Similarity

Practice Set 1.1

Q. 1. Base of a triangle is 9 and height is 5. Base of another triangle is 10 and height is 6. Find the ratio of areas of these triangles.

Answer : We know that area of triangle = $\frac{1}{2} \times \text{Base} \times \text{Height}$

⇒ Area (triangle 1) =
$$\frac{1}{2}$$
 ×9× 5

$$=\frac{45}{2}$$

⇒ Area (triangle 2) =
$$\frac{1}{2}$$
 ×10× 6

 \therefore The ratio of areas of these triangles will be = Area(triangle 2)

$$\frac{\frac{45}{2}}{2}$$

$$=\frac{45}{2}\times\frac{1}{30}$$

$$=\frac{3}{4}$$

Q. 2. If figure 1.13 BC \perp AB, AD \perp AB, BC = 4, AD = 8, then find $\frac{A (\triangle ABC)}{A (\triangle ADB)}$

Fig. 1.13

Answer : Here, \triangle ABC and \triangle ADB has common Base.

$$\frac{Ar(\Delta ABC)}{Ar(\Delta ADB)} = \frac{height of \Delta ABC}{height of \Delta ADB}$$

(PROPERTY: Areas of triangles with equal bases are proportional to their corresponding heights.)

$$\Rightarrow \frac{Ar(\Delta ABC)}{Ar(\Delta ADB)} = \frac{BC}{AD}$$

$$=\frac{4}{8}$$

$$=\frac{1}{2}$$

Q. 3. In adjoining figure 1.14 seg PS \perp seg RQ, seg QT \perp seg PR. If RQ = 6, PS = 6 and PR = 12, then find QT.

Fig. 1.14

Answer:

Fig. 1.14

Considering, Area of (ΔPQR) with base QR

⇒ PS will be the Height

Now, consider the Area of (ΔPQR) with base PR

- ⇒ QT will be the Height
- ∵ The triangle is the same
- ⇒ The area will be the same irrespective of the base taken.

And we know that area of triangle = $\frac{1}{2} \times \text{Base} \times \text{Height}$

$$\Rightarrow \frac{1}{2} \times QR \times PS$$

$$=\frac{1}{2} \times PR \times QT$$

$$\Rightarrow \frac{1}{2} \times 6 \times 6$$

$$=\frac{1}{2} \times 12 \times QT$$

$$\Rightarrow$$
 QT = 3

Q. 4. In adjoining figure, AP \perp BC, AD || BC, then find A(\triangle ABC) : A (\triangle BCD)

Fig. 1.15

Answer:

We can re-draw the fig. 1.15 (as shown above) where we add DO

Which will be height of ΔBCD .

$$\frac{A(\Delta ABC)}{Now, \frac{A(\Delta BCD)}{A(\Delta BCD)}} = \frac{AP}{DO}$$

(PROPERTY: Areas of triangles with equal bases are proportional to their corresponding heights.)

$$\Rightarrow \frac{A(\Delta ABC)}{A(\Delta BCD)} = \frac{AP}{DO}$$

$$\Rightarrow \frac{A(\Delta ABC)}{A(\Delta BCD)} = \frac{1}{1}$$

(: the distance between the two parallel lines is always equal \Rightarrow AP = DO)

$$\Rightarrow \frac{A(\Delta ABC)}{A(\Delta BCD)} = 1:1$$

Q. 5. In adjoining figure PQ \perp BC, AD \perp BC then find following ratios.

Fig. 1.16

(i)
$$\frac{A(\Delta PQB)}{A(\Delta PBC)}$$

(ii)
$$\frac{A(\Delta PBC)}{A(\Delta ABC)}$$

(iii)
$$\frac{A(\Delta ABC)}{A(\Delta ADC)}$$

(iv)
$$\frac{A(\Delta ADC)}{A(\Delta PQC)}$$

Answer : We know that area of triangle = $\frac{1}{2}$ × Base × Height

$$\frac{A(\Delta PQB)}{A(\Delta PBC)} = \frac{BQ}{BC}$$

(PROPERTY: Areas of triangles with equal heights are proportional to their corresponding bases.)

$$\frac{A(\Delta PBC)}{(ii)} = \frac{PQ}{AD}$$

(PROPERTY: Areas of triangles with equal bases are proportional to their corresponding heights.)

$$\frac{A(\Delta ABC)}{A(\Delta ADC)} = \frac{BC}{DC}$$

(PROPERTY: Areas of triangles with equal heights are proportional to their corresponding bases.)

$$\frac{A(\Delta ADC)}{A(\Delta PQC)} = \frac{\frac{1}{2} \times AD \times DC}{\frac{1}{2} \times PQ \times QC}$$

$$= \frac{AD \times DC}{PQ \times QC}$$

Practice Set 1.2

Q. 1. Given below are some triangles and lengths of line segments. Identify in which figures, ray PM is the bisector of ∠OPR.

Answer:

Theorem: The bisector of an angle of a triangle divides the side opposite to the angle in the ratio of the remaining sides.

Therefore, we'll find the ratio for all the triangle. Hence, for

$$\frac{QM}{MR} = \frac{3.5}{1.5}$$

= 2.33

$$And \frac{QP}{PR} = \frac{7}{3}$$

= 2.33

$$\underset{\Rightarrow}{\xrightarrow{QM}} \frac{QM}{MR} = \frac{QP}{PR}$$

 \Rightarrow In (1), ray PM is a bisector.

$$\frac{RM}{MQ} = \frac{6}{8}$$

= 0.75

$$\operatorname{And} \frac{RP}{PQ} = \frac{7}{10}$$

= 0.7

$$\Rightarrow \frac{RM}{MQ} \neq \frac{RP}{PQ}$$

 \Rightarrow In (2), ray PM is not a bisector.

$$\frac{RM}{MQ} = \frac{4}{3.6}$$

= 1.1

$$\operatorname{And} \frac{\mathrm{RP}}{\mathrm{PQ}} = \frac{\mathrm{10}}{\mathrm{9}}$$

= 1.11

$$\underset{\Rightarrow}{\frac{RM}{MQ}} = \frac{RP}{PQ}$$

 \Rightarrow In (3), ray PM is a bisector.

Q. 2. In \triangle PQR, PM = 15, PQ = 25, PR = 20, NR = 8. State whether line NM is parallel to side RQ. Give reason.

Answer: By Converse of basic Proportionality Theorem

(Theorem: If a line divides any two sides of a triangle in the same ratio, then the line is parallel to the third side.)

$$_{\Rightarrow}$$
 If $_{NR}^{PN} \, = \, \frac{PM}{MQ_{,}}$ then line NM is parallel to side RQ.

$$\label{eq:weilson} \text{$_{\dot{N}}$ We'll check if $\frac{PN}{NR}$} = \frac{PM}{MQ}$$

$$\Rightarrow \frac{PN}{NR} = \frac{PR - NR}{NR}$$

$$=\frac{3}{2}$$

And,
$$\frac{PM}{MQ} = \frac{PM}{PQ-PM}$$

$$=\frac{15}{25-15}$$

$$=\frac{15}{10}$$

$$=\frac{3}{2}$$

$$_{
ightarrow} rac{PN}{NR} = rac{PM}{MQ} = rac{3}{2}$$
, therefore line NM || side RQ

Q. 3. In \triangle MNP, NQ is a bisector of \angle N. If MN = 5, PN = 7 MQ = 2.5 then find QP.

Answer:

Theorem: The bisector of an angle of a triangle divides the side opposite to the angle in the ratio of the remaining sides.

$$\underset{\Rightarrow}{\frac{MQ}{QP}} = \frac{MN}{NP}$$

$$\Rightarrow \frac{2.5}{QP} = \frac{5}{7}$$

$$\Rightarrow$$
 QP \times 5 = 2.5 \times 7

$$\Rightarrow QP = \frac{2.5 \times 7}{5}$$

$$\Rightarrow$$
 QP = 3.5

Q. 4. Measures of some angles in the figure are given. Prove that $\frac{AP}{PB} = \frac{AQ}{QC}$

Answer: Here, PQ||BC ($\because \angle APQ \cong \angle ABC$)

(PROPERTY: If a transversal intersects two lines so that corresponding angles are congruent, then the lines are parallel)

: By Basic Proportionality Theorem

(Theorem : If a line parallel to a side of a triangle intersects the remaining sides in two distinct points, then the line divides the sides in the same proportion.)

$$\underset{\Rightarrow}{\frac{AP}{PB}} = \frac{AQ}{QC}$$

Q. 5. In trapezium ABCD, side AB || side PQ || side DC, AP = 15, PD = 12, QC = 14, find BQ.

Answer: By Basic Proportionality Theorem

(Theorem: If a line parallel to a side of a triangle intersects the remaining sides in two distinct points, then the line divides the sides in the same proportion.)

$$\Rightarrow \frac{AP}{PD} = \frac{BQ}{QC}$$

$$\Rightarrow \frac{15}{12} = \frac{BQ}{14}$$

$$\Rightarrow BQ = \frac{15 \times 14}{12}$$

$$\Rightarrow$$
 BQ = 17.5

Q. 6. Find QP using given information in the figure.

Answer : Theorem: The bisector of an angle of a triangle divides the side opposite to the angle in the ratio of the remaining sides.

And : NQ is angle bisector of $\angle N$

$$\underset{\Rightarrow}{\frac{MQ}{QP}} = \frac{MN}{NP}$$

$$\underset{\Rightarrow}{\frac{14}{QP}}=\frac{25}{40}$$

$$\Rightarrow \mathsf{QP} = \frac{14 \times 40}{25}$$

$$\Rightarrow$$
 QP = 22.4

Q. 7. In figure 1.41, if AB || CD || FE then find x and AE.

Answer: Theorem: The ratio of the intercepts made on a transversal by three parallel lines is equal to the ratio of the corresponding intercepts made on any other transversal by the same parallel lines.

$$\Rightarrow \frac{BD}{DF} = \frac{AC}{CE}$$

$$\Rightarrow \frac{8}{4} = \frac{12}{x}$$

$$\Rightarrow X = \frac{12 \times 4}{8}$$

$$\Rightarrow$$
 x = 6

Now, AE = AC + CE

$$= 12 + x$$

$$\Rightarrow$$
 AE = 18

Q. 8. In \triangle LMN, ray MT bisects \angle LMN If LM = 6, MN = 10, TN = 8, then find LT.

Answer : Theorem: The bisector of an angle of a triangle divides the side opposite to the angle in the ratio of the remaining sides.

$$\Rightarrow \frac{LT}{TN} = \frac{LM}{MN}$$

$$\Rightarrow \mathsf{LT} = \frac{\mathsf{LM} \times \mathsf{TN}}{\mathsf{MN}}$$

$$\Rightarrow LT = \frac{6 \times 8}{10}$$

$$\Rightarrow$$
 LT = 4.8

Q. 9. In \triangle ABC, seg BD bisects \angle ABC. If AB = x, BC = x + 5, AD = x - 2, DC = x + 2, then find the value of x.

Fig. 1.43

Answer: Theorem: The bisector of an angle of a triangle divides the side opposite to the angle in the ratio of the remaining sides.

$$\Rightarrow \frac{AD}{DC} = \frac{AB}{BC}$$

$$\Rightarrow \frac{x-2}{x+2} = \frac{x}{x+5}$$

$$\Rightarrow x(x+2) = (x-2)(x+5)$$

$$\Rightarrow$$
 x² + 2x = x²-2x + 5x-10

$$\Rightarrow$$
 x² + 2x-x² + 2x-5x + 10 = 0

$$\Rightarrow$$
 x = 10

Q. 10. In the figure 1.44, X is any point in the interior of triangle. Point X is joined to vertices of triangle. Seg PQ || seg DE, seg QR || seg EF. Fill in the blanks to prove that, seg PR || seg DF.

Fig. 1.44

Proof : IN ∆XDE, PQ || DE

$$\therefore \frac{XP}{\square} = \frac{\square}{QE} \qquad(I)$$

(Basic proportionality theorem)

In ΔXDE,QR || EF

$$\therefore \boxed{ } = \boxed{ } \qquad \qquadfrom (I) and (II)$$

∴ seg PR || seg DE

(Converse of basic proportionality theorem)

Answer: Proof: In ΔXDE , PQ||DE..... (Given)

$$\frac{XP}{XQ} = \frac{PD}{DE} \dots (I)$$

(Basic proportionality theorem)

In ΔXDE, QR||EF(Given)

$$\frac{XR}{RF} = \frac{XQ}{QE}$$
(II) (Basic Proportionality Theorem)

$$\frac{\text{XP}}{\text{PD}} = \frac{\text{XR}}{\text{RF}}$$
 from (I) and (II)

∴ seg PR||Seg DE

(converse of basic proportionality theorem)

Q. 11. In $\triangle ABC$, ray BD bisects $\angle ABC$ and ray CE bisects $\angle ACB$. If seg AB \cong seg AC then prove that ED || BC.

Answer: PROOF:

Theorem: The bisector of an angle of a triangle divides the side opposite to the angle in the ratio of the remaining sides.

$$\Rightarrow \frac{AD}{DC} = \frac{AB}{CB} \dots (1)$$

$$\frac{AE}{EB} = \frac{AC}{CB} \dots (2) (\because BD \text{ and CE are angle bisectors of } \angle B \text{ and } \angle C \text{ respectively.})$$

Now, \because seg AB \cong seg AC

$$\Rightarrow$$
 AB = AC

$$\Rightarrow \frac{AB}{CB} = \frac{AC}{CB}$$

 \Rightarrow R.H.S of (1) & (2) are equal.

 \Rightarrow L.H.S of (1) & (2) will be equal.

∴ Equating L.H.S of (1) &(2), we get-

$$\Rightarrow \frac{AD}{DC} = \frac{AE}{EB}$$

⇒ ED||BC (By converse basic proportionality theorem)

Practice Set 1.3

Q. 1. In figure 1.55, \angle ABC = 75°, \angle EDC = 75° state which two triangles are similar and by which test? Also write the similarity of these two triangles by a proper one to one correspondence.

Answer : With one- to-one correspondence ABC \leftrightarrow EDC

 \because ∠ABC \cong ∠EDC = 75° ∠ACB \cong ∠ECD (Is common in both the triangles ABC and EDC)

 $\Rightarrow \Delta$ ABC \sim Δ EDC(By AA Test)

Q. 2. Are the triangles in figure 1.56 similar? If yes, by which test?

Answer: In \triangle PQR and \triangle LMN

$$\frac{PQ}{LM} = \frac{6}{3} = 2$$

$$\frac{QR}{MN} = \frac{8}{4} = 2$$

$$And \frac{PR}{LN} = \frac{10}{5} = 2$$

$$\Rightarrow \frac{PQ}{LM} = \frac{QR}{MN} = \frac{PR}{LN} = 2$$

 \Rightarrow Δ PQR \sim Δ LMN(By SSS Similarity Test)

Q. 3. As shown in figure 1.57, two poles of height 8 m and 4 m are perpendicular to the ground. If the length of shadow of smaller pole due to sunlight is 6 m then how long will be the shadow of the bigger pole at the same time?

Answer: : The shadows are measured at the same time

⇒ Angle of of elevation will be equal for both the pole

$$\Rightarrow \Delta PQR \sim \Delta ABC \dots (By AA Test)$$

$$\underset{\Rightarrow}{\frac{PR}{AC}} = \frac{QR}{BC}$$

$$_{\Rightarrow}$$
 BC = $\frac{QR \times AC}{PR}$

$$\Rightarrow X = \frac{6 \times 8}{4}$$

$$\Rightarrow$$
 x = 12 m

Q. 4. In \triangle ABC, AP \perp BC, BQ \perp AC B- P-C, A-Q - C then prove that, \triangle CPA ~ \triangle CQB. If AP = 7, BQ = 8, BC = 12 then find AC.

Fig. 1.58

Answer: From fig.

$$\Rightarrow$$
 \angle APC \cong \angle BQC (\because AP \bot BC and BQ \bot AC)

$$\Rightarrow$$
 \triangle CPA \sim \triangle CQB (By AA Test)

$$\underset{\Rightarrow}{\frac{AP}{BQ}} = \frac{AC}{BC}$$

$$\Rightarrow AC = \frac{AP \times BC}{BQ}$$

$$\Rightarrow AC = \frac{7 \times 12}{8}$$

$$\Rightarrow$$
 AC = 10.5

Q. 5. Given : In trapezium PQRS, side PQ \parallel side SR, AR = 5AP, AS = 5AQ then prove that, SR = 5PQ

Answer: Given that, AR = 5AP and AS = 5AQ

$$\Rightarrow \frac{AR}{AP} = 5 \dots (1)$$

And
$$\frac{AS}{AQ} = 5$$
.....(2)

$$\frac{AR}{AP} = \frac{AS}{AQ}$$

And, ∠ SAR≅ ∠ QAP (Opposite angles)

 \Rightarrow \triangle SAR \sim \triangle QAP(SAS Test of similarity)

$$\underset{\Rightarrow}{\frac{AS}{AQ}} = \frac{AR}{AP} = \frac{SR}{QP}$$
 (corresponding sides are proportional)

$$\frac{AS}{AQ} = \frac{AR}{AP} = 5$$

$$\Rightarrow \frac{SR}{QP} = 5$$

$$\Rightarrow$$
 SR = 5PQ

Q. 6. In trapezium ABCD, (Figure 1.60) side AB \parallel side DC, diagonals AC and BD intersect in point O. If AB = 20, DC = 6, OB = 15 then find OD.

Answer: In Δ AOB and ΔCOD

$$\Rightarrow$$
 \angle AOB \cong \angle COD (opposite angles)

$$\Rightarrow$$
 \angle CDO \cong \angle ABO (Alternate angles $:$ AB||DC)

$$\Rightarrow$$
 \triangle AOB \sim \triangle COD (By AA Test)

$$\underset{\Rightarrow}{\frac{AB}{DC}} = \frac{OB}{OD}$$
 (corresponding sides are proportional)

$$\Rightarrow OD = \frac{OB \times DO}{AB}$$

$$\Rightarrow OD = \frac{15 \times 6}{20}$$

$$\Rightarrow$$
 OD = 4.5

Q. 7. ABCD is a parallelogram point E is on side BC. Line DE intersects ray AB in point T. Prove that DE \times BE = CE \times TE.

Answer: In Δ CED and ΔBET

⇒ ∠ CED≅ ∠ BET (opposite angles)

⇒ ∠ CDE≅ ∠ BTE (Alternate angles)

 $(:AB||DC \Rightarrow BT||DC$, as BT is extension to AB)

 \Rightarrow Δ CED \sim Δ BET (By AA Test)

$$ightarrow rac{CE}{DE} = rac{BE}{TE}$$
 (corresponding sides are proportional)

$$\Rightarrow$$
 DE x BE = CE x TE

Q. 8. In the figure, seg AC and seg BD intersect each other in point P and $\frac{AP}{Cp} = \frac{BP}{DP}$. Prove that, \triangle ABP ~ \triangle CDP

Answer:

In Δ APB & Δ CPD

$$\Rightarrow \frac{AP}{CP} = \frac{BP}{DP}$$
(Given)

And, $\angle APB = \angle DPC$ (vertically opposite angles)

$$\Rightarrow$$
 \triangle APB \sim \triangle CPD (By SAS Test)

Q. 9. In the figure, in $\triangle ABC$, point D on side BC is such that, $\angle BAC = \angle ADC$.

Prove that, $CA^2 = CB \times CD$

Answer: In \triangle BAC & \triangle ADC

$$\Rightarrow \angle BAC \cong \angle ADC \dots (Given)$$

And, $\angle ACB \cong \angle DCA \dots (common)$

 \Rightarrow \triangle BAC \sim \triangle ADC (By AA Test)

$$\Rightarrow \frac{CA}{CD} = \frac{CB}{CA}$$
 (corresponding sides are proportional)

$$\Rightarrow$$
 CA² = CB \times CD

Practice Set 1.4

Q. 1. The ratio of corresponding sides of similar triangles is 3:5; then find the ratio of their areas.

Answer : Theorem: When two triangles are similar, the ratio of areas of those triangles is equal to the ratio of the squares of their corresponding sides.

- \Rightarrow Ratio of areas = $3^2:5^2$
- \Rightarrow Ratio of areas = 9:25

Q. 2. If $\triangle ABC \sim \triangle PQR$ and AB: PQ = 2:3, then fill in the blanks.

$$\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AB^2}{\boxed{}} = \frac{2^2}{3^2} = \boxed{\boxed{}}$$

Answer : $\therefore \triangle$ ABC \sim \triangle PQR and AB:PQ = 2:3

$$\underset{\Rightarrow}{\frac{A(\Delta \text{ ABC})}{A(\Delta \text{ PQR})}} = \frac{AB^2}{PQ^2} = \frac{2^2}{3^2} = \frac{4}{9}$$

Q. 3. If $\triangle ABC \sim \triangle PQR$, A ($\triangle ABC$) = 80, A($\triangle PQR$) = 125, then fill in the blanks.

$$\frac{A(\Delta ABC)}{A(\Delta...)} = \frac{80}{125} \qquad \therefore \frac{AB}{PQ} = \boxed{\boxed{}}$$

Answer : ∵ ∆ ABC~∆ PQR

$$\Rightarrow \frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{80}{125} (:: A(\Delta PQR) = 125 \text{ is given})$$

$$\underset{\Rightarrow}{\xrightarrow{A(\Delta ABC)}} = \frac{AB^2}{PQ^2}$$

$$\Rightarrow \frac{AB}{PQ} = \sqrt{\frac{A(\Delta \ ABC)}{A(\Delta \ PQR)}}$$

$$\Rightarrow \frac{AB}{PQ} = \frac{4}{5}$$

Q. 4. Δ LMN ~ Δ PQR, 9 × A(Δ PQR) = 16 × A (Δ LMN). If QR = 20 then find MN.

Answer: ∵ ∆ ABC~∆ PQR

 \Rightarrow Given that, 9 × A(\triangle ABC) = 16× A(\triangle PQR)

$$\Rightarrow \frac{A(\Delta PQR)}{A(\Delta LMN)} = \frac{16}{9}$$

$$And, \frac{A(\Delta PQR)}{A(\Delta LMN)} = \frac{QR^2}{MN^2}$$

$$\frac{QR^2}{MN^2} = \frac{16}{9}$$

$$\Rightarrow \frac{20^2}{MN^2} = \frac{16}{9}$$

$$\Rightarrow MN^2 = \frac{400 \times 9}{16}$$

$$\Rightarrow$$
 MN = 15

Q. 5. Areas of two similar triangles are 225 sq.cm & 81 sq.cm. If a side of the smaller triangle is 12 cm, then find corresponding side of the bigger triangle.

Answer: Let area of one(bigger) triangle be 'A', other(smaller) triangle be 'B', corresponding side of smaller triangle be 'a' and bigger triangle be 'b'.

$$\Rightarrow \frac{A}{B} = \frac{b^2}{a^2}$$
 (By theorem)

And a = 12cm, A = 225 sq.cm, B = 81 sq.cm(Given)

$$\Rightarrow \frac{225}{81} = \frac{b^2}{12^2}$$

$$\Rightarrow b^2 = \frac{225 \times 144}{81}$$

$$\Rightarrow$$
 b = $\sqrt{400}$

$$\Rightarrow$$
 b = 20 cm

Q. 6. \triangle ABC and \triangle DEF are equilateral triangles. If A(\triangle ABC) : A(\triangle DEF) = 1 : 2 and AB = 4, find DE.

Answer: We know that, all the angles of an equilateral triangles are equal, i.e., 60°.

$$\Rightarrow \Delta$$
 ABC~ Δ DEF(By AAA Similarity Test)

$$\Rightarrow \frac{A(\Delta ABC)}{A(\Delta DEF)} = \frac{AB^2}{DE^2}$$

$$\underset{\text{And, }\overline{A(\Delta \ ABC)}}{\text{And, }} = \frac{1}{2} \underset{\text{(Given)}}{\text{(Given)}}$$

$$\Rightarrow \frac{AB^2}{DE^2} = \frac{1}{2}$$

$$\Rightarrow$$
 DE² = 2 × 4² (: AB = 4)

$$\Rightarrow$$
 DE = $\sqrt{32}$

$$\Rightarrow$$
 DE = $4\sqrt{2}$

Q. 7. In figure 1.66, seg PQ || seg DE, $A(\Delta PQF) = 20$ units, PF = 2 DP, then find A(DPQE) by completing the following activity.

A(
$$\triangle$$
 PQF) = 20 units, PF = 2 DP, Let us assume DP = x. \therefore PF = 2x DF = DP + $\boxed{}$ = $\boxed{}$ + $\boxed{}$ = 3x

In \triangle FDE and \triangle FPQ,

∠FDE ≅ ∠ corresponding angles

∠FED ≅ ∠ corresponding angles

.: Δ FDE ~ Δ FPQ AA test

$$\therefore \frac{A(\Delta FDE)}{A(\Delta FPQ)} = \frac{\boxed{}}{\boxed{}} = \frac{(3x)^2}{(2x)^2} = \frac{9}{4}$$

$$A(\Delta FDE) = \frac{9}{4}A(\Delta FPQ) = \frac{9}{4} \times \Box = \Box$$

$$A(\Box DPQE) = A(\Delta FDE) - A(\Delta FPQ)$$

Fig. 1.66

Answer: $A(\Delta PQF) = 20$ units,PF = 2DP,Let us assume DP = x,: PF = 2x

$$\Rightarrow$$
 DF = DP + PF = x + 2x = 3x

In Δ FDE & Δ FPQ

 \angle FDE \cong \angle FPQ (Corresponding angles)

 \angle FEP \cong \angle FQP (Corresponding angles)

∴ Δ FDE~ Δ FPQ (AA Test)

$$\frac{A(\Delta \text{ FDE})}{A(\Delta \text{ FPQ})} = \frac{DF^2}{PF^2} = \frac{(3x)^2}{(2x)^2} = \frac{9}{4}$$

$$A(\Delta \text{ FDE}) = \frac{9}{4} A(\Delta \text{FPQ}) = \frac{9}{4} \times 20 = 45$$

$$A(\Box DPQE) = A (\Delta FDE) - A(\Delta FPQ)$$

$$= 45 - 20$$

= 25 sq. unit.

Problem Set 1

Q. 1. A. Select the appropriate alternative.

In \triangle ABC and \triangle PQR, in a one to one correspondence $\frac{AB}{QR} = \frac{BC}{PR} = \frac{CA}{PQ}$ then

Fig. 1.67

A. \triangle PQR \sim \triangle ABC

B. Δ PQR ~ Δ CAB

C. Δ CBA ~ Δ PQR

D. \triangle BCA \sim \triangle PQR

Answer:
$$\frac{AB}{QR} = \frac{BC}{PR} = \frac{CA}{PQ}$$

- \Rightarrow \triangle CAB \sim \triangle PQR
- (A) doesn't match the solution.
- (C) doesn't match the solution.
- (D) doesn't match the solution.

Q. 1. B. Select the appropriate alternative.

If in ΔDEF and ΔPQR , $\angle D\cong \angle Q$, $\angle R\cong \angle E$ then which of the following statements is false?

Fig. 1.68

A.
$$\frac{EF}{PR} = \frac{DF}{PQ}$$

B.
$$\frac{DE}{PQ} = \frac{EF}{RP}$$

C.
$$\frac{DE}{QR} = \frac{DF}{PQ}$$

D.
$$\frac{EF}{RP} = \frac{DE}{OR}$$

Answer : In \triangle DEF & \triangle PQR

$$\angle$$
 D \cong \angle Q and \angle R \cong \angle E (Given)

$$\frac{DE}{PQ} = \frac{EF}{QR} = \frac{FD}{RP}$$
 (corresponding sides are proportional)

- (A) Is matching the solution, hence can't be false.
- (C) Is matching the solution, hence can't be false.
- (D) Is matching the solution, hence can't be false.
- Q. 1. C. Select the appropriate alternative.

In \triangle and \triangle DEF \angle B = \angle E, \angle F = \angle C and AB = 3DE then which of the statements regarding the two triangles is true?

Fig. 1.69

- A. The triangles are not congruent and not similar
- B. The triangles are similar but not congruent.
- C. The triangles are congruent and similar.
- D. None of the statements above is true.

Answer: In \triangle ABC & \triangle DEF

 \angle B \cong \angle E and \angle C \cong \angle F (Given)

 \Rightarrow \triangle ABC \sim \triangle DEF (By AA Test)

⇒ The triangles are similar.

And, \triangle ABC \cong \triangle DEF, if AB = DE.

But, given that - AB = 3DE.

- ⇒ The triangles are not congruent.
- (A) doesn't match the solution.
- (C) doesn't match the solution.
- (D) doesn't match the solution.

Q. 1. D. Select the appropriate alternative.

ΔABC and ΔDEF are equilateral triangles, A(ΔABC) : A(ΔDEF) = 1 : 2. If AB = 4 then what is length of DE?

A.
$$2\sqrt{2}$$

B. 4

C. 8

p.
$$4\sqrt{2}$$

Answer: Solution: We know that, all the angles of an equilateral triangles are equal, i.e., 60°.

 $\Rightarrow \Delta$ ABC~ Δ DEF(By AAA Similarity Test)

$$\underset{\Rightarrow}{\Rightarrow} \frac{A(\Delta \ ABC)}{A(\Delta \ DEF)} = \frac{AB^2}{DE^2}$$

$$\underset{\text{And, }\overline{A(\Delta \; ABC)}}{\text{And, } \overline{A(\Delta \; DEF)}} = \frac{1}{2} \underset{\text{(Given)}}{\text{(Given)}}$$

$$\underset{\Rightarrow}{\frac{AB^2}{DE^2}} = \frac{1}{2}$$

$$\Rightarrow$$
 DE² = 2 × 4² (:: AB = 4)

⇒ DE =
$$\sqrt{32}$$

$$\Rightarrow$$
 DE = $4\sqrt{2}$

- (A) doesn't match the solution.
- (B) doesn't match the solution.
- (C) doesn't match the solution.

Q. 1. E. Select the appropriate alternative.

In figure 1.71, seg XY || seg BC, then which of the following statements is true?

Fig. 1.71

A.
$$\frac{AB}{AC} = \frac{AX}{AY}$$

B.
$$\frac{AX}{XB} = \frac{AY}{AC}$$

B.
$$\frac{AX}{XB} = \frac{AY}{AC}$$
C. $\frac{AX}{YC} = \frac{AY}{XB}$

D.
$$\frac{AB}{YC} = \frac{AC}{XB}$$

Answer : ∵ segXY|| segBC

And, $\angle XAY \cong \angle BAC$ (Common)

 \Rightarrow \triangle AXY~ \triangle ABC (By AA Test)

$$ightarrow rac{AX}{AB} = rac{AY}{AC} = rac{XY}{BC}$$
 (corresponding sides are proportional)

$$\underset{\Rightarrow}{\xrightarrow{AB}} = \underset{AY}{\xrightarrow{AX}}$$

- (B) doesn't match the solution.
- (C) doesn't match the solution.
- (D) doesn't match the solution.

Q. 2. In \triangle ABC, B - D - C and BD = 7, BC = 20 then find following ratios.

Fig. 1.72

(1)
$$\frac{A(\Delta ABD)}{A(\Delta ADC)}$$

(2)
$$\frac{A(\Delta ABD)}{A(\Delta ABC)}$$

(3)
$$\frac{A(\Delta ADC)}{A(\Delta ABC)}$$

Answer: Theorem: When two triangles are similar, the ratio of areas of those triangles is equal to the ratio of the squares of their corresponding sides.

$$\frac{A(\Delta ABD)}{(1)} = \frac{BD^2}{DC^2}$$

$$= \frac{BD^2}{(BC-BD)^2}$$

$$= \frac{7^2}{(20-7)^2}$$

$$=\frac{7^2}{13^2}$$

$$\frac{A(\Delta ABD)}{A(\Delta ABC)} = \frac{BD^2}{BC^2}$$

$$= \frac{BD^2}{BC^2}$$

$$\frac{7^2}{20^2}$$

$$\frac{A(\Delta ADC)}{A(\Delta ABC)} = \frac{DC^2}{BC^2}$$

$$= \frac{(BC - BD)^2}{BC^2}$$

$$=\frac{(20-7)^2}{20^2}$$

$$=\frac{13^2}{20^2}$$

Q. 3. Ratio of areas of two triangles with equal heights is 2 : 3. If base of the smaller triangle is 6 cm then what is the corresponding base of the bigger triangle?

Answer : (PROPERTY: Areas of triangles with equal heights are proportional to their corresponding bases.)

$$\frac{A(\text{smaller triangle})}{A(\text{bigger triangle})} = \frac{\text{base(smaller triangle})}{\text{base(bigger triangle})}$$

$$\frac{2}{\Rightarrow 3} = \frac{6}{\text{base(bigger triangle)}}$$

⇒ Base (bigger triangle) = 9 cm

Q. 4. In figure 1.73,
$$\angle ABC = \angle DCB = 90^{\circ} AB = 6$$
, DC = 8 then $\frac{A (\triangle ABC)}{A (\triangle DCB)}$?

Answer: We know that, Area of triangle = $\frac{1}{2}$ x basex height

$$\underset{\Rightarrow}{\underline{\frac{A(\Delta ABC)}{A(\Delta DCB)}}} = \underset{\underset{\Rightarrow}{\underline{\frac{1}{2}} \times BC \times AB}}{\underline{\frac{1}{2}} \times BC \times DC}$$

$$= \frac{AB}{DC}$$

$$=\frac{3}{4}$$

Q. 5. In figure 1.74, PM = 10 cm A(Δ PQS) = 100 sq.cm A (Δ QRS) = 110 sq.cm then find NR.

Fig. 1.74

Answer: We know that, Area of triangle = $\frac{1}{2} \times \text{base} \times \text{height}$

$$\underset{\Rightarrow}{\Rightarrow} \frac{A(\Delta \ PQS)}{A(\Delta \ QRS)} \ = \ \frac{\frac{1}{2} \times QS \times PM}{\frac{1}{2} \times QS \times NR}$$

$$\Rightarrow \frac{100}{110} = \frac{PM}{NR}$$

$$\Rightarrow \frac{100}{110} = \frac{10}{NR}$$

$$\Rightarrow$$
 NR = 11 cm

Q. 6. Δ MNT ~ Δ QRS. Length of altitude drawn from point T is 5 and length of altitude drawn from point S is 9. Find the ratio $\frac{A(\Delta MNT)}{A(\Delta QRS)}$.

Answer:
$$\frac{A(\Delta MNT)}{A(\Delta QRS)} = \frac{(altitude from T)^2}{(altitude frm S)^2}$$

$$=\frac{5^2}{9^2}$$

Q. 7. In figure 1.75, A - D - C and B - E - C seg DE || side AB If AD = 5, DC = 3, BC = 6.4 then find BE.

Answer: By Basic Proportionality Theorem-

$$\Rightarrow \frac{CD}{DA} = \frac{CE}{EB}$$

$$\Rightarrow \frac{3}{5} = \frac{6.4-x}{x}$$

$$\Rightarrow$$
 3x = 32 - 5x

$$\Rightarrow 8x = 32$$

$$\Rightarrow$$
 x = 4 = BE

Q. 8. In the figure 1.76, seg PA, seg QB, seg RC and seg SD are perpendicular to line AD.

AB = 60, BC = 70, CD = 80, PS = 280 then find PQ, QR and RS.

Answer : (PROPERTY: If line AX || line BY || line CZ and line I and line m are their transversals then)

$$\frac{AB}{BC} = \frac{XY}{YZ}$$

$$\underset{\Rightarrow}{\xrightarrow{AB}} \frac{AB}{BC} = \frac{PQ}{QR}$$

$$\Rightarrow \frac{60}{70} = \frac{PQ}{QR}$$

$$\Rightarrow \frac{PQ}{QR} = \frac{6}{7}$$

$$\Rightarrow PQ = \frac{6}{7}QR$$

[1]

[2]

$$And \frac{BC}{CD} = \frac{QR}{RS}$$

$$\frac{70}{\Rightarrow 80} = \frac{QR}{RS}$$

$$\Rightarrow \frac{QR}{RS} = \frac{7}{8}$$

$$\Rightarrow RS = \frac{8}{7}QR$$

And, PS = 280

$$\Rightarrow$$
 PQ + QR + RS = 280(3)

From [1] and [2], we have

$$\Rightarrow \frac{6}{7}QR + QR + \frac{8}{7}QR = 280$$

$$\Rightarrow \frac{14}{7}QR + QR = 280$$

$$\Rightarrow 2QR + QR = 280$$

$$\Rightarrow 3QR = 280$$

$$\Rightarrow QR = \frac{280}{3}$$

$$PQ = \frac{6}{7}QR$$

$$\Rightarrow PQ = \frac{6}{7} \times \frac{280}{3} = 80$$
 From [1],
$$RS = \frac{8}{7} \times \frac{280}{3} = \frac{320}{3}$$
 From [2]

Q. 9. In \triangle PQR seg PM is a median. Angle bisectors of \angle PMQ and \angle PMR intersect side PQ and side PR in points X and Y respectively. Prove that XY || QR.

Complete the proof by filling in the boxes. In ∆PMQ, ray MX is bisector of ∠PMQ.

─ (I) theorem of angle bisector.

In ΔPMR, ray MY is bisector of ∠PMR.

」......(II) Theorem of angle bisector.

$$\frac{MP}{MP} = \frac{MP}{MP}$$

But $\overline{^{MQ}}$ $\overline{^{MR}}$ M is the midpoint QR, hence MQ = MR.

$$\therefore \frac{PX}{XQ} = \frac{PY}{YR}$$

∴ XY || QR converse of basic proportionality theorem.

Answer : ..
$$\frac{PM}{MQ} = \frac{PX}{XQ}$$
(I) theorem of angle bisector.

And

$$\frac{PM}{...\,MR} = \frac{PY}{YR}.....$$
 (II) Theorem of angle bisector.

Q. 10. In fig 1.78, bisectors of $\angle B$ and $\angle C$ of $\triangle ABC$ intersect each other in point X. Line AX intersects side BC in point Y. AB = 5, AC = 4, BC = 6 then find $\frac{AX}{XY}$.

Fig. 1.78

Answer: By Bisector Theorem-

$$\underset{\Rightarrow}{\frac{AX}{XY}} = \frac{AB}{BY} \dots (1)$$

$$\Rightarrow$$
 And, $\frac{AX}{XY} = \frac{AC}{CY}$(2)

Equating (1) & (2), we get-

$$\Rightarrow \frac{AB}{BY} = \frac{AC}{CY}$$

$$\Rightarrow \frac{AB}{AC} = \frac{BY}{CY}$$

$$\Rightarrow \frac{AB + AC}{AC} = \frac{BY + CY}{CY}$$

$$=\frac{BC}{CY}$$

$$\Rightarrow \frac{5+4}{4} = \frac{6}{CY}$$

$$\Rightarrow CY = \frac{\frac{24}{9}}{9}$$

$$\Rightarrow$$
 CY = $\frac{8}{3}$

$$Now, \frac{AX}{XY} = \frac{AC}{CY}$$

$$\Rightarrow \frac{AX}{XY} = \frac{4}{\frac{8}{3}}$$

$$\Rightarrow \frac{AX}{XY} = \frac{3}{2}$$

Q. 11. In \Box ABCD, seg AD || seg BC. Diagonal AC and diagonal BD intersect each other in point P. Then show that $\frac{AP}{PD}=\frac{PC}{BP}$

Fig. 1.79

Answer: In \triangle APD and \triangle CPB

⇒ ∠ APD≅ ∠ CPB (opposite angles)

 \Rightarrow \angle ADP \cong \angle PBC (Alternate angles : AD||BC)

 \Rightarrow \triangle APD \sim \triangle CPB (By AA Test)

 $ightarrow rac{AP}{PC} = rac{PD}{BP}$ (corresponding sides are proportional)

$$\frac{AP}{\Rightarrow PD} = \frac{PC}{BP}$$

Q. 12. In fig 1.80, XY \parallel seg AC. If 2AX = 3BX and XY = 9. Complete the activity to find the value of AC.

$$\frac{AB}{BX} = \frac{\Box}{\Box}$$
.....(I)

$$\Delta BCA \sim \Delta BYX$$
 test of similarity.

$$\therefore \frac{BA}{BX} = \frac{AC}{XY}$$
 corresponding sides of similar triangles.

$$\therefore \frac{\square}{\square} = \frac{AC}{9} \therefore AC = \square \dots \text{ ...from (I)}$$

Answer : ACTIVITY:
$$2AX = 3BX : \frac{AX}{BX} = \frac{3}{2}$$

$$\frac{AX + BX}{BX} = \frac{3+2}{2}$$
.....(By Componendo)

$$\frac{AB}{BX} = \frac{5}{3}....(I)$$

 \triangle BCA~ \triangle BYX..... (AA test of similarity).

$$\frac{BA}{BX} = \frac{AC}{XY}$$
..... (Corresponding sides of similar triangles).

$$\frac{5}{3} = \frac{AC}{9} \therefore AC = 15.....from (I)$$

Q. 13. In figure 1.81, the vertices of square DEFG are on the sides of $\triangle ABC$, $\angle A = 90^{\circ}$. Then prove that DE² = BD × EC

(Hint : Show that \triangle GBD is similar to \triangle DFE. Use GD = FE = DE.)

Answer : Proof: In □ DEFG is a square

⇒ GF||DE

⇒ GF||BC

Now, In \triangle AGF and \triangle DBG

 \Rightarrow \angle AGF \cong \angle DBG (corresponding angles)

 $\Rightarrow \angle GDB \cong \angle FAG (Both are 90^\circ)$

 $\Rightarrow \Delta \text{ AGF} \sim \Delta \text{ DBG } \dots (1) \text{ (AA similarity)}$

Now, In \triangle AGF and \triangle EFC

 \Rightarrow \angle AFG \cong \angle ECF (corresponding angles)

 $\Rightarrow \angle GAF \cong \angle FEC$ (Both are 90°)

 $\Rightarrow \Delta AGF \sim \Delta EFC \dots (2)$ (AA similarity)

From (1) & (2), we have-

⇒ Δ EFC~Δ DBG

$$\underset{\Rightarrow}{=} \frac{EF}{BD} = \frac{EC}{DG}$$

 \Rightarrow EF \times DG = BD \times EC

Now, : DEFG is a square

$$\Rightarrow$$
 DE = EF = DG

$$\Rightarrow$$
 DE x DE = BD x EC

$$\Rightarrow$$
 DE² = BD \times EC