UPSEE - 2003

Physics

- 1. An electron and a proton have equal kinetic energies. They enter in a magnetic field perpendicular to B, then:
 - (a) both will follow a circular path with same
 - (b) both will follow a helical path
 - (c) both will follow a parabolic path
 - (d) all the statements are false

Direction (Ques. 3-4): A planet is revolving around the sun. Answer the questions 2 and 3 keeping in mind Kepler's laws:

2. The orbital velocity of the planet will be minimum at:

- (a) A
- (b) B
- (c) C
- (d) D
- 3. The correct option is:
 - (a) the time taken in travelling DAB is less than that for BCD
 - (b) the time taken in travelling DAB is greater than that for BCD
 - (c) the time taken in travelling CDA is less than that for ABC
 - (d) the time taken in travelling CDA is greater than that for ABC
- 4. The density of uranium is of the order of:

 - (a) 10^{20} kg/m^3 (b) 10^{17} kg/m^3
 - (c) 10^{14} kg/m^3
- (d) 10^{11} kg/m^3

Direction (Ques. 5-6): P-V curve is shown for a Carnot engine. Answer the questions 5 and 6 from the graph.

- 5. If the temperatures at B and C are T_1 and T_2 respectively, then it can be concluded:
 - (a) $T_1 = T_2$
 - (b) $T_1 > T_2$
 - (c) $T_1 < T_2$
 - (d) nothing can be said about T_1/T_2
- 6. The parts of the graph showing the adiabatic process are:
 - (a) AB and BC
- (b) AB and CD
- (c) AD and BC
- (d) BC and CD
- 7. The ratio of the wavelengths for $2 \rightarrow 1$ transition in Li2+, He+ and H is:
 - (a) 1:2:3
- (c) 1:4:1
- (d) 3:2:1
- 8. In a photoelectric effect experiment, the slope of the graph between the stopping potential and the incident frequency will be:
 - (a) 1
- (b) 0.5
- (c) 10^{-15}
- (d) 10^{-34}
- 9. A and B are two radioactive substances whose half-lives are 1 and 2 yr respectively. Initially 10 g of A and 1 g of B is taken. The time (approximately) after which we will have same quantity remaining is:
 - (a) 6.65 yr
- (b) 5 yr
- (c) 3.2 yr
- (d) 7 yr
- 10. The distance of a planet from the sun is 5 times the distance between the earth and the sun. The time period of the planet is:
 - (a) $6^{3/2}$ T vr
- (b) $5^{3/2} T \text{ vr}$
- (c) $5^{3/1} T \text{ vr}$
- (d) $5^{1/2}T$ vr

11. The correct option for getting X = 1 from the given circuit is:

- (a) A = B = C = 1
- (b) A = B = 1 and C = 0
- (c) A = C = 1 and B = 0
- (d) A = 0 and B = C = 1
- 12. The ratio of speed of sound in nitrogen and helium gas at 300 K is:
 - (a) $\sqrt{\frac{2}{7}}$

- 13. The current gain β for a transistor is 49 and the emitter current is 1 mA. The base current in µA is:
 - (a) 20
- (b) 40
- (c) 10
- (d) 5
- 14. The dimensions of electric potential are:
 - (a) $[ML^2T^{-2}Q^{-1}]$ (b) $[MLT^{-2}Q^{-1}]$

 - (c) $[ML^2T^{-1}O]$ (d) $[ML^2T^{-2}O]$
- 15. A photon and an electron have equal energy E. λ photon/λ electron is proportional to:
 - (a) \sqrt{E}
 - (b) 1/√E
 - (c) 1/E
 - (d) does not depend upon E
- 16. A gas mixture consists of 2 moles of oxygen and 4 moles of argon at temperature T. Neglecting all vibrational moles, the total internal energy of the system is:
 - (a) 4 RT
- (b) 15 RT
- (c) 9 RT
- (d) 11 RT
- 17. A small sphere carrying a charge q is hanging in between two parallel plates by a string of length L. Time period of pendulum is T_0 . When parallel plates are charged, the time period changes to T. The ratio T/T_0 is equal to:

(a)
$$\left(\frac{g + \frac{qE}{m}}{g}\right)^{1/2}$$

(b)
$$\left(\frac{g}{g + \frac{qE}{m}}\right)^{3/2}$$

(c)
$$\left(\frac{g}{g + \frac{qE}{m}}\right)^{1/2}$$
 (d) none of these

- 18. Two identical metal plates are given positive charges Q_1 and Q_2 ($< Q_1$) respectively. If they are now brought close together to form a parallel plate capacitor with capacitance C, the potential difference between them is:
 - (a) $\frac{Q_1 + Q_2}{2C}$ (b) $\frac{Q_1 + Q_2}{C}$

 - (c) $\frac{Q_1 Q_2}{C}$ (d) $\frac{Q_1 Q_2}{2C}$
- 19. A dancer is standing on a stool rotating about the vertical axis passing through its centre. She pulls her arms towards the body reducing her moment of inertia by factor of n. The new angular speed of turn table is proportional to:
 - (a) n
- (b) n^{-1}
- (c) n^0
- (d) n^2
- 20. Which of the following is a correct statement?
 - (a) β-rays are same as cathode rays
 - (b) Gamma rays are high energy electrons
 - (c) Alpha particles are singly ionised helium atoms
 - (d) Protons and neutrons have exactly the same mass
- 21. The half-life period of a radioactive element X is same as the mean-life time of another radioactive element Y. Initially both of them have the same number of atoms then:
 - (a) X and Y have the same decay rate initially
 - (b) X and Y have the same decay rate always
 - (c) Y will decay at a faster rate than X
 - (d) X will decay at a faster rate than Y
- 22. A coil of inductance 8.4 mH and resistance 6Ω is connected to a 12 V battery. Approximately how much time it takes to attain a current of 1 A ?
 - (a) 500 ms
- (b) 20 ms
- (c) 35 ms
- (d) 1 ms

23. A circular loop of radius R, carrying current I lies in xy-plane with its centre at origin. The total magnetic flux through xy-plane is:

(a) directly proportional to R

(b) directly proportional to I

(c) inversely proportional to I

(d) zero

24. A disc like reel with massless thread unrolls itself while falling vertically downwards the acceleration of its fall is :

(a) g

(b) g/2

(c) zero

(d) $\left(\frac{2}{3}\right)g$

25. In hydrogen spectrum, the wavelength of Hα line is 656 nm, whereas in the spectrum of a distant galaxy, Ha wavelength is 706 nm. Estimated speed of the galaxy with respect to earth is:

(a) 2×10^8 m/s (b) 2×10^7 m/s

(c) 2×10^6 m/s (d) 2×10^5 m/s

26. The work done in which of the following processes is equal to the internal energy of the system?

(a) Adiabatic process

(b) Isothermal process

(c) Isochoric process

(d) None of the above

27. The temperature of a metal block is increased from 27°C to 84°C. The rate of the radiated energy from the block will increase a approximately:

(a) 2 times

(b) 4 times

(c) 8 times

(d) 16 times

28. The equation of a wave is given as:

 $y = 0.07 \sin (12\pi x - 3000 \pi t)$

where x is in metre and t in second, then the correct statement is:

(a) $\lambda = 1/6 \text{ m}, \nu = 250 \text{ m/s}$

(b) a = 0.07 m, v = 300 m/s

(c) n = 1500, v = 200 m/s

(d) none of the above

29. The energy liberated on complete fission of 1kg of 92U235 is (Assume 200 MeV energy is liberated on fission of 1 nucleus):

(a) 8.2×10^{10} J (b) 8.2×10^9 J

(c) 8.2×10^{13} J (d) 8.2×10^{16} J

30. In the circuit, if the forward voltage drop for the diode is 0.5 V, the current will be:

(a) 3.4 mA (c) 2.5 mA (b) 2 mA

(d) 3 mA

31. A 2 kg mass starts from rest on an inclined smooth surface with inclination 30° and length 2 m. How much will it travel before coming to rest on a frictional surface with frictional coefficient 0.25?

(a) 4 m

(b) 6 m

(c) 8 m

(d) 2 m

32. A gas is filled in a closed container and its molecules are moving in horizontal direction with uniform acceleration. Neglecting acceleration due to gravity, the pressure inside the container is:

(a) uniform everywhere

(b) less in the front

(c) less at the back

(d) less at the top

33. A particle free to move along the x-axis has potential energy given as

 $U(x) = k[1 - \exp(-x^2)]$ for $-\infty \le +\infty$,

where k is a positive constant of appropriate dimensions. Then:

- (a) at points away from origin, the particle is in equilibrium
- (b) for any finite non-zero value of x, there is a force directed away from the origin
- (c) Its total mechanical energy is k/2 and it is equal to its kinetic energy at origin
- (d) at x = 0, the motion of the particle is simple harmonic
- 34. A charged particle is at rest in the region where magnetic field and electric field are parallel. The particle will move in a:

(a) straight line (b) circle

(c) ellipse

(d) none of these

35. The velocity of the molecules of a gas at temperature 120 K is v. At what temperature will the velocity be 2 v?

36. The gate shown in figure is:

- (a) NOR gate
- (b) OR gate
- (c) AND gate
- (d) XOR gate
- 37. An electric dipole is situated in an electric field of uniform intensity E whose dipole moment is p and moment of inertia is I. If the dipole is displaced slightly from the equilibrium position, then the angular frequency of its
 - (a) $\left(\frac{pE}{I}\right)^{1/2}$ (b) $\left(\frac{pE}{I}\right)^{3/2}$
- - (c) $\left(\frac{I}{pE}\right)^{1/2}$ (d) $\left(\frac{p}{IE}\right)^{1/2}$
- 38. If in a stationary lift, a man is standing with a bucket full of water, having a hole at its bottom, the rate of flow of water through this hole is R_0 . If the lift starts to move up and down with same acceleration and then that rates of flow of water are R_u and R_d then:
 - (a) $R_0 > R_u > R_d$ (b) $R_u > R_0 > R_d$ (c) $R_d > R_0 > R_u$ (d) $R_u > R_d > R_0$
- 39. A ray of light is incident on a plane mirror at an angle 57°. The resultant polarised light vibrates in a plane which makes an angle with the reflecting surface:
 - (a) 0°
- (b) 90°
- (c) 57°
- (d) 33°
- 40. At critical point:
 - (a) latent heat becomes infinite
 - (b) liquid state is not possible
 - (c) gaseous state is not possible
 - (d) none of the above
- 41. A person used force (F), shown in figure move a load with constant velocity on give surface.

Identify the correct surface profile:

- 42. The work function of a substance is 4.0 eV. The wavelength that can maximum substance is from the photoelectrons approximately:
 - (a) 540 nm
- (b) 400 nm
- (c) 310 nm
- (d) 220 nm
- 43. At what temperature the molecule of nitrogen will have same rms velocity as the molecule of oxygen at 127°C?
 - (a) 457°C
- (b) 273°C
- (c) 350°C
- (d) 77°C
- 44. Two identical circular loops of metal wire are lying on a table. Loop A carries a current which increases with time. In response, the loop B:
 - (a) is attracted by the loop A
 - (b) is repelled by the loop A
 - (c) remains stationary
 - (d) none of the above
- 45. A rod AB of mass M, length L is lying on a horizontal frictionless surface. A particle of mass m travelling along the surface hits the end A of the rod with a velocity v_0 in a direction perpendicular to AB. The collision is completely elastic. After the collision, the particle comes to rest. The ratio $\frac{m}{M}$ is:

- 46. The work done in which of the following processes is zero?
 - (a) Isothermal process
 - (b) Adiabatic process
 - (c) Isochoric process (d) None of the above
- 47. Two thin and parallel wires are placed at a distance b and i current is flowing through each of the wires. The magnitude of the force exerted on the unit length of wire due to
 - another wire will be: (a) $\mu_0 i^2/b^2$
 - (b) $\mu_0 i^2 / 2\pi b$
 - (c) $\mu_0 i/2\pi b$
- (d) $\mu_0 i / 2\pi b^2$

- 48. The temperature of a gas is -68°C. At what temperature will the average kinetic energy of its molecules be twice that of at -68°C?
 - (a) 137°C
- (b) 127°C
- (c) 100°C
- (d) 105°C
- 49. A metallic loop is placed in a magnetic field. If a current is passed through it, then:
 - (a) the ring will feel a force of attraction
 - (b) the ring will feel a force of repulsion
 - (c) will move to and fro about its centre of gravity

- (d) none of the above
- 50. For the circuit shown in figure, which of the following statements is true?

$$V_2 = 30 \text{ V}$$
 $V_2 = 20 \text{ V}$
 $S_1 + S_2 + S_3 + S_3$
 $C_1 = 2pF$ $C_2 = 3pF$

- (a) With S_1 closed, $V_1 = 15V$, $V_2 = 20V$
- (b) With S_3 closed, $V_1 = V_2 = 25 \text{ V}$
- (c) With S_1 and S_2 closed $V_1 = V_2 = 0$
- (d) With S_1 and S_3 closed, $V_1 = 30V$, $V_2 = 20V$

Chemistry

- 1. The hybridization of carbon atom in benzene

 - (a) sp (b) sp^2
 - (c) sp^3
- (d) dsp²
- 2. Compound which gives acetone on ozonolysis:
 - (a) $CH_3 CH = CH CH_3$
 - (b) $(CH_3)_2C = C(CH_3)_2$
 - (c) $C_6H_5CH = CH_2$
 - (d) $CH_3CH = CH_2$
- 3. p-chloro aniline and anilinium hydrogen chloride can be distinguished by:
 - (a) Sandmeyer reaction
 - (b) Carbyl amine reaction
 - (c) Hinsberg's reaction
 - (d) AgNO₃
- 4. In alumino thermic process, aluminium acts
 - (a) oxidant (b) flux
- - (c) a reducing agent (d) a solder
- 5. Mn²⁺can be converted into Mn⁷⁺ by reacting with:
 - (a) SO2
- (b) Cl₂
- (c) PbO₂ (d) SnCl₂
- 6. A compound is treated with iodine and an alkali. It gives a yellow ppt. The compound is?
 - (a) propionaldehyde (b) benzophenone

 - (c) methyl acetate (d) acetophenone
- 7. Phenol is less acidic than:
 - (a) acetic acid
- (b) p-methoxy phenol
- (c) acetylene
- (d) ethanol

- 8. Which reaction is not affected by change in pressure?
 - (a) $H_2 + I_2 \rightleftharpoons 2HI$
 - (b) 2C + O₂ = 2CO
 - (c) $N_2 + 3H_2 \Longrightarrow 2NH_3$
 - (d) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$
- 9. Which of the following does not show Cannizaro reaction?
 - (a) CH₃CHO
- (b) НСНО
- (c) C₆H₅CHO
- (d) (CH₃)₃C · CHO
- 10. Oxidation state exhibited by sulphur:
 - (a) + 6
- (b) + 4
- (c) 0
- (d) all of these
- 11. Electronic configuration of chromium is given
 - (a) [Ar] $3d^4$, $4s^2$
- (b) [Ar] 3d⁵, 4s¹
- (c) [Ar] $3d^3$, $4s^2$
- (d) none of these
- 12. Benzene can react with:
 - (a) bromine water
- (b) HNO₃
 - (c) H₂O
- (d) CH₃OH
- 13. Hydrogen bonding is maximum in:
 - (a) C_2H_5OH

- (b) CH₃OCH₃
- (c) $(CH_3)_2C = O$ (d) CH_3CHO
- 14. Which of the following is non-metallic?
 - (a) B
- (b) Be
- (c) Mg
- (d) Al
- 15. The compound not soluble in acetic acid is:
 - (a) CaCO₃
- (b) CaO
- (c) CaC2O4
- (d) Ca(OH)2

16.	Rate constant for a	reaction is 10^{-3} s ⁻¹ . Time	26.	On adding a solute	to a solvent having vapour
	to leave 25% reaction	n is :		pressure 0.00 aun,	vapour pressure reduces
	(a) 693 s	(b) 1386 s		0.00 aun.iviole nac	(b) 0.75
-	(c) 6930 s	(d) 2029 s		(a) 0.25 (c) 0.50	(d) 0.33
17.	A compound does no		27	Heavy water is:	
		vdrazine, compound is:	27.	(a) water containing	ng Fe, Cr, Mn
	(a) acetone (c) CH ₃ OH			(b) water at 0°C	
18.	The state of the s	(d) CH ₃ CH ₂ COCH ₃		(c) D ₂ O	the design of the second
	A meta directing fundamental (a) —COOH	(b) —OH		(d) water obtained	
		(d) —Br	28.	Volume of water n	eeded to mix with 10 ml
19.	Which of the following			10 N HNO ₃ to get (
	(a) O ₂ ⁺	(b) CN ⁻			(b) 990 mL (d) 10 mL
	(c) CO	(d) N ₂	20		maximum depression in
20.	1, 2-dibromo cyclohe	exane on dehydrogenation	47.	freezing point when	concentration is 0.1 M?
	gives :	Walter Company		(a) NaCl	(b) Urea
100	(3)	(h)		(c) Glucose	(d) K ₂ SO ₄
	(a)	(b)	30.		acid on hydrolysis after
				reacting with HCN?	
				(c) C ₆ H ₅ CHO	(b) CH ₃ CHO
	(c)	(d) none of these	31.		heating with a compound
21	Correct increasing	andon of four last at			product, compound is:
	potential is:	order of first ionization		(a) C ₂ H ₅ CN	(b) C ₂ H ₅ NC
	(a) Na < Mg > Al < 3	Si		(c) C ₂ H ₅ OH	(d) C ₂ H ₅ NH ₂
	(b) Na < Mg < Al < 3		32.		cules by UV light, we get:
	(c) Na > Mg > Al > 3 (d) Na < Mg < Al > 3			(a) Cl (c) Cl ⁻	(b) Cl ⁺
22.		ethane and ethane are	33.	Correct statement ab	(d) all of these
	respectively 320 and	1 560 cal, then the bond		(a) conjugated doub	ole bonds are present
	energy of C—C bond	l is:		(b) reacts with HBr	are prosent
	(a) 60 cal	(b) 80 cal		(c) forms polymer(d) all of the above	
22	(c) 40 cal	(d) 120 cal	34.		ation round single bond of
		ins 10.5 g carbon and 1g has 1 L volume at 1 atm		carbon-carbon is:	The state of the s
	and 127°C, hydrocar			(a) Enantiomerism	The state of the s
		(b) C ₇ H ₈		(b) Position isomeris(c) Conformation	m
		(d) none of these		(d) Diastereo isomer	ism
		lectron pairs are there in	35.	Which pair does not s	how hydrogen isotopes?
	white phosphorus?	(b) 12		(a) Ortho and para h	vdrogen
		(d) 8		(b) Protium and deu (c) Deuterium and to	terium
	-,	ropylene in presence of		(d) Iritium and prot	ium
b. h	enzoyl peroxide, follo	ows:	36.	Which pair cannot ex	tist together in solution?
(2) Markownikoff's ru	ile		(a) NaHCO ₃ and Na	OH
a) Baever's rule			(b) NaHCO ₃ and Na (c) NaHCO ₃ and Na	-CO
_ (c) carbanion mechan	ism		(d) NaCl and Na ₂ CO	2.03
(d) anti-Markownikoff	Stule			

39

40

42.

2.

3'

- (d) NaCl and Na2CO3
- 37. When an electron is removed from an atom, its energy:
 - (a) increases
 - (b) decreases
 - (c) remains the same
 - (d) none of the above
- 38. In a reaction, when the concentration of reactant is increased two times, the increase in rate of reaction was four times. Order of reaction is:
 - (a) zero
- (b) 1
- (c) 2
- (d) 3
- 39. Strongest base is:
 - (a) C₆H₅NH₂
 - (b) p-NO2-C6H4NH2
 - (c) m-NO2-C6H4NH2
 - (d) C₆H₅CH₂NH₂
- 40. The value of one amu is :
 - (a) 1.66×10^{-24} g
- (b) 6.023×10^{23} g
- (c) 1.4×10^{-21} g (d) 4.8×10^{-24} g
- 41. Which of the following has minimum melting point?
 - (a) CsF
- (b) HCI
- (c) HF
- (d) LiF
- 42. Which of the following is related with both wave nature and particle nature?
 - (a) Interference
- (b) $E = mc^2$
- (c) Diffraction
- (d) E = hv

- 43. Nirogen is obtained when NaNO2 react with :
 - (a) NH₄Cl
- (b) NH₄NO₃
- (d) NH₄OH (c) $(NH_4)_2CO_3$
- (a) 3-7 cal
- (b) 30-70 cal
- 44. Hydrogen bond energy is equal to:
 - (c) 3-10 kcal
- (d) 30-70 kcal
- 45. Strongest hydrogen bond is present in:
 - (a) F—H.....O
- (b) S-H.....O
- (c) O—H.....S
- (d) F—H.....F
- 46. Which of the following has dipole moment?
 - (a) CO₂
- (b) p-dichlorobenzene
- (c) NH₃
- (d) CH₄
- 47. Which of the following pK_a values, represent the strongest acid?
 - (a) 10⁻⁴
- (b) 10^{-8}
- (c) 10^{-5}
- (d) 10^{-2}
- 48. Which group of the periodic table contains coinage metal?
 - (a) IIA
- (b) IB
- (c) IA
- (d) None of these
- 49. Which of the following has maximum bond energy?
 - (a) Cl₂
- (b) F₂
- (c) Br₂
- (d) I2
- 50. For a process to be spontaneous, the most favourable condition is:

 - (a) $\Delta H > 0$, $\Delta S > 0$ (b) $\Delta H < 0$, $\Delta S > 0$

 - (c) $\Delta H < 0$, $\Delta S < 0$ (d) $\Delta H > 0$, $\Delta S < 0$

Mathematics

- 1. $x^2 + \frac{1}{1+x^2}$ attains minimum value at :
 - (a) x = 0
- (b) x = 4
- (c) x = 1
- (d) x = 3
- 2. If \vec{a} , \vec{b} , \vec{c} are the non-coplanar vectors, then
 - the value of $\frac{\overrightarrow{\mathbf{a}} \cdot (\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})}{(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}) \cdot \overrightarrow{\mathbf{b}}} + \frac{\overrightarrow{\mathbf{b}} \cdot (\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}})}{\overrightarrow{\mathbf{c}} \cdot (\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})}$ is:
 - (a) 1
- (b) 2
- (c) 0
- (d) none of these
- 3. If x 2y = 4, the minimum value of xy is:
 - (a) -2
- (b) 0
- (c) 0
- (d) -3

- **4.** If z = x + iy and $\left| \frac{1 iz}{z i} \right| = 1$, the locus of z is :
 - (a) x-axis
 - (b) y-axis
 - (c) circle with unity radius
 - (d) none of the above
- 5. The vertex of an equilateral triangle is (2, -1)and the equation of its base is x + 2y = 1, the length of its sides is:

- 6. The resultant of two forces P and Q is R. If the direction of P is reversed keeping the direction

Q same,	the resultant	t remains	unaltered.	The
angle be	tween P and	Q is:		
(2) 000		1 > 600		

(b) 60°

(c) 45°

(d) 30°

- 7. The distance s (in cm) travelled by a particle in t seconds is given by, $s = t^3 + 2t^2 + t$. The speed of the particle after 1 s will be:

(a) 2 cm/s (b) 8 cm/s

(c) 6 cm/s (d) none of these

8. The roots of $|x-2|^2 + |x'-2| - 6 = 0$ are:

(a) 4, 2 (b) 0, 4 (c) -1, 3 (d) 5, 1

- 9. The height of a tower is 7848 cm. A particle is thrown from the top of the tower with the horizontal velocity of 1784 cm/s. The time taken by the particle to reach the ground is $(g = 981 \text{ cm/s}^2)$:
 - (a) $\sqrt{8}$ s (a) √8 s (b) 2 s (c) 4 s (d) 8 s

10. The directrix of the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$ is:

(a) $y = \frac{6}{\sqrt{13}}$ (b) $x = \frac{6}{\sqrt{13}}$

(c) $y = \frac{9}{\sqrt{13}}$ (d) $x = \frac{9}{\sqrt{13}}$

11. The value of

$$\cos^{-1}\left(\cos\frac{5\pi}{3}\right) + \sin^{-1}\left(\cos\frac{5\pi}{3}\right) \text{is} :$$

(c) $\frac{10\pi}{5}$ - (b) 0 (c) $\frac{\pi^{4}}{2}$ (d) $\frac{5\pi}{3}$

12. If
$$f(x) = \log\left(\frac{1+x}{1-x}\right)$$
, then $f\left(\frac{2x}{1+x^2}\right)$ will be

equal to:

(a) $2f(x^2)$

(b) $f(x^2)$

(c) 2f(2x) (d) 2f(x)

13. If
$$(1 + x - 2x^2)^6 = 1 + a_1x + a_2x^2 + \dots +$$

 $a_{12} x^{12}$ then the value of $a_2 + a_4 + ... + a_{12}$, is:

(a) 31

(b) 32

(c) 64

(d) 1024

14.
$$2x^3 - 6x + 5$$
 is an increasing function, if:

(a) 0 < x < 1 (b) -1 < x < 1

(c) x < -1 or x > 1 (d) $-1 < x < -\frac{1}{2}$

15. Two trains are 2 km apart. Their lengths are 200 m and 300 m. They are approaching towards each other with speed of 20 m/s and 30 m/s respectively. They will cross each other after:

(a) 150 s

(b) 100 s

(c) 50 s (d) $\frac{25}{3}$ s

16. $\frac{d^3y}{dx^3} + 2\left[1 + \frac{d^2y}{dx^2}\right] = 1$, has degree and order

(a) 3, 1

(b) 3, 2

(c) 1, 3

(b) 3, 2 (d) 2, 3

17. The value of $I = \int_0^1 x \left| x - \frac{1}{2} \right| dx$ is :

(a) $\frac{1}{4}$ (b) $\frac{1}{2}$

(d) none of these

25.

26.

27.

18. If $A = \begin{bmatrix} 4 & 2 \\ 3 & 4 \end{bmatrix}$, | adj A | is equal to :

(a) 6

(b) 16

(d) none of these

19. $\vec{a} \cdot (\vec{b} + \vec{c}) \times (\vec{a} + \vec{b} + \vec{c})$ is equal to:

(a) $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$ (b) $3[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$

(d) $2[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}]$

20. A block weighing w, is supported on an inclined surface with the help of a horizontal force P. The same block can be supported with the help of another force Q acting parallel to the inclined surface, then the value of $\frac{1}{n^2} + \frac{1}{w^2}$ is:

(a) w sin α

(b) 1

(c) $\frac{1}{Q}$

21. $\int_0^2 |x-1| dx$ is equal to :

(a) 0 (b) $\frac{1}{2}$

(c) 1

22. From a pack of cards two are accidently dropped. Probability that they are of opposite shade is:

(b) $\frac{1}{52 \times 51}$

(d) none of these

Q same, the resultant remains unaltered. The angle between P and Q is:

- (a) 90°
- (b) 60°
- (c) 45°
- (d) 30°

7. The distance s (in cm) travelled by a particle in t seconds is given by, $s = t^3 + 2t^2 + t$. The speed of the particle after 1 s will be:

- (a) 2 cm/s
- (b) 8 cm/s
- (c) 6 cm/s (d) none of these
- 8. The roots of $|x-2|^2 + |x'-2| 6 = 0$ are:

- (a) 4, 2 (b) 0, 4 (c) -1, 3 (d) 5, 1
- 9. The height of a tower is 7848 cm. A particle is thrown from the top of the tower with the horizontal velocity of 1784 cm/s. The time taken by the particle to reach the ground is $(g = 981 \text{ cm/s}^2)$:
 - (a) $\sqrt{8}$ s
- (b) 2 s
- (d) 8 s
- 10. The directrix of the hyperbola $\frac{x^2}{9} \frac{y^2}{4} = 1$ is:

 - (a) $y = \frac{6}{\sqrt{13}}$ (b) $x = \frac{6}{\sqrt{13}}$
 - (c) $y = \frac{9}{\sqrt{13}}$ (d) $x = \frac{9}{\sqrt{13}}$
- 11. The value of

$$\cos^{-1}\left(\cos\frac{5\pi}{3}\right) + \sin^{-1}\left(\cos\frac{5\pi}{3}\right)$$
 is:

- (c) $\frac{10\pi}{5}$ (d) $\frac{5\pi}{3}$

12. If
$$f(x) = \log\left(\frac{1+x}{1-x}\right)$$
, then $f\left(\frac{2x}{1+x^2}\right)$ will be

equal to:

- (a) $2f(x^2)$
- (b) $f(x^2)$
- (c) 2f(2x)
- (d) 2f(x)

13. If
$$(1 + x - 2x^2)^6 = 1 + a_1x + a_2x^2 + \dots +$$

 $a_{12} x^{12}$ then the value of $a_2 + a_4 + ... + a_{12}$, is:

- (a) 31
- (c) 64
- (d) 1024

14.
$$2x^3 - 6x + 5$$
 is an increasing function, if:

- (a) 0 < x < 1 (b) -1 < x < 1

(c)
$$x < -1$$
 or $x > 1$ (d) $-1 < x < -\frac{1}{2}$

- 15. Two trains are 2 km apart. Their lengths are 200 m and 300 m. They are approaching towards each other with speed of 20 m/s and 30 m/s respectively. They will cross each other
 - (a) 150 s
- (b) 100 s

the

(a)

(c)

If si

(a)

(c)

BC

sin

(c)

(a)

(c)

tan

equa (a)

(c)

(a)

(c)

f(x)

29. If f(

30. The 1

area

28. The

27. Let .

26. If | 8

25. In a

- (c) 50 s
- (d) $\frac{25}{3}$ s
- 16. $\frac{d^3y}{dx^3} + 2\left[1 + \frac{d^2y}{dx^2}\right] = 1$, has degree and order
 - (a) 3, 1
- (c) 1, 3
- (d) 2, 3

17. The value of
$$I = \int_0^1 x \left| x - \frac{1}{2} \right| dx$$
 is:

- (d) none of these

18. If
$$A = \begin{bmatrix} 4 & 2 \\ 3 & 4 \end{bmatrix}$$
, | adj A | is equal to :

- (c) 10
- (d) none of these

19.
$$\vec{a} \cdot (\vec{b} + \vec{c}) \times (\vec{a} + \vec{b} + \vec{c})$$
 is equal to:

- (a) $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$
 - (b) $3[\vec{a}\vec{b}\vec{c}]$
- (c) 0
- $(d) \ 2[\vec{a} \ \vec{b} \ \vec{c}]$
- 20. A block weighing w, is supported on an inclined surface with the help of a horizontal force P. The same block can be supported with the help of another force Q acting parallel to the inclined surface, then the value of $\frac{1}{p^2} + \frac{1}{w^2}$ is:
 - (a) w sin a

- (d) $\frac{1}{Q^2}$

21.
$$\int_0^2 |x-1| dx$$
 is equal to :

- (a) 0
- (c) 1
- (d) 2
- 22. From a pack of cards two are accidently dropped. Probability that they are of opposite shade is:
 - (a) $\frac{13}{51}$
- (b) $\frac{1}{52 \times 51}$
- (c) $\frac{26}{51}$
- (d) none of these

(a) 87

(b) 85

(c) 81 __

- (d) none of these
- **24.** If $\sin x + \cos x = \frac{1}{5}$, then $\tan 2x$ is:

(b) $\frac{24}{7}$

(c) $\frac{7}{25}$ (d) $\frac{25}{7}$

- **25.** In a \triangle ABC, $\angle B = \frac{\pi}{3}$ and $\angle C = \frac{\pi}{4}$. If D divides BC internally in ratio 1:3, then the value of $\frac{\sin \angle BAD}{\sin \angle CAD} \text{ is :}$
 - (a) $\frac{1}{\sqrt{3}}$ (b) $\frac{1}{\sqrt{6}}$ (c) $\sqrt{\frac{2}{3}}$ (d) $\frac{1}{3}$

- 26. If $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}| = |\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}|$, then the angle between $\overrightarrow{\mathbf{a}}$ and b is:

(b) $\frac{2\pi}{3}$

27. Let A, B and C are the angles of a triangle and $\tan\left(\frac{A}{2}\right) = \frac{1}{3}$, $\tan\left(\frac{B}{2}\right) = \frac{2}{3}$. Then, $\tan\left(\frac{C}{2}\right)$ is

(a) $\frac{1}{3}$ (b) $\frac{2}{3}$ (c) $\frac{2}{9}$ (d) $\frac{7}{9}$ 28. The value of $\lim_{x \to 1} (1-x) \tan\left(\frac{\pi}{2}x\right)$:

(a) $\frac{3\pi}{4}$ (b) $\frac{2\pi}{3}$

29. If $f(x) = \left(\frac{1}{x}\right)^x$, then the maximum value of f(x) is:

(b) $(e)^{1/e}$

- (d) none of these
- 30. The volume of the solid formed by rotating the area enclosed between the curve $y = x^2$ and

the line y = 1 about y = 1 is (in cubic unit):

(c) $\frac{8\pi}{3}$ (d) $\frac{7\pi}{5}$ 31. $\int_{8}^{15} \frac{dx}{(x-3)\sqrt{x+1}}$ is equal to :

(a) $\frac{1}{2} \log \frac{5}{3}$ (b) $\frac{1}{3} \log \frac{5}{3}$ (c) $\frac{1}{5} \log \frac{3}{5}$ (d) $\frac{1}{2} \log \frac{3}{5}$

32. Area of the square formed by |x| + |y| = 1 (in square unit) is:

(a) 0

(c) 2 (d) 4

33. If x = 3 + i, then $x^3 - 3x^2 - 8x + 15$ is equal

(a) 45

(b) -15

(c) 10

(d) 6

- **34.** The function $f(x) = \log(x + \sqrt{x^2 + 1})$ is :
 - (a) even function
 - (b) odd function
 - (c) neither even nor odd
 - (d) periodic function
- 35. The perpendicular PL, PM are drawn from any point P on the rectangular hyperbola xy = 25 to the asymptotes. The locus of the mid point of OP is curve with eccentricity:
 - (a) an ellipse with $e = \sqrt{2}$
 - (b) hyperbola with $e = \sqrt{2}$
 - (c) parabola with $e = \frac{1}{\sqrt{2}}$
 - (d) none of the above
- 36. If $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$ and $\vec{a} + \vec{b} + \vec{c} = 0$, then the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ is: (b) -1

(c) $-\frac{3}{2}$

(d) 3

37. If $x = \log_b a$, $y = \log_c b$, $z = \log_a c$, then xyz is:

(a) 0

(b) 1

(c) 3

- (d) none of these
- 38. The value of the determinant 1 $\cos(\alpha - \beta) \cos \alpha$ $\cos (\alpha - \beta)$ 1 cos β is: cos a cos β

(a) 0 (b) 1 (c) $\alpha^2 - \beta^2$ (d) $\alpha^2 + \beta^2$

39. If P(A) = P(B) = x and

 $P(A \cap B) = P(A' \cap B') = \frac{1}{3}$, then x is equal to:

(a) $\frac{1}{2}$	(b) $\frac{1}{4}$
(c) $\frac{1}{3}$	(d) $\frac{1}{6}$

40. If p and q are the roots of the equation $x^2 + px + q = 0$, then:

(a)
$$p = 1$$
 or 0

(b)
$$p = -2 \text{ or } 0$$

(c)
$$p = -2$$

(d)
$$p = 1$$

41. If a dice is thrown twice, the probability of occurrence of 4 at least once is:

(a)
$$\frac{11}{36}$$

(b)
$$\frac{35}{36}$$

(c)
$$\frac{7}{12}$$

42. The value of $\int_0^8 |x - 5| dx$ is :

43. The value of $\int_0^{\pi} |\sin^3 \theta| d\theta$ is:

(c)
$$\frac{4}{3}$$

$$(d) \frac{3}{8}$$

44. A ball weighing 2 kg and speed 6 m/s collides with another ball of 4 kg moving in opposite direction with speed of 3 m/s. They combine after the collision. The speed of this combined mass (in m/s) is:

45. If α , β , γ are the roots of the equation $x^3 + 4x + 1 = 0$, then

$$(\alpha + \beta)^{-1} + (\beta + \gamma)^{-1} + (\gamma + \alpha)^{-1}$$
 is equal to :

46. If
$$\cos \theta + \cos 2\theta + \cos 3\theta = 0$$
, the general value of θ is:

(a)
$$\theta = 2m\pi \pm \frac{\pi}{4}$$

(a)
$$\theta = m\pi + (-1)^n \frac{2\pi}{3}$$

(b) $\theta = m\pi + (-1)^n \frac{\pi}{3}$
(c) $\theta = m\pi + (-1)^n \frac{\pi}{3}$

(c)
$$\theta = m\pi + (-1)^n \frac{\pi}{3}$$

(d)
$$\theta = 2m\pi \pm \frac{\pi}{3}$$

47. Three like parallel forces P, Q and R are acting on the vertices of a \(\Delta ABC \) whose resultant passed through its centroid, then:

(a)
$$\frac{P}{b} = \frac{Q}{a} = \frac{R}{c}$$

passed through to
$$(a) \frac{P}{b} = \frac{Q}{a} = \frac{R}{c}$$

$$(b) \frac{P}{\tan A} = \frac{Q}{\tan B} = \frac{R}{\tan C}$$

(c)
$$P = Q = R$$

48. A person observes the angle of elevation of a building as 30°. The person proceeds towards the building with a speed of $25(\sqrt{3}-1)$ m/h After two hours, he observes the angle of elevation as 45°. The height of the building (in m) is:

(a)
$$50(\sqrt{3}-1)$$

(a)
$$50(\sqrt{3}-1)$$
 (b) $50(\sqrt{3}+1)$

21.

31.

41.

1.

11.

21.

31.

41. (

MA MA

1. (

11. (

21. (0

31. (a

41. (a

49. The value of $\lim_{x \to \infty} \left(\frac{x+3}{x+1} \right)^{x+2}$ is:

(c)
$$e^2$$

(d)
$$e^4$$

50. If
$$A + B + C = \pi$$
, then

$$\cos 2A + \cos 2B + \cos 2C$$

PH	IYSIC	S																	
	(d)		(c)		(b)	4.	(a)	5.	(c)	6.	(c)	7.	(b)	8.	(c)	9.	(a)	10.	(b)
11.		12.		13.	(a)	14.	(a)	15.	(b)	16.	(d)	17.	(c)	18.	(d)	19.	(a)	20.	(a)
21.		22.		23.	(d)	24.	(d)	25.	(b)	26.	(a)	27.	(a)	28.	(a)	29.	(c)	30.	(a)
31.	(a)	32.	(a)	33.	(d)		(a)		(c)		(b)	37.	(c)	38.	(b)	39.	(d)	40.	(b)
41.	(a)	42.	(c)	43.	(d)		(a)		(a)		(c)		(b)	48.	(a)	49.	(d)	50.	(b)
→ Cl	HEMI	STRY								313						V.			
1.	(b)	2.	(b)	3.	(d)	4.	(c)	5.	(c)	6.	(d)	7.	(a)	8.	(a)	9.	(a)	10.	(d)
11.	(b)	12.	(b)	13.	(a)	14.		15.	1000077	16.	5 0 0 0 0	17.		18.	(a)	19.	(a)	20.	(b)
21.	(a)	22.	(b)	23.			(a)	25.		26.	(a)	27.		28.	(b)	29.	(d)	30.	(b)
31.	(b)	32.	(a)	33.		34.		35.	2504400	36.	(c)	37.	100000	38.	(c)	39.	(d)	40.	(a)
41.	(b)	42.	(d)		(d)		(c)	45.		46.		47.	100000000	48.	(b)	49.	(a)	50.	(b)
M	ATHI	EMAT	ics											To Arrive					
1.	(a)	2.	(c)	3.	(a)	4.	(a)	5.	(a)	6.	(a)	7.	(b)	8.	(b)	9.	(c)	10.	(d)
11.	(c)	12.	(d)	13.	(a)	14.	(c)	15.	(c)	16.	(c)	17.	(c)	18.	(c)	19.	(c)	20.	(d)
21.	(c)	22.	(c)	23.	(a)	24.	(b)	25.	(b)	26.	(c)	27.	(d)	28.	(c)	29.	(b)	30.	20.74
31.	10000	32.	200	33.	(b)		(b)		(b)		(c)	37.		38.	(a)	39.	(a)		(a)
41.		42.		43.	(c)	44.	(a)	45.	(c)	46.	(a)	47.			(c)	49.	(c)	50.	

lg It

a ds h. of