt{x}$, therefore,

$$\frac{1}{v}\frac{dv}{dx} = \log x \cdot \frac{d}{dx}\log x + \log x \cdot \frac{d}{dx}\log x = \log x \cdot \frac{1}{x} + \log x \cdot \frac{1}{x}$$

$$\frac{dv}{dx} = \frac{1}{\sqrt{1-x}} \cdot \frac{d}{dx} \sqrt{x} = \frac{1}{\sqrt{1-x}} \cdot \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{x-x^2}} \dots (3)$$

Putting the value of $\frac{du}{dx}$ from (2) and $\frac{dv}{dx}$ from (3) in equation (1), we get

$$\frac{dy}{dx} = (\sin x)^x (x \cot x + \log \sin x) + \frac{1}{2\sqrt{x - x^2}}$$

Question 9:

 $x^{\sin x} + (\sin x)^{\cos x}$

Answer 9:

Let $u = x^{\sin x}$ and $v = (\sin x)^{\cos x}$ therefore, y = u + v

Differentiating with respect to x, we get, $\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$... (1)

Here, $u = x^{\sin x}$, taking log on both the sides

 $\log u = \sin x \log x$, therefore,

$$\frac{1}{u}\frac{du}{dx} = \sin x \cdot \frac{d}{dx}\log x + \log x \cdot \frac{d}{dx}\sin x = \sin x \cdot \frac{1}{x} + \log x \cdot \cos x = \frac{\sin x}{x} + \log x \cos x$$

$$\frac{du}{dx} = x^{\sin x} \left[\frac{\sin x}{x} + \log x \cos x \right] = x^{\sin x - 1} (\sin x + x \log x \cos x) \qquad \dots (2)$$

and, $v = (\sin x)^{\cos x}$, taking log on both the sides, we get $\log v = \cos x \log \sin x$, therefore,

$$\frac{1}{v}\frac{dv}{dx} = \cos x \cdot \frac{d}{dx}\log\sin x + \log\sin x \cdot \frac{d}{dx}\cos x = \cos x \cdot \frac{1}{\sin x}\cos x + \log\sin x \,(-\sin x)$$

$$\frac{dv}{dx} = v[\cos x \cot x - \sin x \log \sin x] = (\sin x)^{\cos x} (\cos x \cot x - \sin x \log \sin x) \dots (3)$$

Putting the value of $\frac{du}{dx}$ from (2) and $\frac{dv}{dx}$ from (3) in equation (1), we get

$$\frac{dy}{dx} = x^{\sin x - 1} (\sin x + x \log x \cos x) + (\sin x)^{\cos x} (\cos x \cot x - \sin x \log \sin x)$$

Question 10:

$$x^{x\cos x} + \frac{x^2+1}{x^2-1}$$

Answer 10:

Let $u = x^{x \cos x}$ and $v = \frac{x^2+1}{x^2-1}$ therefore, y = u + v

Differentiating with respect to x, we get $\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$... (1)

Here, $u = x^{x \cos x}$, taking log on both the sides, we get $\log u = x \log x$, therefore,

$$\frac{1}{u}\frac{du}{dx} = x\cos x \cdot \frac{d}{dx}\log x + \log x \cdot \frac{d}{dx}x\cos x = x\cos x \cdot \frac{1}{x} + \log x \cdot (-x \cdot \sin x + \cos x)$$

$$= \cos x - x \sin x \log x + \cos x \log x$$

$$\frac{du}{dx} = u[\cos x - x \sin x \log x + \cos x \log x]$$

$$= x^{x \cos x} [\cos x - x \sin x \log x + \cos x \log x] \qquad \dots (2)$$

and, $v = \frac{x^2+1}{x^2-1}$, Taking log on both the sides

$$\log v = \log(x^2 + 1) - \log(x^2 - 1)$$
, therefore,

$$\frac{1}{v}\frac{dv}{dx} = \frac{1}{x^2 + 1} \cdot 2x - \frac{1}{x^2 - 1} \cdot 2x = \frac{2x(x^2 - 1) - 2x(x^2 + 1)}{(x^2 + 1)(x^2 - 1)} = \frac{-4x}{(x^2 + 1)(x^2 - 1)}$$

$$\frac{dv}{dx} = v \left[\frac{-4x}{(x^2 + 1)(x^2 - 1)} \right] = \frac{x^2 + 1}{x^2 - 1} \left[\frac{-4x}{(x^2 + 1)(x^2 - 1)} \right] = -\frac{4x}{(x^2 - 1)^2} \dots (3)$$

Putting the value of $\frac{du}{dx}$ from (2) and $\frac{dv}{dx}$ from (3) in equation (1), we get

$$\frac{dy}{dx} = x^{x\cos x} [\cos x - x\sin x \log x + \cos x \log x] - \frac{4x}{(x^2 - 1)^2}$$

Question 11:

 $(x\cos x)^x + (x\sin x)^{\frac{1}{x}}$

Answer 11:

Let $u = (x \cos x)^x$ and $v = (x \sin x)^{\frac{1}{x}}$, therefore, y = u + v

Differentiating with respect to x, we get

$$\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \qquad \dots (1)$$

Here, $u = (x \cos x)^x$, Taking log on both the sides

 $\log u = x \log(x \cos x)$, therefore,

$$\frac{1}{u}\frac{du}{dx} = x.\frac{d}{dx}\log(x\cos x) + \log(x\cos x).\frac{d}{dx}x$$

$$= x \cdot \frac{1}{(x \cos x)} (-x \sin x + \cos x) + \log(x \cos x) \cdot 1 = -x \tan x + 1 + \log(x \cos x)$$

$$\frac{du}{dx} = (x\cos x)^x [1 - x\tan x + \log(x\cos x)]$$

$$= (x \cos x)^{x} [1 - x \tan x + \log(x \cos x)] \dots (2)$$

and, $v = (x \sin x)^{\frac{1}{x}}$, Taking log on both the sides

 $\log v = \frac{1}{x} \log(x \sin x)$, therefore,

$$\frac{1}{v}\frac{dv}{dx} = \frac{1}{x} \cdot \frac{d}{dx} \log(x \sin x) + \log(x \sin x) \cdot \frac{d}{dx}\frac{1}{x}$$

$$= \frac{1}{x} \cdot \frac{1}{x \sin x} (x \cos x + \sin x) + \log(x \sin x) \left(-\frac{1}{x^2}\right)$$

$$\frac{dv}{dx} = v \left[\frac{x \cot x + 1 - \log(x \sin x)}{x^2} \right]$$

$$= (x \sin x)^{\frac{1}{x}} \left[\frac{x \cot x + 1 - \log(x \sin x)}{x^2} \right] \dots (3)$$

Putting the value of $\frac{du}{dx}$ from (2) and $\frac{dv}{dx}$ from (3) in equation (1), we get

$$\frac{dy}{dx} = (x\cos x)^x [1 - x\tan x + \log(x\cos x)] + (x\sin x)^{\frac{1}{x}} \left[\frac{x\cot x + 1 - \log(x\sin x)}{x^2} \right]$$

Find $\frac{dy}{dx}$ of the functions given in Exercises 12 to 15:

Question 12:

$$x^y + y^x = 1$$

Answer 12:

Let $u = x^y$ and $v = y^x$, therefore, u + v = 1

Differentiating with respect to x, we get

$$\frac{du}{dx} + \frac{dv}{dx} = 0 \tag{1}$$

Here, $u = x^y$, Taking log on both the sides, $\log u = y \log x$, therefore,

$$\frac{1}{u}\frac{du}{dx} = y.\frac{d}{dx}\log x + \log x.\frac{d}{dx}y = y.\frac{1}{x} + \log x.\frac{dy}{dx}$$

$$\frac{du}{dx} = x^y \left[\frac{y}{x} + \log x \cdot \frac{dy}{dx} \right] \qquad \dots (2)$$

and, $v = y^x$, Taking log on both the sides

 $\log v = x \log y$, therefore,

$$\frac{1}{v}\frac{dv}{dx} = x \cdot \frac{d}{dx}\log y + \log y \cdot \frac{d}{dx}x = x \cdot \frac{1}{v}\frac{dy}{dx} + \log y \cdot 1$$

$$\frac{dv}{dx} = v \left[\frac{x}{y} \frac{dy}{dx} + \log y \right] = y^x \left[\frac{x}{y} \frac{dy}{dx} + \log y \right] \dots (3)$$

Putting the value of $\frac{du}{dx}$ from (2) and $\frac{dv}{dx}$ from (3) in equation (1), we get

$$x^{y} \left[\frac{y}{x} + \log x \cdot \frac{dy}{dx} \right] + y^{x} \left[\frac{x}{y} \frac{dy}{dx} + \log y \right] = 0$$

$$\Rightarrow yx^{y-1} + x^y \log x \frac{dy}{dx} + xy^{x-1} \frac{dy}{dx} + y^x \log y = 0$$

$$\Rightarrow \frac{dy}{dx}(x^y \log x + xy^{x-1}) = -(y^x \log y + yx^{y-1})$$

$$\Rightarrow \frac{dy}{dx} = -\frac{y^x \log y + yx^{y-1}}{x^y \log x + xy^{x-1}}$$

Question 13:

$$y^x = x^y$$

Answer 13:

$$y^x = x^y$$

Taking log on both the sides, $x \log y = y \log x$, therefore,

$$x.\frac{d}{dx}\log y + \log y.\frac{d}{dx}x = y.\frac{d}{dx}\log x + \log x.\frac{d}{dx}y$$

$$\Rightarrow x.\frac{1}{y}\frac{dy}{dx} + \log y. 1 = y.\frac{1}{x} + \log x.\frac{dy}{dx}$$

$$\Rightarrow \frac{dy}{dx} \left(\frac{x}{y} - \log x \right) = \frac{y}{x} - \log y$$

$$\Rightarrow \frac{dy}{dx} \left(\frac{x - y \log x}{y} \right) = \frac{y - x \log y}{x}$$

$$\Rightarrow \frac{dy}{dx} = \frac{y(y - x \log y)}{x(x - y \log x)}$$

Question 14:

$$(\cos x)^y = (\cos y)^x$$

Answer 14:

$$(\cos x)^y = (\cos y)^x$$

Taking log on both the sides, $y \log[\cos x] = x \log[\cos y]$, therefore,

$$y \cdot \frac{d}{dx} \log \cos x + \log \cos x \cdot \frac{d}{dx} y = x \cdot \frac{d}{dx} \log \cos y + \log \cos y \cdot \frac{d}{dx} x$$

$$\Rightarrow y \left(\frac{-\sin x}{\cos x} \right) + \log \cos x \cdot \frac{dy}{dx} = x \cdot \left(\frac{-\sin y}{\cos y} \right) \frac{dy}{dx} + \log \cos y \cdot 1$$

$$\Rightarrow \frac{dy}{dx}(\log\cos x + x\tan y) = \log\cos y + y\tan x \qquad \Rightarrow \frac{dy}{dx} = \frac{\log\cos y + y\tan x}{\log\cos x + x\tan y}$$

Question 15:

$$xy = e^{(x-y)}$$

Answer 15:

$$xy = e^{(x-y)}$$

Taking log on both the sides,

$$\log x + \log y = (x - y) \log e$$
 $\Rightarrow \log x + \log y = (x - y)$, therefore,

$$\frac{1}{x} + \frac{1}{y} \cdot \frac{dy}{dx} = 1 - \frac{dy}{dx}$$

$$\Rightarrow \frac{dy}{dx} \left(\frac{1}{y} + 1 \right) = 1 - \frac{1}{x} \qquad \Rightarrow \frac{dy}{dx} \left(\frac{1+y}{y} \right) = \frac{x-1}{x} \qquad \Rightarrow \frac{dy}{dx} = \frac{y(x-1)}{x(y+1)}$$

Question 16:

Find the derivative of the function given by $f(x) = (1+x)(1+x^2)(1+x^4)(1+x^8)$ and hence find f'(1).

Answer 16:

$$f(x) = (1+x)(1+x^2)(1+x^4)(1+x^8)$$

Taking log on both the sides,

$$\log f(x) = \log(1+x) + \log(1+x^2) + \log(1+x^4) + \log(1+x^8)$$
, therefore,

$$\frac{1}{f(x)} \cdot \frac{d}{dx} f(x) = \frac{1}{1+x} + \frac{1}{1+x^2} \cdot \frac{d}{dx} x^2 + \frac{1}{1+x^4} \cdot \frac{d}{dx} x^4 + \frac{1}{1+x^8} \cdot \frac{d}{dx} x^8$$

$$\Rightarrow \frac{1}{f(x)} \cdot f'(x) = \frac{1}{1+x} + \frac{1}{1+x^2} \cdot 2x + \frac{1}{1+x^4} \cdot 4x^3 + \frac{1}{1+x^8} \cdot 8x^7$$

$$\Rightarrow f'(x) = f(x) \left[\frac{1}{1+x} + \frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \frac{8x^7}{1+x^8} \right]$$

$$\Rightarrow f'(x) = (1+x)(1+x^2)(1+x^4)(1+x^8) \left[\frac{1}{1+x} + \frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \frac{8x^7}{1+x^8} \right]$$

$$\Rightarrow f'(1) = (1+1)(1+1)(1+1)(1+1)\left[\frac{1}{1+1} + \frac{2}{1+1} + \frac{4}{1+1} + \frac{8}{1+1}\right]$$

$$\Rightarrow f'(1) = (2)(2)(2)(2)\left[\frac{1}{2} + \frac{2}{2} + \frac{4}{2} + \frac{8}{2}\right] = 16\left(\frac{15}{2}\right) = 120$$

Question 17:

Differentiate $(x^2 - 5x + 8)(x^3 + 7x + 9)$ in three ways mentioned below:

- (i) by using product rule
- (ii) by expanding the product to obtain a single polynomial.
- (iii) by logarithmic differentiation.

Do they all give the same answer?

Answer 17:

Let
$$y = (x^2 - 5x + 8)(x^3 + 7x + 9)$$

(i) Differentiating using product rule

$$\frac{dy}{dx} = (x^2 - 5x + 8) \frac{d}{dx} (x^3 + 7x + 9) + (x^3 + 7x + 9) \frac{d}{dx} (x^2 - 5x + 8)$$

$$= (x^2 - 5x + 8)(3x^2 + 7) + (x^3 + 7x + 9)(2x - 5)$$

$$= (3x^4 + 7x^2 - 15x^3 - 35x + 24x^2 + 56) + 2x^4 - 5x^3 + 14x^2 - 35x + 18x - 45$$

$$= 5x^4 - 20x^3 + 45x^2 - 52x + 11$$

(ii) Differentiating by expanding the product to obtain a single polynomial

$$y = (x^2 - 5x + 8)(x^3 + 7x + 9) = x^5 + 7x^3 + 9x^2 - 5x^4 - 35x^2 - 45x + 8x^3 + 56x + 72$$
$$= x^5 - 5x^4 + 15x^3 - 26x^2 + 11x + 72$$

$$\frac{dy}{dx} = \frac{d}{dx}x^5 - 5\frac{d}{dx}x^4 + 15\frac{d}{dx}x^3 - 26\frac{d}{dx}x^2 + 11\frac{d}{dx}x + \frac{d}{dx}72 = 5x^4 - 20x^3 + 45x^2 - 52x + 11$$

(iii) Logarithmic differentiation

$$y = (x^2 - 5x + 8)(x^3 + 7x + 9)$$

Taking log on both sides, $\log y = \log(x^2 - 5x + 8) + \log(x^3 + 7x + 9)$

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{(x^2 - 5x + 8)} \cdot \frac{d}{dx} (x^2 - 5x + 8) + \frac{1}{(x^3 + 7x + 9)} \cdot \frac{d}{dx} (x^3 + 7x + 9)$$
1 dy 1

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{x^2 - 5x + 8} \cdot (2x - 5) + \frac{1}{x^3 + 7x + 9} \cdot (3x^2 + 7)$$

$$\frac{dy}{dx} = y \left[\frac{(2x-5)(x^3+7x+9) + (3x^2+7)(x^2-5x+8)}{(x^2-5x+8)(x^3+7x+9)} \right]$$

$$=y\left[\frac{2x^4+14x^2+18x-5x^3-35x-45+3x^4-15x^3+24x^2+7x^2-35x+56}{(x^2-5x+8)(x^3+7x+9)}\right]$$

$$\Rightarrow \frac{dy}{dx} = (x^2 - 5x + 8)(x^3 + 7x + 9) \left[\frac{5x^5 - 20x^3 + 45x^2 - 52x + 11}{(x^2 - 5x + 8)(x^3 + 7x + 9)} \right]$$

$$\Rightarrow \frac{dy}{dx} = 5x^4 - 20x^3 + 45x^2 - 52x + 11$$

Hence, all the three answers are same.

Question 18:

If *u*, *v* and *w* are functions of *x*, then show that

$$\frac{d}{dx}(u.v.w) = \frac{du}{dx}v.w + u.\frac{dv}{dx}.w + u.v\frac{dw}{dx}$$

in two ways - first by repeated application of product rule, second by logarithmic differentiation.

Answer 18:

Let
$$y = u. v. w = u. (v. w)$$

Differentiation by repeated application of product rule

$$\frac{dy}{dx} = u \cdot \frac{d}{dx}(v \cdot w) + (v \cdot w) \cdot \frac{d}{dx}u = u \left[v \frac{d}{dx}w + w \frac{d}{dx}v\right] + v \cdot w \cdot \frac{du}{dx}$$

$$\Rightarrow \frac{dy}{dx} = u \cdot v \cdot \frac{dw}{dx} + u \cdot w \cdot \frac{dv}{dx} + v \cdot w \cdot \frac{du}{dx}$$

Differentiation using logarithmic

Let
$$y = u.v.w$$

Taking log on both the sides, $\log y = \log u + \log v + \log w$

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} + \frac{1}{v} \cdot \frac{dv}{dx} + \frac{1}{w} \cdot \frac{dw}{dx} \Rightarrow \frac{dy}{dx} = y \left[\frac{1}{u} \cdot \frac{du}{dx} + \frac{1}{v} \cdot \frac{dv}{dx} + \frac{1}{w} \cdot \frac{dw}{dx} \right]$$

$$\Rightarrow \frac{dy}{dx} = u \cdot v \cdot w \left[\frac{1}{u} \cdot \frac{du}{dx} + \frac{1}{v} \cdot \frac{dv}{dx} + \frac{1}{w} \cdot \frac{dw}{dx} \right] \Rightarrow \frac{dy}{dx} = \frac{u \cdot v \cdot w}{u} \cdot \frac{du}{dx} + \frac{u \cdot v \cdot w}{v} \cdot \frac{dv}{dx} + \frac{u \cdot v \cdot w}{w} \cdot \frac{dw}{dx}$$

$$\Rightarrow \frac{dy}{dx} = v \cdot w \cdot \frac{du}{dx} + u \cdot w \cdot \frac{dv}{dx} + u \cdot v \cdot \frac{dw}{dx}$$

Mathematics

(Chapter - 5) (Continuity and Differentiability) (Exercise 5.6)
(Class - XII)

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find $\frac{dy}{dx}$.

Question 1:

$$x = 2at^2$$
, $y = at^4$

Answer 1:

Here,
$$x = 2at^2$$
, $y = at^4$

Therefore,
$$\frac{dx}{dt} = 2a(2t)$$
 and $\frac{dy}{dt} = a(4t^3)$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{4at^3}{4at} = t^2$$

Question 2:

$$x = a \cos \theta$$
, $y = b \cos \theta$

Answer 2:

Here,
$$x = a \cos \theta$$
, $y = b \cos \theta$, therefore, $\frac{dx}{d\theta} = a(-\sin \theta)$ and $\frac{dy}{d\theta} = b(-\sin \theta)$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{-b\sin\theta}{-a\sin\theta} = \frac{b}{a}$$

Question 3:

$$x = \sin t$$
, $y = \cos 2t$

Answer 3:

Here,
$$x = \sin t$$
, $y = \cos 2t$, therefore, $\frac{dx}{dt} = \cos t$ and $\frac{dy}{dt} = -\sin 2t$. 2

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-2\sin 2t}{\cot t} = -\frac{2(2\sin t\cos t)}{\cos t} = -4\sin t$$

Question 4:

$$x = 4t, y = \frac{4}{t}$$

Answer 4:

Here,
$$x = 4t$$
, $y = \frac{4}{t}$, therefore, $\frac{dx}{dt} = 4$ and $\frac{dy}{dt} = -\frac{4}{t^2}$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-\frac{4}{t^2}}{4} = -\frac{1}{t^2}$$

Question 5:

$$x = \cos \theta - \cos 2\theta$$
, $y = \sin \theta - \sin 2\theta$

Answer 5:

Here,
$$x = \cos \theta - \cos 2\theta$$
, $y = \sin \theta - \sin 2\theta$

Therefore,
$$\frac{dx}{d\theta} = -\sin\theta + 2\sin 2\theta$$
 and $\frac{dy}{d\theta} = \cos\theta - 2\cos 2\theta$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\cos \theta - 2\cos 2\theta}{-\sin \theta + 2\sin 2\theta}$$

Question 6:

$$x = a(\theta - \sin \theta), y = a(1 + \cos \theta)$$

Answer 6:

Here,
$$x = a(\theta - \sin \theta), y = a(1 + \cos \theta)$$

Therefore,
$$\frac{dx}{d\theta} = a(1 - \cos \theta)$$
 and $\frac{dy}{d\theta} = a(0 - \sin \theta)$

Therefore,
$$\frac{dx}{d\theta} = a(1 - \cos\theta)$$
 and $\frac{dy}{d\theta} = a(0 - \sin\theta)$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{-a\sin\theta}{a(1 - \cos\theta)} = -\frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\sin^2\frac{\theta}{2}} = -\cot\frac{\theta}{2}$$

Question 7:

$$x = \frac{\sin^3 t}{\sqrt{\cos 2t}}, y = \frac{\cos^3 t}{\sqrt{\cos 2t}}$$

Answer 7:

Here,
$$x = \frac{\sin^3 t}{\sqrt{\cos 2t}}$$
, $y = \frac{\cos^3 t}{\sqrt{\cos 2t}}$, therefore, $\frac{dx}{dt} = \frac{\sin^3 t \frac{d}{dt} \sqrt{\cos 2t} - \sqrt{\cos 2t} \frac{d}{dt} \sin^3 t}{\left(\sqrt{\cos 2t}\right)^2}$

$$= \frac{\sin^3 t \cdot \frac{1}{2\sqrt{\cos 2t}} \cdot (-\sin 2t) \cdot 2 - \sqrt{\cos 2t} \cdot 3\sin^2 t \cos t}{\cos 2t} = \frac{-\sin^3 t \cdot \sin 2t - 3\cos 2t \cdot \sin^2 t \cos t}{\cos 2t \sqrt{\cos 2t}}$$

and
$$\frac{dy}{dt} = \frac{\cos^3 t \frac{d}{dt} \sqrt{\cos 2t} - \sqrt{\cos 2t} \frac{d}{dt} \cos^3 t}{(\sqrt{\cos 2t})^2}$$

$$= \frac{\cos^3 t \cdot \frac{1}{2\sqrt{\cos 2t}} \cdot (-\sin 2t) \cdot 2 - \sqrt{\cos 2t} \cdot 3\cos^2 t (-\sin t)}{\cos 2t} = \frac{-\cos^3 t \cdot \sin 2t + 3\cos 2t \cdot \cos^2 t \sin t}{\cos 2t \sqrt{\cos 2t}}$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-\cos^3 t \cdot \sin 2t + 3\cos 2t \cdot \cos^2 t \sin t}{-\sin^3 t \cdot \sin 2t - 3\cos 2t \cdot \sin^2 t \cos t}$$

$$= \frac{-\cos^3 t \cdot (2 \sin t \cos t) + 3 \cos 2t \cdot \cos^2 t \sin t}{-\sin^3 t \cdot (2 \sin t \cos t) - 3 \cos 2t \cdot \sin^2 t \cos t} = \frac{\cos^2 t \sin t (-2 \cos^2 t + 3 \cos 2t)}{\sin^2 t \cos t (-2 \sin^2 t - 3 \cos 2t)}$$

$$= \frac{\cos t \left[-2\cos^2 t + 3(2\cos^2 t - 1)\right]}{\sin t \left[-2\sin^2 t - 3(1 - 2\sin^2 t)\right]} = \frac{\cos t \left[-2\cos^2 t + 6\cos^2 t - 3\right]}{\sin t \left[-2\sin^2 t - 3 + 6\sin^2 t\right]}$$

$$= \frac{\cos t \left[4\cos^2 t - 3\right]}{\sin t \left[-3 + 4\sin^2 t\right]} = -\frac{4\cos^3 t - 3\cos t}{3\sin t - 4\sin^3 t} = -\frac{\cos 3t}{\sin 3t} = -\cot 3t$$

Question 8:

$$x = a\left(\cos t + \log \tan \frac{t}{2}\right) y = a \sin t$$

Answer 8:

Here,
$$x = a \left(\cos t + \log \tan \frac{t}{2}\right) y = a \sin t$$
,

Therefore,
$$\frac{dx}{dt} = a\left(-\sin t + \frac{1}{\tan\frac{t}{2}}.\sec^2\frac{t}{2}.\frac{1}{2}\right) = a\left(-\sin t + \frac{\cos\frac{t}{2}}{\sin\frac{t}{2}}.\frac{1}{\cos^2\frac{t}{2}}.\frac{1}{2}\right)$$

$$= a \left(-\sin t + \frac{1}{2\sin\frac{t}{2}\cos\frac{t}{2}} \right) = a \left(-\sin t + \frac{1}{\sin t} \right) = a \left(\frac{-\sin^2 t + 1}{\sin t} \right) = a \left(\frac{\cos^2 t}{\sin t} \right)$$

and
$$\frac{dy}{dt} = a \cos t$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{a\cos t}{a\left(\frac{\cos^2 t}{\sin t}\right)} = \frac{\sin t}{\cos t} = \tan t$$

Question 9:

 $x = a \sec \theta$, $y = b \tan \theta$

Answer 9:

Here, $x = a \sec \theta$, $y = b \tan \theta$

Therefore, $\frac{dx}{d\theta} = a \sec \theta \tan \theta$

and
$$\frac{dy}{d\theta} = b \sec^2 \theta$$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{b \sec^2 \theta}{a \sec \theta \tan \theta} = \frac{b \sec \theta}{a \tan \theta} = \frac{b \left(\frac{1}{\cos \theta}\right)}{a \left(\frac{\sin \theta}{\cos \theta}\right)} = \frac{b}{a} \csc \theta$$

Question 10:

 $x = a (\cos \theta + \theta \sin \theta), y = a (\sin \theta - \theta \cos \theta)$

Answer 10:

Here, $x = a(\cos\theta + \theta\sin\theta), y = a(\sin\theta - \theta\cos\theta)$

Therefore, $\frac{dx}{d\theta} = a \left[-\sin\theta + (\theta\cos\theta + \sin\theta) \right] = a\theta\cos\theta$

and
$$\frac{dy}{d\theta} = a \left[\cos \theta - (-\theta \sin \theta + \cos \theta) \right] = a\theta \sin \theta$$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a\theta \sin \theta}{a\theta \cos \theta} = \tan \theta$$

Question 11:

If
$$x = \sqrt{a^{\sin^{-1} t}}$$
, $y = \sqrt{a^{\cos^{-1} t}}$, show that $\frac{dy}{dx} = -\frac{y}{x}$

Answer 11:

Here,
$$x = \sqrt{a^{\sin^{-1} t}}, \ y = \sqrt{a^{\cos^{-1} t}}$$

Therefore,

$$\frac{dx}{dt} = \frac{1}{2\sqrt{a^{\sin^{-1}t}}} \cdot \frac{d}{dx} a^{\sin^{-1}t} = \frac{1}{2\sqrt{a^{\sin^{-1}t}}} \cdot a^{\sin^{-1}t} \cdot \log a \frac{1}{\sqrt{1-t^2}}$$

$$1 \qquad x \log a$$

$$= \frac{1}{2x} \cdot x^2 \cdot \log a \frac{1}{\sqrt{1 - t^2}} = \frac{x \log a}{\sqrt{1 - t^2}}$$

and

$$\frac{dy}{dt} = \frac{1}{2\sqrt{a^{\cos^{-1}t}}} \cdot \frac{d}{dx} a^{\cos^{-1}t} = \frac{1}{2\sqrt{a^{\cos^{-1}t}}} \cdot a^{\cos^{-1}t} \cdot \log a \frac{-1}{\sqrt{1-t^2}}$$

$$at 2\sqrt{a^{\cos^{-1}t}} ax 2\sqrt{a^{\cos^{-1}t}} = -\frac{y \log a}{\sqrt{1-t^2}}$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-\frac{y \log a}{\sqrt{1 - t^2}}}{\frac{x \log a}{\sqrt{1 - t^2}}} = -\frac{y}{x}$$

Mathematics

(Chapter - 5) (Continuity and Differentiability) (Exercise 5.7)
(Class - XII)

Find the second order derivatives of the functions given in Exercises 1 to 10.

Question 1:

$$x^2 + 3x + 2$$

Answer 1:

Let $y = x^2 + 3x + 2$, therefore,

$$\frac{dy}{dx} = \frac{d}{dx}(x^2 + 3x + 2) = 2x + 3$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dx}(2x+3) = 2$$

Question 2:

 x^{20}

Answer 2:

Let $y = x^{20}$, therefore,

$$\frac{dy}{dx} = \frac{d}{dx}(x^{20}) = 20x^{19}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dx}(20x^{19}) = 380x^{18}$$

Question 3:

 $x.\cos x$

Answer 3:

Let $y = x \cdot \cos x$, therefore,

$$\frac{dy}{dx} = \frac{d}{dx}(x \cdot \cos x) = x \cdot \frac{d}{dx}\cos x + \cos x \cdot \frac{d}{dx}x = -x\sin x + \cos x$$

$$d^{2}y \qquad d \qquad d \qquad d$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dx}(-x\sin x + \cos x) = -\left(x\frac{d}{dx}\sin x + \sin x\frac{d}{dx}x\right) - \sin x$$

$$= -x\cos x - \sin x - \sin x = -(x\cos x + 2\sin x)$$

Question 4:

 $\log x$

Answer 4:

Let $y = \log x$, therefore,

$$\frac{dy}{dx} = \frac{d}{dx}(\log x) = \frac{1}{x}$$

$$d^2y \qquad d \quad (1)$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{1}{x}\right) = -\frac{1}{x^2}$$

Question 5:

$$x^3 \log x$$

Answer 5:

Let $y = x^3 \log x$, therefore,

$$\frac{dy}{dx} = \frac{d}{dx}(x^3 \log x) = x^3 \cdot \frac{d}{dx} \log x + \log x \cdot \frac{d}{dx}x^3 = x^3 \cdot \frac{1}{x} + \log x \cdot 3x^2 = x^2 + 3x^2 \log x$$

$$\frac{d^2y}{dx} = \frac{d}{dx}(x^3 \log x) = x^3 \cdot \frac{d}{dx} \log x + \log x \cdot \frac{d}{dx}x^3 = x^3 \cdot \frac{1}{x} + \log x \cdot 3x^2 = x^2 + 3x^2 \log x$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dx}(x^2 + 3x^2\log x) = 2x + 3\left(x^2\frac{d}{dx}\log x + \log x\frac{d}{dx}x^2\right)$$

$$= 2x + 3\left(x^2 \cdot \frac{1}{x} + \log x \cdot 2x\right) = 2x + 3x + 6x \log x = 5x + 6x \log x = x(5 + 6 \log x)$$

Question 6:

 $e^x \sin 5x$

Answer 6:

Let $y = e^x \sin 5x$, therefore,

$$\frac{dy}{dx} = \frac{d}{dx}(e^x \sin 5x) = e^x \cdot \frac{d}{dx} \sin 5x + \sin 5x \cdot \frac{d}{dx}e^x$$

$$=e^x.\cos 5x.5 + \sin 5x.e^x$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dx} (5e^x \cos 5x + e^x \sin 5x)$$

$$=5\left(e^{x}.\frac{d}{dx}\cos 5x+\cos 5x.\frac{d}{dx}e^{x}\right)+\left(e^{x}.\frac{d}{dx}\sin 5x+\sin 5x.\frac{d}{dx}e^{x}\right)$$

$$= 5[e^x.(-\sin 5x).5 + \cos 5x.e^x] + [e^x.\cos 5x.5 + \sin 5x.e^x]$$

$$= e^{x}(-25\sin 5x + 5\cos 5x + 5\cos 5x + \sin 5x) = e^{x}(10\cos 5x - 24\sin 5x)$$

Question 7:

 $e^{6x}\cos 3x$

Answer 7:

Let $y = e^{6x} \cos 3x$, therefore,

$$\frac{dy}{dx} = \frac{d}{dx}(e^{6x}\cos 3x) = e^{6x} \cdot \frac{d}{dx}\cos 3x + \cos 3x \cdot \frac{d}{dx}e^{6x}$$

$$=e^{6x}.(-\sin 3x).3 + \cos 3x.e^{6x}.6$$

$$=3e^{6x}(-\sin 3x + 2\cos 3x)$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dx} \left[3e^{6x} (-\sin 3x + 2\cos 3x) \right]$$

$$= 3e^{6x} \cdot \frac{d}{dx} (-\sin 3x + 2\cos 3x) + (-\sin 3x + 2\cos 3x) \cdot \frac{d}{dx} 3e^{6x}$$

$$=3e^{6x}.(-3\cos 3x - 6\sin 3x) + (-\sin 3x + 2\cos 3x).18e^{6x}$$

$$=e^{6x}(-9\cos 3x - 18\sin 3x - 18\sin 3x + 36\cos 3x)$$

$$=e^{6x}(27\cos 3x - 36\sin 3x)$$

$$=9e^{6x}(3\cos 3x-4\sin 3x)$$

Question 8:

 $\tan^{-1} x$

Answer 8:

Let $y = \tan^{-1} x$, therefore,

$$\frac{dy}{dx} = \frac{d}{dx} \left(\tan^{-1} x \right) = \frac{1}{1 + x^2}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{1}{1+x^2} \right) = \frac{(1+x^2)\frac{d}{dx}1 - 1.\frac{d}{dx}(1+x^2)}{(1+x^2)^2}$$

$$=\frac{0-2x}{(1+x^2)^2}=-\frac{2x}{(1+x^2)^2}$$

Question 9:

 $\log(\log x)$

Answer 9:

Let $y = \log(\log x)$, therefore,

$$\frac{dy}{dx} = \frac{d}{dx}(\log(\log x)) = \frac{1}{\log x} \cdot \frac{1}{x} = \frac{1}{x \log x}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{1}{x \log x}\right) = \frac{(x \log x) \frac{d}{dx} 1 - 1 \cdot \frac{d}{dx} (x \log x)}{(x \log x)^2}$$

$$= \frac{0 - \left(x \cdot \frac{1}{x} + \log x\right)}{(x \log x)^2} = -\frac{1 + \log x}{(x \log x)^2}$$

Question 10:

sin(log x)

Answer 10:

Let $y = \sin(\log x)$, therefore,

$$\frac{dy}{dx} = \frac{d}{dx}(\sin(\log x)) = \cos(\log x) \cdot \frac{1}{x} = \frac{\cos(\log x)}{x}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dx} \left[\frac{\cos(\log x)}{x} \right] = \frac{x \frac{d}{dx} \cos(\log x) - \cos(\log x) \cdot \frac{d}{dx} x}{(x)^2}$$

$$= \frac{x \left\{-\sin(\log x) \cdot \frac{1}{x}\right\} - \cos(\log x) \cdot 1}{(x)^2} = \frac{-\sin(\log x) - \cos(\log x)}{(x)^2}$$

Question 11:

If $y = 5 \cos x - 3 \sin x$, prove that $\frac{d^2y}{dx^2} + y = 0$

Answer 11:

Given that: $y = 5 \cos x - 3 \sin x$, therefore,

$$\frac{dy}{dx} = \frac{d}{dx}(5\cos x - 3\sin x) = -5\sin x - 3\cos x$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dx}(-5\sin x - 3\cos x) = -5\cos x + 3\sin x = -(5\cos x - 3\sin x) = -y$$

$$\Rightarrow \frac{d^2y}{dx^2} + y = 0$$

Question 12:

If $y = \cos^{-1} x$, find $\frac{d^2y}{dx^2}$ in terms of y alone.

Answer 12:

Given that: $y = \cos^{-1} x$

$$\Rightarrow$$
 cos $y = x$, therefore,

$$-\sin y \frac{dy}{dx} = 1$$

$$\Rightarrow \frac{dy}{dx} = -\frac{1}{\sin y} = -\csc y$$

$$\Rightarrow \frac{d^2y}{dx^2} = -(-\csc y \cot y). \frac{dy}{dx} = (\csc y \cot y). (-\csc y) = -\csc^2 y \cot y$$

Question 13:

If $y = 3\cos(\log x) + 4\sin(\log x)$, show that $x^2y_2 + xy_1 + y = 0$

Answer 13:

Given that: $y = 3\cos(\log x) + 4\sin(\log x)$, therefore,

$$\frac{dy}{dx} = \frac{d}{dx} (3\cos(\log x) + 4\sin(\log x)) = -3\sin(\log x) \cdot \frac{1}{x} + 4\cos(\log x) \cdot \frac{1}{x}$$

$$\Rightarrow x \frac{dy}{dx} = -3\sin(\log x) + 4\cos(\log x)$$

$$\Rightarrow x \frac{d^2y}{dx^2} + \frac{dy}{dx} \cdot \frac{d}{dx} x = \frac{d}{dx} [-3\sin(\log x) + 4\cos(\log x)]$$

$$= -3\cos(\log x) \cdot \frac{1}{x} - 4\sin(\log x) \cdot \frac{1}{x} = -\frac{1}{x} [3\cos(\log x) + 4\sin(\log x)] = -\frac{1}{x} \cdot y$$

$$\Rightarrow x \frac{d^2y}{dx^2} + \frac{dy}{dx} = -\frac{1}{x} y \qquad \Rightarrow x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = -y \qquad \Rightarrow x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$$

$$\Rightarrow x^2 y_2 + x y_1 + y = 0$$

Question 14:

If
$$y = Ae^{mx} + Be^{nx}$$
, show that $\frac{d^2y}{dx^2} - (m+n)\frac{dy}{dx} + mny = 0$

Answer 14:

Given that: $y = Ae^{mx} + Be^{nx}$, therefore,

$$\frac{dy}{dx} = \frac{d}{dx}(Ae^{mx} + Be^{nx}) = mAe^{mx} + nBe^{nx}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dx}(mAe^{mx} + nBe^{nx}) = m^2Ae^{mx} + n^2Be^{nx}$$

Putting the value of $\frac{d^2y}{dx^2}$ and $\frac{dy}{dx}$ in $\frac{d^2y}{dx^2} - (m+n)\frac{dy}{dx} + mny$, we get

LHS =
$$(m^2 A e^{mx} + n^2 B e^{nx}) - (m + n)(m A e^{mx} + n B e^{nx}) + mny$$

$$= m^2 A e^{mx} + n^2 B e^{nx} - (m^2 A e^{mx} + mn B e^{nx} + mn A e^{mx} + n^2 B e^{nx}) + mn y$$

$$=-(mnAe^{mx}+mnBe^{nx})+mny$$

$$= -mn(Ae^{mx} + Be^{nx}) + mny$$

$$= -mny + mny = 0 = RHS$$

Question 15:

If
$$y = 500e^{7x} + 600e^{-7x}$$
, Show that $\frac{d^2y}{dx^2} = 49y$.

Answer 15:

Given that: $y = 500e^{7x} + 600e^{-7x}$, therefore,

$$\frac{dy}{dx} = \frac{d}{dx}(500e^{7x} + 600e^{-7x}) = 500e^{7x}.7 + 600e^{-7x}.(-7) = 7(500e^{7x} - 600e^{-7x})$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dx}7(500e^{7x} - 600e^{-7x}) = 7[500e^{7x}.7 + 600e^{-7x}.(-7)]$$

$$= 49(500e^{7x} - 600e^{-7x}) = 49y$$

$$\Rightarrow \frac{d^2y}{dx^2} = 49y$$

Question 16:

If $e^y(x+1) = 1$, show that $\frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2$.

Answer 16:

Given that: $e^{y}(x+1) = 1$, therefore,

$$e^{y}\frac{dy}{dx}(x+1) + (x+1)\frac{d}{dx}e^{y} = \frac{d}{dx}1$$

$$\Rightarrow e^y + (x+1)e^y \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{1}{x+1}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dx} \left(-\frac{1}{x+1} \right)$$

$$= -\left[\frac{(x+1).\frac{d}{dx}1 - 1.\frac{d}{dx}(x+1)}{(x+1)^2}\right] = -\left[\frac{0-1}{(x+1)^2}\right] = \frac{1}{(x+1)^2}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \left(-\frac{1}{x+1}\right)^2$$

$$\Rightarrow \frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2$$

Question 17:

If $y = (\tan^{-1} x)^2$, show that $(x^2 + 1)^2 y_2 + 2x(x^2 + 1)y_1 = 2$.

Answer 17:

Given that: $y = (\tan^{-1} x)^2$, therefore,

$$\frac{dy}{dx} = \frac{d}{dx} \left[(\tan^{-1} x)^2 \right] = 2 \tan^{-1} x \cdot \frac{1}{1 + x^2} = \frac{2 \tan^{-1} x}{1 + x^2}$$

$$\Rightarrow (1+x^2)\frac{dy}{dx} = 2\tan^{-1}x$$

$$\Rightarrow (1+x^2)\frac{d^2y}{dx^2} + \frac{dy}{dx} \cdot \frac{d}{dx}(1+x^2) = \frac{d}{dx}(2\tan^{-1}x)$$

$$\Rightarrow (1+x^2)\frac{d^2y}{dx^2} + \frac{dy}{dx} \cdot 2x = \frac{2}{1+x^2}$$

$$\Rightarrow (1+x^2)^2 \frac{d^2y}{dx^2} + 2x(1+x^2) \frac{dy}{dx} = 2$$

$$\Rightarrow (x^2 + 1)^2 y_2 + 2x(x^2 + 1)y_1 = 2$$

Mathematics

(Chapter - 5) (Continuity and Differentiability) (Miscellaneous Exercise)
(Class - XII)

Differentiate w.r.t. x the function in Exercises 1 to 11.

Question 1:

$$(3x^2 - 9x + 5)^9$$

Answer 1:

Let
$$y = (3x^2 - 9x + 5)^9$$
, therefore,

$$\frac{dy}{dx} = 9(3x^2 - 9x + 5)^8 \cdot \frac{d}{dx}(3x^2 - 9x + 5) = 9(3x^2 - 9x + 5)^8 \cdot (6x - 9)$$
$$= 27(3x^2 - 9x + 5)^8 \cdot (2x - 3)$$

Question 2:

$$\sin^3 x + \cos^6 x$$

Answer 2:

Let
$$y = \sin^3 x + \cos^6 x$$
, therefore,

$$\frac{dy}{dx} = 3\sin^2 x \cdot \frac{d}{dx}\sin x + 6\cos^5 x \cdot \frac{d}{dx}\cos x = 3\sin^2 x \cdot \cos x + 6\cos^5 x \cdot (-\sin x)$$
$$= 3\sin x \cos x \left(\sin x - 2\cos^4 x\right)$$

Question 3:

$$(5x)^{3\cos 2x}$$

Answer 3:

Let
$$y = (5x)^{3\cos 2x}$$
, taking log on both sides

$$\log y = \log(5x)^{3\cos 2x} = 3\cos 2x \cdot \log 5x$$

Therefore,

$$\frac{1}{y}\frac{dy}{dx} = 3\cos 2x \cdot \frac{d}{dx}\log 5x + \log 5x \cdot \frac{d}{dx}3\cos 2x$$

$$\Rightarrow \frac{dy}{dx} = y\left[3\cos 2x \cdot \frac{1}{5x} \cdot 5 + \log 5x \cdot 3(-\sin 2x) \cdot 2\right]$$

$$\Rightarrow \frac{dy}{dx} = 3(5x)^{3\cos 2x} \left[\frac{\cos 2x - 2\sin 2x \log 5x}{x}\right]$$

Question 4:

$$\sin^{-1}(x\sqrt{x}), 0 \le x \le 1$$

Answer 4:

Let
$$y = \sin^{-1}(x\sqrt{x})$$
, therefore,

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - (x\sqrt{x})^2}} \cdot \frac{d}{dx} (x\sqrt{x}) = \frac{1}{\sqrt{1 - x^3}} \cdot \left[x \frac{d}{dx} \sqrt{x} + \sqrt{x} \cdot \frac{d}{dx} x \right]$$

$$=\frac{1}{\sqrt{1-x^3}}.\left[x\frac{1}{2\sqrt{x}}+\sqrt{x}.1\right]$$

$$=\frac{1}{\sqrt{1-x^3}}\cdot\left[\frac{x+2x}{2\sqrt{x}}\right]$$

$$= \frac{3x}{2\sqrt{x}\sqrt{1-x^3}} = \frac{3}{2}\sqrt{\frac{x}{1-x^3}}$$

Question 5:

$$\frac{\cos^{-1}\frac{x}{2}}{\sqrt{2x+7}}, -2 < x < 2.$$

Answer 5:

Let
$$y = \frac{\cos^{-1}\frac{x}{2}}{\sqrt{2x+7}}$$
, therefore,

$$\frac{dy}{dx} = \frac{\cos^{-1}\frac{x}{2} \cdot \frac{d}{dx} \sqrt{2x + 7} - \sqrt{2x + 7} \frac{d}{dx} \cos^{-1}\frac{x}{2}}{\left(\sqrt{2x + 7}\right)^2}$$

$$\left[\cos^{-1}\frac{x}{2} \cdot \frac{1}{2\sqrt{2x+7}} \cdot 2\right] - \sqrt{2x+7} \frac{-1}{\sqrt{1-\left(\frac{x}{2}\right)^2}} \cdot \frac{1}{2}$$

$$= \frac{\cos^{-1}\frac{x}{2} \cdot \frac{1}{\sqrt{2x+7}} + \sqrt{2x+7} \frac{1}{\sqrt{4-(x)^2}}}{2x+7} = \frac{\cos^{-1}\frac{x}{2} \cdot \sqrt{4-x^2} + 2x+7}{(2x+7)\sqrt{2x+7}\sqrt{4-x^2}}$$

Question 6:

$$\cot^{-1}\left[\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}}\right], 0 < x < \frac{\pi}{2}$$

Answer 6:

Let
$$y = \cot^{-1} \left[\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}} \right]$$
, therefore,

$$y = \cot^{-1} \left[\frac{\sqrt{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + 2\sin \frac{x}{2}\cos \frac{x}{2}} + \sqrt{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} - 2\sin \frac{x}{2}\cos \frac{x}{2}}}{\sqrt{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + 2\sin \frac{x}{2}\cos \frac{x}{2}} - \sqrt{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} - 2\sin \frac{x}{2}\cos \frac{x}{2}}} \right]$$

$$= \cot^{-1} \left[\frac{\sqrt{\left(\cos\frac{x}{2} + \sin\frac{x}{2}\right)^2} + \sqrt{\left(\cos\frac{x}{2} - \sin\frac{x}{2}\right)^2}}{\sqrt{\left(\cos\frac{x}{2} + \sin\frac{x}{2}\right)^2} - \sqrt{\left(\cos\frac{x}{2} - \sin\frac{x}{2}\right)^2}} \right]$$

$$= \cot^{-1} \left[\frac{\cos \frac{x}{2} + \sin \frac{x}{2} + \cos \frac{x}{2} - \sin \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2} - \cos \frac{x}{2} + \sin \frac{x}{2}} \right] = \cot^{-1} \left[\frac{2\cos \frac{x}{2}}{2\sin \frac{x}{2}} \right] = \cot^{-1} \left[\cot \frac{x}{2} \right] = \frac{x}{2}$$

Therefore, $\frac{dy}{dx} = \frac{1}{2}$

Question 7:

$$(\log x)^{\log x}, x > 1$$

Answer 7:

Let $y = (\log x)^{\log x}$, taking log on both sides

$$\log y = \log(\log x)^{\log x} = \log x \cdot \log(\log x)$$

Therefore,

$$\frac{1}{y}\frac{dy}{dx} = \log x \cdot \frac{d}{dx}\log(\log x) + \log(\log x) \cdot \frac{d}{dx}\log x$$

$$\Rightarrow \frac{dy}{dx} = y \left[\log x \cdot \frac{1}{\log x} \cdot \frac{1}{x} + \log(\log x) \cdot \frac{1}{x} \right] \Rightarrow \frac{dy}{dx} = (\log x)^{\log x} \left[\frac{1 + \log(\log x)}{x} \right]$$

Question 8:

cos(a cos x + b sin x), for some constant a and b.

Answer 8:

Let $y = \cos(a\cos x + b\sin x)$, therefore,

$$\frac{dy}{dx} = -\sin(a\cos x + b\sin x) \cdot \frac{d}{dx}(a\cos x + b\sin x)$$

- $= -\sin(a\cos x + b\sin x)(-a\sin x + b\cos x)$
- $= \sin(a\cos x + b\sin x) (a\sin x b\cos x)$

Question 9:

$$(\sin x - \cos x)^{(\sin x - \cos x)}, \frac{\pi}{4} < x < \frac{3\pi}{4}$$

Answer 9:

Let $y = (\sin x - \cos x)^{(\sin x - \cos x)}$, taking log on both sides

 $\log y = \log(\sin x - \cos x)^{(\sin x - \cos x)} = (\sin x - \cos x) \cdot \log(\sin x - \cos x)$

Therefore,

$$\frac{1}{y}\frac{dy}{dx} = (\sin x - \cos x) \cdot \frac{d}{dx}\log(\sin x - \cos x) + \log(\sin x - \cos x) \cdot \frac{d}{dx}(\sin x - \cos x)$$

$$\Rightarrow \frac{dy}{dx} = y \left[(\sin x - \cos x) \cdot \frac{(\cos x + \sin x)}{(\sin x - \cos x)} + \log(\sin x - \cos x) \cdot (\cos x + \sin x) \right]$$

$$\Rightarrow \frac{dy}{dx} = (\sin x - \cos x)^{(\sin x - \cos x)} (\cos x + \sin x) [1 + \log(\cos x - \sin x)]$$

Question 10:

 $x^{x} + x^{a} + a^{x} + a^{a}$, for some fixed a > 0 and x > 0.

Answer 10:

Let $u = x^x$ and $y = u + x^a + a^x + a^a$ therefore,

$$\frac{dy}{dx} = \frac{du}{dx} + \frac{d}{dx}x^a + \frac{d}{dx}a^x + \frac{d}{dx}a^a$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + ax^{a-1} + a^x \log a + 0 \qquad \dots (1)$$

Here, $u = x^x$, taking log on both sides

$$\log u = \log x^x = x \cdot \log x$$

Therefore,

$$\frac{1}{u}\frac{du}{dx} = x \cdot \frac{d}{dx}\log x + \log x \cdot \frac{d}{dx}x = x \cdot \frac{1}{x} + \log x \cdot 1 \Rightarrow \frac{du}{dx} = u(1 + \log x) = x^x(1 + \log x)$$

Putting the value of $\frac{du}{dx}$ in equation (1), we get

$$\frac{dy}{dx} = x^x(1 + \log x) + ax^{a-1} + a^x \log a$$

Question 11:

$$x^{x^2-3} + (x-3)^{x^2}$$
, for $x > 3$.

Answer 11:

Let
$$u = x^{x^2-3}$$
 and $v = (x-3)^{x^2}$ therefore, $y = u + v$

Differentiating with respect to x, we have

$$\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$

... (1)

Here, $u = x^{x^2-3}$, taking log on both sides $\log u = (x^2 - 3) \log x$, therefore,

$$\frac{1}{u}\frac{du}{dx} = (x^2 - 3).\frac{d}{dx}\log x + \log x.\frac{d}{dx}(x^2 - 3) = (x^2 - 3).\frac{1}{x} + \log x.2x$$

$$\frac{du}{dx} = u \left[\frac{x^2 - 3 + 2x^2 \log x}{x} \right]$$

$$\frac{du}{dx} = x^{x^2 - 3} \left[\frac{x^2 - 3 + 2x^2 \log x}{x} \right] = x^{x^2 - 4} (x^2 - 3 + 2x^2 \log x) \dots (2)$$

and, $v = (x - 3)^{x^2}$, taking log on both sides $\log v = x^2 \log(x - 3)$, therefore,

$$\frac{1}{v}\frac{dv}{dx} = x^2 \cdot \frac{d}{dx}\log(x-3) + \log(x-3) \cdot \frac{d}{dx}x^2 = x^2 \cdot \frac{1}{x-3} + \log(x-3) \cdot 2x = \frac{x^2}{x-3} + 2x \cdot \log(x-3)$$

$$\frac{dv}{dx} = v \left[\frac{x^2}{x-3} + 2x \cdot \log(x-3) \right] = (x-3)^{x^2} \left[\frac{x^2}{x-3} + 2x \cdot \log(x-3) \right] \dots (3)$$

Putting the value of $\frac{du}{dx}$ from (2) and value of $\frac{dv}{dx}$ from (3) in equation (1), we have

$$\frac{dy}{dx} = x^{x^2 - 4}(x^2 - 3 + 2x^2 \log x) + (x - 3)^{x^2} \left[\frac{x^2}{x - 3} + 2x \cdot \log(x - 3) \right]$$

Question 12:

Find
$$\frac{dy}{dx}$$
, if $y = 12(1 - \cos t)$, $x = 10(t - \sin t)$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$.

Answer 12:

Here,
$$x = 10(t - \sin t)$$
, $y = 12(1 - \cos t)$

Therefore, $\frac{dx}{dt} = 10(1 - \cos t)$ and $\frac{dy}{dt} = 12(0 + \sin t)$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{12\sin t}{10(1-\cos t)} = \frac{6\left(2\sin\frac{t}{2}\cos\frac{t}{2}\right)}{5\left(2\sin^2\frac{t}{2}\right)} = \frac{6}{5}\cot\frac{t}{2}$$

Question 13:

Find
$$\frac{dy}{dx}$$
, if $y = \sin^{-1} x + \sin^{-1} \sqrt{1 - x^2}$, $0 < x < 1$.

Answer 13:

Here, $y = \sin^{-1} x + \sin^{-1} \sqrt{1 - x^2}$, therefore

$$\frac{dy}{dx} = \frac{d}{dx}\sin^{-1}x + \frac{d}{dx}\sin^{-1}\sqrt{1 - x^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} + \frac{1}{\sqrt{1 - (\sqrt{1 - x^2})^2}} \frac{d}{dx} \sqrt{1 - x^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} + \frac{1}{x} \cdot \frac{1}{2\sqrt{1 - x^2}} \frac{d}{dx} (1 - x^2)$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} + \frac{1}{x} \cdot \frac{1}{2\sqrt{1 - x^2}} (-2x) = \frac{1}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - x^2}} = 0$$

Question 14:

If
$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$
, for $-1 < x < 1$, Prove that $\frac{dy}{dx} = -\frac{1}{(1+x)^2}$

Answer 14:

Given that:
$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$
 $\Rightarrow x\sqrt{1+y} = -y\sqrt{1+x}$
Squaring both sides $x^2(1+y) = y^2(1+x)$ $\Rightarrow x^2 + x^2y = y^2 + y^2x$
 $\Rightarrow x^2 - y^2 + x^2y - y^2x = 0$
 $\Rightarrow (x+y)(x-y) + xy(x-y) = 0$ $\Rightarrow (x-y)(x+y+xy) = 0$
 $\Rightarrow (x+y+xy) = 0$ $[\because x \neq y \Rightarrow x-y \neq 0]$
 $\Rightarrow y(1+x) = -x \Rightarrow y = -\frac{x}{1+x}$

Therefore,

$$\frac{dy}{dx} = -\left[\frac{(1+x)\frac{d}{dx}x - x\frac{d}{dx}(1+x)}{(1+x)^2}\right] = -\frac{1+x-x}{(1+x)^2} = -\frac{1}{(1+x)^2}$$

Question 15:

If $(x-a)^2 + (y-b)^2 = c^2$ for some c > 0, prove that

$$\frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$$

is a constant independent of a and b.

Answer 15:

Given that:
$$(x-a)^2 + (y-b)^2 = c^2$$
. Differentiating with respect to x , we have
$$\frac{d}{dx}(x-a)^2 + \frac{d}{dx}(y-b)^2 = \frac{d}{dx}c^2 \Rightarrow 2(x-a) + 2(y-b)\frac{dy}{dx} = 0$$
$$\Rightarrow \frac{dy}{dx} = -\frac{x-a}{y-b}$$

Differentiating again, we have

$$\frac{d^2y}{dx^2} = -\frac{(y-b)\frac{d}{dx}(x-a) - (x-a)\frac{d}{dx}(y-b)}{(y-b)^2} = -\frac{(y-b)1 - (x-a)\frac{dy}{dx}}{(y-b)^2}$$

$$\Rightarrow \frac{d^2y}{dx^2} = -\frac{(y-b)1 - (x-a)\left(-\frac{x-a}{y-b}\right)}{(y-b)^2} = -\frac{(y-b)^2 + (x-a)^2}{(y-b)^3} = -\frac{c^2}{(y-b)^3}$$

Putting the values in
$$\frac{\left[1 + \left(\frac{dy}{dx}\right)^{2}\right]^{\frac{3}{2}}}{\frac{d^{2}y}{dx^{2}}}, \text{ we have}$$

$$\frac{\left[1 + \left(-\frac{x-a}{y-b}\right)^{2}\right]^{\frac{3}{2}}}{-\frac{c^{2}}{(y-b)^{3}}} = \frac{\left[1 + \frac{(x-a)^{2}}{(y-b)^{2}}\right]^{\frac{3}{2}}}{-\frac{c^{2}}{(y-b)^{3}}} = \frac{\left[\frac{(y-b)^{2} + (x-a)^{2}}{(y-b)^{2}}\right]^{\frac{3}{2}}}{-\frac{c^{2}}{(y-b)^{3}}} = \frac{\left[\frac{c^{2}}{(y-b)^{2}}\right]^{\frac{3}{2}}}{-\frac{c^{2}}{(y-b)^{3}}} = \frac{\left[\frac{c^{2}}{(y-b)^{2}}\right]^{\frac{3}{2}}}{-\frac{c^{2}}{(y-b)^{3}}} = \frac{\left[\frac{c^{2}}{(y-b)^{2}}\right]^{\frac{3}{2}}}{-\frac{c^{2}}{(y-b)^{3}}} = \frac{c^{3}}{c^{2}} = -c, \text{ which is a constant independent of a and b.}$$

$$= \frac{\overline{(y-b)^3}}{-\frac{c^2}{(y-b)^3}} = -\frac{c^3}{c^2} = -c$$
, which is a constant independent of a and b.

Question 16:

If $\cos y = x \cos(a + y)$, with $\cos a \neq \pm 1$, prove that $\frac{dy}{dx} = \frac{\cos^2(a+y)}{\sin a}$

Answer 16:

Given that:
$$\cos y = x \cos(a + y)$$
 $\Rightarrow x = \frac{\cos y}{\cos(a+y)}$, therefore,

Differentiating with respect to y, we have

$$\frac{dx}{dy} = \frac{\cos(a+y)\frac{d}{dy}\cos y - \cos y\frac{d}{dy}\cos(a+y)}{\cos^2(a+y)}$$

$$\Rightarrow \frac{dx}{dy} = \frac{\cos(a+y)(-\sin y) - \cos y(-\sin(a+y))}{\cos^2(a+y)}$$

$$\Rightarrow \frac{dx}{dy} = \frac{-\sin y\cos(a+y) + \cos y\sin(a+y)}{\cos^2(a+y)}$$

$$= \frac{\sin(a+y-y)}{\cos^2(a+y)} = \frac{\sin a}{\cos^2(a+y)}$$

$$\Rightarrow \frac{dy}{dx} = \frac{\cos^2(a+y)}{\sin a}$$

Question 17:

If $x = a(\cos t + t \sin t)$ and $y = a(\sin t - t \cos t)$, find $\frac{d^2y}{dx^2}$.

Answer 17:

Here, $x = a(\cos t + t \sin t)$, $y = a(\sin t - t \cos t)$

Therefore,

$$\frac{dx}{dt} = a[-\sin t + (t\cos t + \sin t)] = at\cos t$$

and

$$\frac{dy}{dt} = a[(\cos t - (-t\sin t + \cos t))] = at\sin t$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{at \sin t}{at \cos t} = \tan t$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{at \sin t}{at \cos t} = \tan t$$

$$\Rightarrow \frac{d^2y}{dx^2} = \sec^2 t \cdot \frac{dt}{dx} = \sec^2 t \cdot \frac{1}{at \cos t} = \frac{\sec^3 t}{at}$$

Question 18:

If $f(x) = |x|^3$, show that f''(x) exists for all real x and find it.

Answer 18:

Rewriting the function $f(x) = |x|^3$ in the following form:

$$f(x) = \begin{cases} x^3 & \text{if } x \ge 0 \\ -x^3 & \text{if } x < 0 \end{cases}$$
If $x \ge 0$, $f(x) = x^3 \Rightarrow f'(x) = 3x^2 \Rightarrow f''(x) = 6x$
If $x < 0$, $f(x) = -x^3 \Rightarrow f'(x) = -3x^2 \Rightarrow f''(x) = -6x$

If
$$x < 0$$
, $f(x) = -x^3$ $\Rightarrow f'(x) = -3x^2$ $\Rightarrow f''(x) = -6x$

Hence, f''(x) exists for all real x and it can be represented as follows:

$$f''(x) = \begin{cases} 6x & \text{if } x \ge 0 \\ -6x & \text{if } x < 0 \end{cases}$$

Question 19:

Using the fact that sin(A + B) = sin A cos B + cos A sin B and the differentiation, obtain the sum formula for cosines.

Answer 19:

Given that: sin(A + B) = sin A cos B + cos A sin B,

Differentiating with respect to x, we have

$$\frac{d}{dx}\sin(A+B) = \left(\sin A \frac{d}{dx}\cos B + \cos B \frac{d}{dx}\sin A\right) + \left(\cos A \frac{d}{dx}\sin B + \sin B \frac{d}{dx}\cos A\right)$$

$$\Rightarrow \cos(A+B) \cdot \left(\frac{dA}{dx} + \frac{dB}{dx}\right)$$

$$= \left(\sin A \left(-\sin B\right) \frac{dB}{dx} + \cos B \cos A \frac{dA}{dx}\right) + \left(\cos A \cos B \frac{dB}{dx} + \sin B \left(-\sin A\right) \frac{dA}{dx}\right)$$

$$\Rightarrow \cos(A+B) \cdot \left(\frac{dA}{dx} + \frac{dB}{dx}\right)$$

$$= (\cos A \cos B - \sin A \sin B) \frac{dB}{dx} + (\cos A \cos B - \sin A \sin B) \frac{dA}{dx}$$

$$\Rightarrow \cos(A+B) \cdot \left(\frac{dA}{dx} + \frac{dB}{dx}\right) = (\cos A \cos B - \sin A \sin B) \left(\frac{dA}{dx} + \frac{dB}{dx}\right)$$

$$\Rightarrow \cos(A + B) = \cos A \cos B - \sin A \sin B$$

Question 20:

Does there exist a function which is continuous everywhere but not differentiable at exactly two points? Justify your answer.

Answer 20:

Function f(x) = |x - 1| + |x - 3| is continuous for all real points but not differentiable at two points (x = 1 and x = 3).

Question 21:

If
$$y = \begin{vmatrix} f(x) & g(x) & h(x) \\ l & m & n \\ a & b & c \end{vmatrix}$$
 prove that $\frac{dy}{dx} = \begin{vmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n \\ a & b & c \end{vmatrix}$

Answer 21:

Given that: $y = \begin{bmatrix} f(x) & g(x) & h(x) \\ l & m & n \\ a & b & c \end{bmatrix}$, therefore,

$$\frac{dy}{dx} = \begin{vmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n \\ a & b & c \end{vmatrix} + \begin{vmatrix} f(x) & g(x) & h(x) \\ \frac{dl}{dx} & \frac{dm}{dx} & \frac{dn}{dx} \\ a & b & c \end{vmatrix} + \begin{vmatrix} f(x) & g(x) & h(x) \\ \frac{l}{da} & \frac{m}{dx} & \frac{n}{dx} \\ \frac{da}{dx} & \frac{db}{dx} & \frac{dc}{dx} \end{vmatrix}$$

$$\Rightarrow \frac{dy}{dx} = \begin{vmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n \\ a & b & c \end{vmatrix} + \begin{vmatrix} f(x) & g(x) & h(x) \\ 0 & 0 & 0 \\ a & b & c \end{vmatrix} + \begin{vmatrix} f(x) & g(x) & h(x) \\ l & m & n \\ 0 & 0 & 0 \end{vmatrix}$$

$$\Rightarrow \frac{dy}{dx} = \begin{vmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n \\ a & b & c \end{vmatrix} + 0 + 0 \quad \Rightarrow \frac{dy}{dx} = \begin{vmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n \\ a & b & c \end{vmatrix}$$

Question 22:

If $y = e^{a \cos^{-1} x}$, $-1 \le x \le 1$, show that $(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - a^2 y = 0$

Answer 22:

Given that: $y = e^{a \cos^{-1} x}$, therefore,

Differentiating with respect to x, we have

$$\frac{dy}{dx} = \frac{d}{dx}e^{a\cos^{-1}x} = e^{a\cos^{-1}x}\frac{d}{dx}a\cos^{-1}x$$

$$\Rightarrow \frac{dy}{dx} = e^{a \cos^{-1} x} a \cdot \frac{-1}{\sqrt{1 - x^2}} = -\frac{ay}{\sqrt{1 - x^2}}$$

Squaring both the sides, we have

$$\left(\frac{dy}{dx}\right)^2 = \frac{a^2y^2}{1-x^2}$$

$$\Rightarrow (1-x^2)\left(\frac{dy}{dx}\right)^2 = a^2y^2$$

Differentiating again with respect to x, we have

$$(1-x^2).2\frac{dy}{dx}.\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2\frac{d}{dx}(1-x^2) = a^22y\frac{dy}{dx}$$

$$\Rightarrow \frac{dy}{dx} \left[2(1-x^2) \frac{d^2y}{dx^2} + \frac{dy}{dx} (-2x) \right] = 2a^2y \frac{dy}{dx}$$

$$\Rightarrow 2\frac{dy}{dx}\left[(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx}\right] = 2a^2y\frac{dy}{dx}$$

$$\Rightarrow (1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} = a^2y$$

$$\Rightarrow (1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} - a^2y = 0$$