18. ELECTROMAGNETIC INDUCTION

1. Magnetic flux is mathematically defined as $\phi = B.ds$

2. Faraday s laws of electromagnetic induction

$$E = \frac{d\phi}{dt}$$

3. Lenz s Law (conservation of energy principle)

According to this law, emf will be induced in such a way that it will oppose the cause which has produced it. Motional emf

4. Induced emf due to rotation

Emf induced in a conducting rod of length I rotating with angular speed ω about its one end, in a uniform perpendicular magnetic field B is 1/2 B ω ℓ ^{κ}.

1. EMF Induced in a rotating disc :

Emf between the centre and the edge of disc of radius r rotating in a magnetic field B = $\frac{B\omega r^2}{2}$

5. Fixed loop in a varying magnetic field

If magnetic field changes with the rate $\frac{dB}{dt}$, electric field is generated whose average tangential value along a

circle is given by
$$E = \frac{B}{2}$$

This electric field is non conservative in nature. The lines of force associated with this electric field are closed curves

6. Self induction

$$\varepsilon = -\frac{\Delta(N\phi)}{\Delta} = -\frac{\Delta(LI)}{\Delta} = -\frac{L\Delta I}{\Delta}$$
.

The instantaneous emf is given as $\epsilon = -\frac{(N\phi)}{(N\phi)} = -\frac{(LI)}{(N\phi)} = -\frac{L}{(N\phi)} = -\frac{L}{(N\phi)}$

Self inductance of solenoid = $\mu_{\mathbb{R}} n^{\mathbb{R}} \pi r^{\mathbb{R}} \ell$.

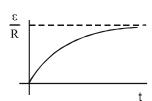
6.1 Inductor

It is represent by

electrical equivalence of loop

$$A \stackrel{I}{\longleftarrow} L \frac{dI}{dt} B$$

$$V_A - L \frac{dI}{dt} = V_B$$


Energy stored in an inductor = $\frac{1}{2} LI^{8}$

7. Growth Of Current in Series R L Circuit

If a circuit consists of a cell, an inductor L and a resistor R and a switch S, connected in series and the switch

is closed at t = 0, the current in the circuit I will increase as I = $\frac{\epsilon}{R}(1-e^{\frac{-Rt}{L}})$

The quantity L/R is called time constant of the circuit and is denoted by τ . The variation of current with time is as shown.

- 1. Final current in the circuit = $\frac{\varepsilon}{R}$, which is independent of L.
- 2. After one time constant, current in the circuit =63% of the final current.
- 3. More time constant in the circuit implies slower rate of change of current.

8 Decay of current in the circuit containing resistor and inductor:

Let the initial current in a circuit containing inductor and resistor be $I_{\mathbb{R}}$. Current at a time t is given as $I = I_{\mathbb{R}} e^{-L}$ Current after one time constant : I = $I_{\text{\tiny N}}$ ⁻¹ =0.37% of initial current.

Mutual inductance is induction of EMF in a coil (secondary) due to change in current in another coil (primary). 9. If current in primary coil is I, total flux in secondary is proportional to I, i.e. N ϕ (in secondary) I.

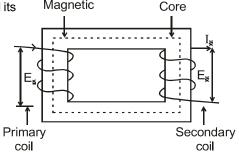
 $N \phi$ (in secondary) = M I.

The emf generated around the secondary due to the current flowing around the primary is directly proportional to the rate at which that current changes.

Equivalent self inductance: 10.

$$A \stackrel{\downarrow}{\longleftrightarrow} L \frac{dI}{dt} = E$$

$$L = \frac{V_A - V_B}{dI/dt} \qquad ..(1)$$


- 1. Series combination : (neglecting mutual inductance) $L = L_i + L_g + 2M$ (if coils are mutually coupled and they have winding in same direction) $L = L_s + L_s = 2M$ (if coils are mutually coupled and they have winding in opposite direction)
- $\frac{1}{l} = \frac{1}{l_{-1}} + \frac{1}{l_{-2}}$ (neglecting mutual inductance) 2. Parallel Combination:

For two coils which are mutually coupled it has been found that M

 $\sqrt{L_1L_2}$ or M = k $\sqrt{L_1L_2}$ where k is called coupling constant and its value is less than or equal to 1.

 $E_{S} > E_{P}$ for step up transformer.

Magnetic

12. **LC Oscillations**

 $N_{S} > N_{P}$

$$\omega^2 = \frac{1}{1.0}$$