CBSE Test Paper 05 Chapter 2 Inverse Trigonometric Functions

- 1. If $x+y=rac{\pi}{4}$ then (1 + tanx)(1 + tany) is equal to
 - a. 2
 - b. 1
 - c. -1
 - d. none of these

2. The relation
$$\cos ec^{-1}\left(rac{x^2+1}{2x}
ight)=2\mathrm{cot}^{-1}x$$
 is valid for

- a. $x \geqslant 0$
- b. $|x| \geqslant 1$
- c. $x \geqslant 1$
- d. None of these.

3. $\sin(\sin^{-1}\frac{1}{2} + \cos^{-1}\frac{1}{2})$ equals a. $-\frac{1}{4}$ b. 0 c. $\frac{1}{2}$ d. 1

4. The number of solutions of the equation $\sin^{-1}x - \cos^{-1}x = \sin^{-1}\left(rac{1}{2}
ight)$ is

- a. 2
- b. 1
- c. 3
- d. Infinite.
- 5. $\sin(\cot^{-1}x)$ is equal to
 - a. None of these

b.
$$\frac{x}{\sqrt{1+x^2}}$$

c.
$$\frac{1}{\sqrt{1+x^2}}$$

d. $\sqrt{1+x^2}$
6. The value of $\sin^{-1}\left(\sin\frac{3\pi}{5}\right)$ is _____.
7. The principle value branch of $\csc^{-1}x$ is _____.
8. The value of $\sin^{-1}\left(\cos\left(\frac{33\pi}{5}\right)\right)$ is _____.
9. Find $\csc^{-1}(2)$
10. Find the value of $\sin^{-1}\left(\sin\frac{3\pi}{5}\right)$.
11. Find the value of $\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$.
12. Find $\sin(\tan^{-1}x) = .$ (2)
13. Find the value of $\tan^{-1}\left(\tan\frac{2\pi}{3}\right)$.
14. $\tan^{-1}\left(\tan\frac{3\pi}{4}\right) = ?$
15. Prove that: $\cot^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right) = \frac{x}{2}, x \in (0, \frac{\pi}{4})$.
16. Prove that $\tan^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right) = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x$.
17. Prove that $\cot^{-1}7 + \cot^{-1}8 + \cot^{-1}18 = \cot^{-1}3$. (4)

18. Prove that $\cos^{-1}x = 2\sin^{-1}\sqrt{\frac{1-x}{2}} = 2\cos^{-1}\sqrt{\frac{1+x}{2}}.$

CBSE Test Paper 05 Chapter 2 Inverse Trigonometric Functions

Solution

1. a. 2, **Explanation:** If
$$x + y = \frac{\pi}{4}$$
 then $(1 + \tan x)(1 + \tan y)$
 $\Rightarrow (1 + \tan x)(1 + \tan(\frac{\pi}{4} - x)))$
 $\Rightarrow (1 + \tan x)(1 + \frac{1 - \tan x}{1 + \tan x})$
 $\Rightarrow (1 + \tan x)(\frac{2}{1 + \tan x}) = 2$

- 2. c. $x \ge 1$, **Explanation:** The relation is true for all real values of x greater than or equal to 1.
- 3. d. 1, **Explanation:** We know that $sin^{-1}x + cos^{-1}x = \frac{\pi}{2}$ $\therefore sin(sin^{-1}\frac{1}{2} + cos^{-1}\frac{1}{2}) = sin(\frac{\pi}{2}) = 1$

4. b. 1, Explanation:
$$\sin^{-1}x - \cos^{-1}x = \sin^{-1}\frac{1}{2}$$

 $\Rightarrow \sin^{-1}x - \cos^{-1}x = \frac{\pi}{6}$
 $\Rightarrow \sin^{-1}x - (\frac{\pi}{2} - \sin^{-1}x) = \frac{\pi}{6}$
 $\Rightarrow 2\sin^{-1}x = \frac{\pi}{6} + \frac{\pi}{2} = \frac{2\pi}{3}$
 $\Rightarrow \sin^{-1}x = \frac{\pi}{3} \Rightarrow x = \frac{\sqrt{3}}{2}$

Hence, there is only one solution

5. c. $\frac{1}{\sqrt{1+x^2}}$, **Explanation**: $\cot^{-1}x = \theta \Rightarrow x = \cot \theta \Rightarrow \cot \theta = \frac{x}{1}$ $sin(cot^{-1}x) = \sin \theta = \frac{Perp.}{Hyp.} = \frac{1}{\sqrt{x^2+1}}$. 6. $\frac{2\pi}{5}$ 7. $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] - \{0\}$ 8. $\frac{-\pi}{10}$ 9. Let $\csc^{-1}(2) = y$ $\Rightarrow \csc y = 2$ $\Rightarrow \csc y = \cos ec \frac{\pi}{6}$ Since, the principal value branch of $\csc^{-1}(z)$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$. Therefore, principal value of $\csc^{-1}(2)$ is $\frac{\pi}{6}$.

10.
$$\sin^{-1}\left(\sin\frac{3\pi}{5}\right) = ?$$

$$\sin^{-1}\left(\sin\frac{3\pi}{5}\right) = \sin^{-1}\left[\sin\left(\pi - \frac{3\pi}{5}\right)\right]$$

$$= \sin^{-1}(\sin\frac{2\pi}{5})$$

$$[: : \sin^{-1}(\sin\theta)] = \theta$$

$$When $\theta \in \left[\frac{\pi}{2}, \frac{\pi}{2}\right] = \frac{2\pi}{5}$

$$11. \cos^{-1}\left(\cos\frac{13\pi}{6}\right)$$

$$= \cos^{-1}\left(\cos\frac{13\pi}{6}\right)$$

$$= \cos^{-1}\left[\cos\left(2\pi + \frac{\pi}{6}\right)\right]$$

$$= \cos^{-1}\left[\cos\left(2\pi + \frac{\pi}{6}\right)\right]$$

$$= \cos^{-1}\left(\cos\frac{\pi}{6}\right)$$

$$= \cos^{-1}\left(\sin\frac{\pi}{6}\right)$$

$$= \cos^{-1}\left(\cos\frac{\pi}{6}\right)$$

$$= \cos^{-1}\left(\sin\frac{\pi}{7}\right)$$

$$= \frac{\pi}{7}$$

$$= \tan^{-1}x = \sin^{-1}\frac{\pi}{\sqrt{1+x^{2}}}$$

$$= \tan^{-1}\left(\tan\frac{\pi}{3}\right) = \tan^{-1}\left(\tan^{-1}\left(\tan x\right) = x, x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

$$: \tan^{-1}\left(\tan\frac{\pi}{\pi}\right) \neq \frac{\pi}{4} \text{ as } \frac{\pi}{4} \notin \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

$$: \tan^{-1}\left(\tan\frac{\pi}{\pi}\right) \neq \frac{\pi}{4} \text{ as } \frac{\pi}{4} \notin \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

$$: \tan^{-1}\left(\tan\frac{\pi}{3}\right) = \tan^{-1}\left[\tan(\pi - \frac{\pi}{4}\right]\right]$$

$$= \tan^{-1}\left[-\tan\left(\frac{\pi}{4}\right)\right] = -\frac{\pi}{4}$$

$$15. We know that 1 + \sin x = \cos^{2}\frac{x}{2} + \sin^{2}\frac{x}{2} - 2\cos\frac{x}{2}\sin\frac{x}{2} = \left(\cos\frac{x}{2} + \sin\frac{x}{2}\right)^{2}$$

$$Again, 1 - \sin x = \cos^{2}\frac{x}{2} + \sin^{2}\frac{x}{2} - 2\cos\frac{x}{2}\sin\frac{x}{2}$$

$$= \left(\cos\frac{x}{2} - \sin\frac{x}{2}\right)^{2}$$$$

$$= \cot^{-1} \left[\frac{\left(\cos\frac{x}{2} + \sin\frac{x}{2}\right) + \left(\cos\frac{x}{2} - \sin\frac{x}{2}\right)}{\left(\cos\frac{x}{2} + \sin\frac{x}{2}\right) - \left(\cos\frac{x}{2} - \sin\frac{x}{2}\right)} \right] \\ = \cot^{-1} \left(\frac{2\cos\frac{x}{2}}{2\sin\frac{x}{2}}\right) \\ = \cot^{-1} \cot\frac{x}{2} = \frac{x}{2} \\ 16. \text{ Put } x = \cos 2\theta \\ \text{ L.H.S} = \tan^{-1} \left(\frac{\sqrt{1 + \cos 2\theta} - \sqrt{1 - \cos 2\theta}}{\sqrt{1 + \cos 2\theta + \sqrt{1 - \cos 2\theta}}} \right) \\ = \tan^{-1} \left(\frac{\sqrt{2\cos^{2}\theta} - \sqrt{2\sin^{2}\theta}}{\sqrt{2\cos^{2}\theta + \sqrt{2\sin^{2}\theta}}} \right) \\ = \tan^{-1} \left(\frac{\sqrt{2\cos^{2}\theta} - \sqrt{2\sin^{2}\theta}}{\sqrt{2\cos^{2}\theta + \sqrt{2\sin^{2}\theta}}} \right) \\ = \tan^{-1} \left(\frac{\cos\theta - \sin\theta}{\sqrt{2\cos^{2}\theta + \sqrt{2\sin^{2}\theta}}} \right) \\ = \tan^{-1} \left(\frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} \right) \\ = \tan^{-1} \left(\frac{1 - \tan\theta}{1 + \tan\theta} \right) \\ = \tan^{-1} \left(\frac{1 - \tan\theta}{1 + \tan\theta} \right) \\ = \tan^{-1} \left[\tan\left(\frac{\pi}{4} - \theta\right) \right] \\ = \frac{\pi}{4} - \theta \Rightarrow \frac{\pi}{4} - \frac{1}{2}\cos^{-1} \\ 17. \text{ We have } \cot^{17} + \cot^{1}8 + \cot^{-1}18 \\ = \tan^{-1} \frac{1}{7} + \tan^{-1}\frac{1}{8} + \tan^{-1}\frac{1}{18} \left(\text{since } \cot^{-1}x = \tan^{-1}\frac{1}{x}, \text{ if } x \\ = \tan^{-1} \left(\frac{\frac{1}{7} + \frac{1}{8}}{1 - \frac{1}{7} + \frac{1}{8}} \right) + \tan^{-1}\frac{1}{18} \left(\text{since } x, y = \frac{1}{7} \cdot \frac{1}{8} < 1 \right) \\ = \tan^{-1}\frac{3}{11} + \tan^{-1}\frac{1}{18} = \tan^{-1} \left(\frac{\frac{3}{11} + \frac{1}{18}}{1 - \frac{3}{11} \times \frac{1}{18}} \right) \text{ (since } x < 1) \\ = \tan^{-1}\frac{65}{195} = \tan^{-1}\frac{1}{3} = \cot^{-1}3 \\ 18. \text{ Put } \cos^{-1}x = \theta \Rightarrow x = \cos\theta \\ \cos^{-1}(\cos\theta) = 2\sin^{-1}\sqrt{\frac{1 - \cos\theta}{2}} = 2\cos^{-1}\sqrt{\frac{1 + \cos\theta}{2}}$$

$$\begin{aligned} \cos^{-1}(\cos\theta) &= 2\sin^{-1}\sqrt{\frac{2}{2}} = 2\cos^{-1}\sqrt{\frac{2}{2}} = 2\cos^{-1}\sqrt{\frac{2}{2}} \\ \theta &= 2\sin^{-1}\sqrt{\frac{2\sin^{2}\frac{\theta}{2}}{2}} = 2\cos^{-1}\sqrt{\frac{2\cos^{2}\frac{\theta}{2}}{2}} \\ \theta &= 2\sin^{-1}\left(\sin\frac{\theta}{2}\right) = 2\cos^{-1}\left(\cos\frac{\theta}{2}\right) \\ \theta &= 2.\frac{\theta}{2} = 2.\frac{\theta}{2} \\ \theta &= \theta = \theta \text{ Hence Proved.} \end{aligned}$$

 $> 0 \bigr)$