

Practice Problems

Problems based on Cohesive and adhesive force

	P1	robiems basea on C	onesive	ana aanesive jo	rce			
1.	Mercury does not wet glass, wood or iron because				[MP PN	IT 1995; MP PET 1997]		
	(a) Cohesive force is less t	han adhesive force	(b) C	ohesive force is greater th	han adhesive	force		
	(c) Angle of contact is less	s than 90°	(d) (Cohesive force is equal to	adhesive for	ce		
2.	The force of cohesion is			_		[CPMT 1996]		
	(a) Maximum in solids	(b) Maximum in liquid	(c) S	Same in different matters	s (d)	Maximum in gases		
3.	What enables us to write o	n the black board with chalk						
	(a) Gravity	(b) Cohesion	(c) A	Adhesion	(d) None of t	he above		
4.	Intermolecular forces decr	ease rapidly as the distance b	etween the m	olecules increases and d	o so much me	ore		
	(a) Slowly than demanded	d by the inverse square law of	the distance					
	(b) Rapidly than anticipat	ed through the inverse square	e law of the d	istance				
	(c) According to inverse s	quare law						
	(d) It actually remains the	e same for all the distances						
		Problems base	ed on Su	rface tension				
				3				
5.	The spherical shape of rain	n-drop is due to						
		CPMT 1976, 90; CPMT 2001;				99; AFMC 1999, 2001]		
	(a) Density of the liquid	(b) Surface tension			(d) Gravity			
6.	At which of the following to	emperatures, the value of surf	face tension o	f water is minimum		[MP PMT/PET 1998]		
	(a) $4^{\circ} C$	(b) $25^{\circ} C$	(c)	$50^{\circ} C$	(d) $75^{\circ} C$			
7•	Force necessary to pull a ci	rcular plate of 5cm radius fro	m water surfa	ace for which surface ten	sion is 75 dyı	nes/cm, is [MP PMT 1991]		
	(a) 30 dynes	(b) 60 <i>dynes</i>	(c) 7	50 dynes	(d) 750 <i>πdyn</i>	es		
8.	A square frame of side <i>L</i> is force acting on the frame w	dipped in a liquid. On taking vill be	it out, a men	nbrane is formed. If the s	surface tensio	on of the liquid is <i>T</i> , the [MP PMT 1990]		
	(a) 2TL	(b) 4 <i>TL</i>	(c) 8	BTL	(d) 10 <i>TL</i>			
9.	Ball pen and fountain pen	depend respectively upon the	principle of					
	(a) Surface tension and viscosity			(b) Surface tension and gravity				
	(c) Gravitation and surface tension			(d) Surface tension and surface tension				
10.	Which graph represents th	e variation of surface tension	ce tension with temperature over small temperature ranges for water					
	(a) S.T.	(b) S.T.	(c)	S.1.	(d) S.T.			
	Tomp	Temp —	→	Temp \longrightarrow		Temp →		

The material of a wire has a density of 1.4 g per cm^3 . If it is not wetted by a liquid of surface tension 44 dyne per cm, then the maximum radius of the wire which can float on the surface of the liquid is

- (a) $\frac{1}{7}$ cm
- (b) 0.7 cm

- (c) $\frac{10}{14}$ cm
- (d) $\frac{10}{28}$ cm

70	Surface Tension							
12.	A water drop of $0.05cm^3$ is squeezed between two glass plates and spreads into area of $40cm^2$. If the surface tension of water is $70 \ dyne/cm$ then the normal force required to separate the glass plates from each other will be							
	(a) 90 N	(b) 45 N	(c) $22.5 N$	(d) 450 N				
13.	The main difference bet	tween a stretched membrane a	nd the liquid surface is					
	(a) The liquid surface has a tendency to contract but the stretched membrane does not							
	(b) The surface tension does not depend on area but on the tension of the stretched membrane does							
	(c) The surface tension increases with increases in area							
	(d) Surface tension increases irregularly with temperature							
14.	On bisecting a soap bubble along a diameter, the force due to surface tension on any of its half part will be							
	(a) $4\pi RT$	(b) $\frac{4\pi R}{T}$	(c) $\frac{T}{4\pi R}$	(d) $\frac{2T}{R}$				
15.	The addition of soap changes the surface tension of water to σ_1 and that of sugar changes it to σ_2 . Then							
	(a) $\sigma_1 = \sigma_2$		(b) $\sigma_1 > \sigma_2$					
	(c) $\sigma_1 < \sigma_2$		(d) It is not possible to	predict the above				
16.	A hollow disc of aluminum whose external and internal radii are R and r respectively, is floating on the surface of a liquid whose surface tension is T . The maximum weight of disc can be							
	(a) $2\pi(R+r)T$	(b) $2\pi (R-r) T$	(c) $4\pi(R+r)T$	(d) $4\pi(R-r)T$				
		Problems ba	sed on Surface energ	Ý				
17.	8000 identical water drops are combined to form a big drop. Then the ratio of the final surface energy to the initial surface energy of all the drops together is							
	(a) 1:10	(b) 1:15	(c) 1:20	(d) 1:25				
18.	8 mercury drops coales	ce to form one mercury drop, th	he energy changes by a factor of		[DCE 2000]			
	(a) 1	(b) 2	(c) 4	(d) 6				
19.	Which of the following statements are true in case when two water drops coalesce and make a bigger drop [Roorkee 1999]							
	(a) Energy is released							
	(b) Energy is absorbed							
	(c) The surface area of the bigger drop is greater than the sum of the surface areas of both the drops							
	(d) The surface area of the bigger drop is smaller than the sum of the surface areas of both the drops							
20.	An oil drop of radius 1cm is sprayed into 1000 small equal drops of same radius. If the surface tension of oil drop is 50 dyne/cm then the work done is [RPET 1990]							
	(a) $18\pi ergs$	(b) $180\pi ergs$	(c) $1800\pi ergs$	(d) $18000\pi ergs$	S			
21.	If work <i>W</i> is done in blo from the same solution		n a soap solution, then the work	done in blowing a bubb	le of radius 2 <i>R</i> [MP PET 1990]			

(a) 8πR²T
 (b) 24πR²T
 (c) 48πR²T
 (d) 8πR²T²/3
 24. 1000 drops of water all of same size join together to form a single drop and the energy released raises the temperature of the drop. Given that T is the surface tension of water, r the radius of each small drop, ρ the density of liquid, J the mechanical equivalent of heat. What is the rise in the temperature

The work done in increasing the volume of a soap bubble of radius R and surface tension T by 700% will be

(c) 4W

(c) $N^{1/3}$

(a) W/2

22.

23.

(b) 2W

(b) $N^{2/3}$

A liquid drop of radius R is broken up into N small droplets. The work done is proportional to

(d) $2\frac{1}{3}W$

				Surface Tension 71
	(a) T/Jr	(b) $10T/Jr$	(c) 100 <i>T/Jr</i>	(d) None of these
		Problems bas	sed on Excess pressur	· .
25.	Two bubbles A and B 2002]	(A > B) are joined through a narr	rowtube. Then	[UPSEAT 2001; Kerala (Med.)
	(a) The size of A will	increase	(b)	The size of B will increase
	(c) The size of <i>B</i> will	increase until the pressure equal	s (d) None of these	
26.	Excess pressure of one	e soap bubble is four times more	than the other. Then the ratio of	volume of first bubble to another one is
				[CPMT 1997; MH CET 2000]
	(a) 1:64	(b) 1:4	(c) 64:1	(d) 1:2
27.	The pressure of air in soap solution is	a soap bubble of 0.7cm diameter	r is 8mm of water above the pres	sure outside. The surface tension of the [MP PET 1991; MP PMT 1997]
	(a) 100 dyne/cm	(b) 68.66 <i>dyne/cm</i>	(c) 137 <i>dyne/cm</i>	(d) 150 <i>dyne/cm</i>
28.		_	ow the water surface at some ins he pressure inside the bubble wil	tant. If P is atmospheric pressure, d and T ll be [Roorkee 1990]
	(a) $P + h dg - \frac{4T}{r}$	(b) $P + h dg + \frac{2T}{r}$	(c) $P + h dg - \frac{2T}{r}$	(d) $P + h dg + \frac{4T}{r}$
29.		•		which supplies a fixed volume of air every side the bubble varies with time as shown
	(a) ΔP	(b) ΔP	(c) ΔP	$(d) \stackrel{\Delta P}{\overbrace{\hspace{1cm}}} $
		Problems bas	sed on Angle of conta	c i
30.	A liquid does not wet	the sides of a solid, if the angle o		
	() =			8, Haryana CEE 1998; RPMT 1999; 2003]
	(a) Zero	(b) Obtuse (More than 9	(c) Acute (Less than 9	
31.		eury in the capillary tube is	() Pl	[MP PET/PMT 1988]
	(a) Convex	(b) Concave	(c) Plane	(d) Uncertain
3 2 .	_	etween glass and mercury is		[MP PMT 1987]
	(a) 0°	(b) 30°	(c) 90°	(d) 135 °
33.	When the temperatur	e is increased the angle of contac	et of a liquid	
	(a) Increases		(b) Decreases	
	(c) Remains the sam	e	(d) First increases and	then decreases
34 •	For those liquids which	ch do not wet the solid surface, th	ne ratio of cohesive force and adh	esive force will be
	(a) Greater than $\frac{1}{\sqrt{2}}$	(b) Greater than $\sqrt{2}$	(c) Lesser than $\frac{1}{\sqrt{2}}$	(d) Lesser than $\sqrt{2}$
35.	The water proofing ag	ent makes an angle of contact		
	(a) From acute angle	to obtuse angle	(b) From obtuse angle	to acute angle

(d) From acute angle to right angle $\,$

(c) From obtuse angle to right angle $\,$

•	A glass plate is partly dipped vertically in the mercury and the angle of contact is measured. If the plate is inclined, then the angle of contact will							
	(a) Increase	(b) Remain unchanged	(c) Increase or decrease	(d) Decrease				
		Problems bas	sed on Capillarity					
	The surface tension for	pure water in a capillary tube expe		[MH CET 2002]				
	(a) $\frac{\rho g}{2hr}$	(b) $\frac{2}{hr\rho g}$	(c) $\frac{r\rho g}{2h}$	(d) $\frac{hr\rho g}{2}$				
38.	If capillary experiment	is performed in vacuum then for a	liquid there					
	(a) It will rise	(b) Will remain same	(c) It will fall	(d) Rise to the top				
	_	= -	ter is repeated in an artificial s	satellite. Which is revolving around the				
		the capillary tube upto a height of	[Roorkee 1992]					
	(a) 0.1 m		(b) 0.2 m					
	(c) 0.98 m		(d) Full length of the capill	•				
	When a capillary is dip	ped in water, water rises to a height	t h. If the length of the capillary					
	(a) The acceptance illinois		(b) The content of 11 and 1 and	[MP PAT 1990]				
	(a) The water will con(c) The water will not		(b) The water will not come out					
1.	` '		(d) The water will rise but less than height of capillary its bottom. The depth to which the vessel can be lowered vertically					
	in the deep water bath (surface tension <i>T</i>) without any wat		ter entering inside is	[MP PMT 1990]				
	(a) $4T/\rho rg$	(b) $3T/\rho rg$	(c) $2T/\rho rg$	(d) $T/\rho rg$				
	Water rises to a height of 10 <i>cm</i> in capillary tube and mercury falls to a depth of 3.112 <i>cm</i> in the same capillary tube. If the density							
	of mercury is 13.6 and	the angle of contact for mercury is 1		n of water and mercury is[MP PET/PMT 1				
	(a) 1:0.15	(b) 1:3	(c) 1:6	(d) 1.5:1				
	Water can rise to a height h in a capillary tube lowered vertically into water. If the height of tube above the surface of water be l and $l < h$, then water will rise in the capillary to a height							
	(a) h	(b) <i>l</i>	(c) $l-h$	(d) $l + h$				
	The height upto which	water will rise in a capillary tube wi	ill be					
	(a) Maximum when w	vater temperature is 4 o C	(b) Maximum when water	temperature is 0° C				
	(c) Minimum when wa	ter temperature is 4 ° C	(d) Same at all temperatures					
	The exact expression for							
	(a) $T = rhdg/2$	(b) $T = rhdg / 2 \cos \theta$	(c) $T = \frac{r(h+r/3)dg}{2}$	(d) $T = \frac{r(h+r/3)dg}{2\cos\theta}$				
	If a wax coated capillar	ry tube is dipped in water, then wate	er in it will					
	(a) Rise up		(b) Depress					
	(c) Sometimes rise an	d sometimes fall	(d) Rise up and come out a	as a fountain				
		various materials but having the sa	-					
	(a) Liquid will not ris	_	••	•				
	_	all upto same height						
	(c) Liquid will not rise in all upto same height							
	(d) Liquid will rise in all and height of liquid columns will be inversely proportional to the density of material used							

(a) 5cm

48.

(b) Less than 5cm

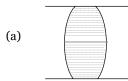
(c) Greater than 5cm

height of water column will be

(d) $4 \cos \alpha$

49. Water rises in a capillary tube through a height h. If the tube is inclined to the liquid surface at 30° , the liquid will rise in the tube upto its length equal to

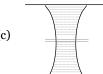
A straight capillary tube is immersed in water and the water rises to 5cm. If the capillary is bent as shown in figure then the


(a)
$$\frac{h}{2}$$

(b) h

(d) 4h

Problems (Miscellaneous)


If a water drop is kept between two glass plates, then its shape is **50.**

(b)

(c)

(d) None of these

When two soap bubbles of radius r_1 and r_2 $(r_2 > r_1)$ coalesce, the radius of curvature of common surface is 51.

[MP PMT 1996]

(a)
$$r - r_{2}$$

(b)
$$\frac{r_2 - r_1}{r_1 r_2}$$

(c)
$$\frac{r_1 r_2}{r_2 - r_1}$$

(d)
$$r + r_{2}$$

52. Two soap bubbles of radius 1cm and 2cm coalesce to form a single drop under isothermal conditions. The total energy possessed by them if surface tension is 30 *dyne cm*⁻¹, will be

(a)
$$400 \pi ergs$$

(b)
$$600 \pi ergs$$

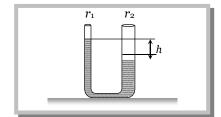
In the above question, the radius of the bigger drop will be **53**·

(a)
$$\sqrt{3}$$
 cm

(b)
$$\sqrt{5}$$
 cm

(c)
$$\sqrt{7}$$
 cm

(d)
$$\sqrt{8}$$
 cm


In a *U*-tube the radii of two columns are respectively r_1 and r_2 and if a liquid of density d filled in it has level difference of h then 54. the surface tension of the liquid is

(a)
$$T = \frac{hdg}{r_2 - r_1}$$

(b)
$$T = \frac{(r_2 - r_1)hdg}{2}$$

(c)
$$T = \frac{(r_1 + r_2)hdg}{2}$$

(d)
$$T = \frac{hdg}{2} \frac{(r_1 r_2)}{r_2 - r_1}$$

Answer Sheet (Practice problems)

1.	2.	3.	4.	5.	6.	7•	8.	9.	10.
b	a	c	b	b	d	d	c	c	b
11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
a	b	b	a	c	a	c	c	a, d	c
21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
c	c	b	d	a	a	b	b	b	b
31.	32.	33.	34.	35.	36.	37•	38.	39.	40.
a	d	b	b	a	b	d	a	d	b
41.	42.	43.	44.	45.	46.	47•	48.	49.	50.
c	c	b	c	d	b	c	a	c	c
51.	52.	53.	54.						
c	d	b	d						