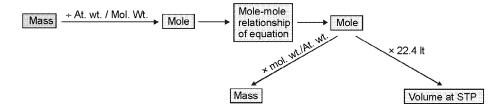

2.STOICHIOMETRY

Relative atomic mass (R.A.M) =
$$\frac{\text{Mass of one atom of an element}}{\frac{1}{12} \times \text{mass of one carbon atom}}$$
 = Total Number of nucleons

Y-map

Density:

Specific gravity =
$$\frac{\text{density of the substance}}{\text{density of water at } 4^{\circ}\text{C}}$$


For gases:

 M_{gas} = 2 V.D.

Absolute density (mass/volume) =
$$\frac{\text{Molar mass of the gas}}{\text{Molar volume of the gas}}$$
 \Rightarrow $\rho = \frac{\text{PM}}{\text{RT}}$

Vapour density V.D.= $\frac{d_{gas}}{d_{H_2}} = \frac{\text{PM}_{gas/RT}}{\text{PM}_{H_2/RT}} = \frac{M_{gas}}{M_{H_2}} = \frac{M_{gas}}{2}$

Mole-mole analysis:

Concentration terms:

Molarity (M):

$$\therefore \qquad \text{Molarity (M)} = \frac{\text{w} \times 1000}{\text{(Mol. wt of solute)} \times \text{V}_{\text{inml}}}$$

Molality (m):

Molality =
$$\frac{\text{number of moles of solute}}{\text{mass of solvent in gram}} \times 1000 = 1000 \text{ w}_1 / \text{M}_1 \text{w}_2$$

Mole fraction (x):

.. Mole fraction of solution
$$(x_1) = \frac{n}{n+N}$$
 .. Mole fraction of solvent $(x_2) = \frac{N}{n+N}$
 $x_1 + x_2 = 1$

% Calculation:

(i) % w/w =
$$\frac{\text{mass of solute in gm}}{\text{mass of solution in gm}} \times 100$$

(ii)
$$\% \text{ w/v} = \frac{\text{mass of solute in gm}}{\text{mass of solution in mI}} \times 100$$

(iii)
$$\% \text{ v/v} = \frac{\text{Volume of solution in mI}}{\text{Volume of solution}} \times 100$$

Derive the following conversion:

1. Mole fraction of solute into molarity of solution M =
$$\frac{x_2 \rho \times 1000}{x_1 M_1 + M_2 x_2}$$

2. Molarity into mole fraction
$$x_2 = \frac{MM_1 \times 1000}{\rho \times 1000 - MM_2}$$

3. Mole fraction into molality m =
$$\frac{x_2 \times 1000}{x_1 M_1}$$

4. Molality into mole fraction
$$x_2 = \frac{mM_1}{1000 + mM_1}$$

5. Molality into molarity M =
$$\frac{m\rho \times 1000}{1000 + mM_2}$$

6. Molarity into Molality m =
$$\frac{M \times 1000}{1000 \rho - MM_2}$$

 M_1 and M_2 are molar masses of solvent and solute. ρ is density of solution (gm/mL) M = Molarity (mole/lit.), m = Molality (mole/kg), $x_1 = Mole$ fraction of solvent, $x_2 = Mole$ fraction of solute

Average/Mean atomic mass:

$$A_{x} = \frac{a_{1}x_{1} + a_{2}x_{2} + \dots + a_{n}x_{n}}{100}$$

Mean molar mass or molecular mass:

$$M_{\text{avg.}} = \frac{n_1 M_1 + n_2 M_2 + \dots + n_n M_n}{n_1 + n_2 + \dots + n_n} \quad \text{or} \qquad M_{\text{avg.}} = \frac{\sum_{j=1}^{j=n} n_j M_j}{\sum_{j=1}^{j=n} n_j}$$

Calculation of individual oxidation number:

Formula: Oxidation Number = number of electrons in the valence shell – number of electrons left after bonding

Concept of Equivalent weight/Mass:

For elements, equivalent weight (E) = $\frac{\text{Atomic weight}}{\text{Valency-factor}}$

For acid/base,
$$E = \frac{M}{Basicity/Acidity}$$
 Where M = Molar mass

For O.A/R.A,
$$E = \frac{M}{\text{no. of moles of } e^{-} \text{ gained/lost}}$$

Equivalent weight (E) =
$$\frac{\text{Atomic or moleculear weight}}{\text{v.f.}}$$
 (v.f. = valency factor)

Concept of number of equivalents:

No. of equivalents of solute =
$$\frac{Wt}{Eq. wt.} = \frac{W}{E} = \frac{W}{M/n}$$

No. of equivalents of solute = No. of moles of solute \times v.f.

Normality (N):

Normality (N) =
$$\frac{\text{Number of equivalents of solute}}{\text{Volume of solution (in litres)}}$$

Normality = $Molarity \times v.f.$

Calculation of valency Factor:

n-factor of acid = basicity = no. of H^+ ion(s) furnished per molecule of the acid. n-factor of base = acidity = no. of OH^- ion(s) furnised by the base per molecule.

At equivalence point :

$$N_1V_1 = N_2V_2$$

 $n_1M_1V_1 = n_2M_2V_2$

Volume strength of H_2O_2 : 20V H_2O_2 means one litre of this sample of H_2O_2 on decomposition gives 20 lt. of O_2 gas at S.T.P.

Normality of
$$H_2O_2(N) = \frac{Valume, strength of H_2O_2}{5.6}$$

Molarity of
$$H_2O_2(M) = \frac{\text{Volume strength of } H_2O_2}{11.2}$$

Measurement of Hardness:

Hardness in ppm =
$$\frac{\text{mass of CaCO}_3}{\text{Total mass of water}} \times 10^6$$

Calculation of available chlorine from a sample of bleaching powder:

% of
$$Cl_2 = \frac{3.55 \times x \times V(mL)}{W(g)}$$
 where x = molarity of hypo solution and v = mL. of hypo solution used in titration.