Class 11

Important Formulas

Permutations and Combinations

Permutations:

 The continued product of first n natural numbers is called the "n factorial" and is denoted by n or n!.

Thus, $n! = 1 \times 2 \times 3 \times 4 \times ... \times (n-1) \times n$

Factorials of proper fractions and negative integers are not defined.

- 2. $\frac{(2n)!}{n!} = 1 \cdot 3 \cdot 5 \dots (2n-1) 2^n$
- 3. n!+1 is not divisible by any natural number between 2 and n.
- 4. Let p be a prime number and n be a natural number, if E_p (n) denotes the exponent of p in n, then

$$E_p(n!) = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \dots + \left[\frac{n}{p^s}\right]$$

Combinations:

1. If n is a natural number and r is a non-negative integer such that $0 \le r \le n$, then

(i) ${}^nC_r = \frac{n!}{(n-r)!r!}$ (ii) ${}^nC_r \times r! = {}^nP_r$

(i)
$${}^{n}C_{r} = \frac{n!}{(n-r)!r!}$$

(ii)
$${}^{n}C_{r} \times r! = {}^{n}P_{r}$$

(iii)
$${}^nC_r = {}^nC_{n-r}$$

(iv)
$${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$$

(v)
$${}^{n}C_{r} = \frac{n}{r} {}^{n-1}C_{r-1} = \frac{n}{r} \times \frac{n-1}{r-1} \cdot {}^{n-2}C_{r-2} = \dots = \frac{n}{r} \times \frac{n-1}{r-1} \times \frac{n-2}{r-2} \times \dots \times \frac{n-(r-1)}{1}$$

(vi)
$${}^{n}C_{x} = {}^{n}C_{y} \Rightarrow x = y$$
 or, $x + y = n$

(vii) If n is an even natural number, then the greatest among nC_0 , nC_1 , nC_2 , ..., nC_n is ${}^nC_{\underline{n}}$.

If n is an odd natural number, then the greatest among nC_0 , nC_1 , nC_2 , ..., nC_n is

$${}^{n}C_{\frac{n-1}{2}}$$
 or, ${}^{n}C_{\frac{n+1}{2}}$

2. The number of ways of selecting r items or objects from a group of n distinct items or objects