CBSE Test Paper 05 CH-05 Complex & Quadratic

- 1. If ω is a cube root of unity , then the linear factors of x^3+y^3 in complex numbers are
- a. $(x + y) (x + y\omega) (x + y\omega^2)$ b. $(x - y) (x + y\omega) (x + y\omega^2)$ c. $(x + y) (x - y\omega) (x - y\omega^2)$ d. $(x + y) (x + y\omega) (x - y\omega^2)$ 2. If (x + iy) (3 - 4i) = (5 + 12i), then $\sqrt{x^2 + y^2} =$ a. 16

 - b. 13/5
 - c. 65
 - d. 5/13
- 3. Multiplicative inverse of the non zero complex number x + iy ($x,y\in R,$)
 - a. none of these

b.
$$\frac{x}{x+y} - \frac{y}{x+y}i$$

c. $\frac{x}{x^2+y^2} - \frac{y}{x^2+y^2}i$
d. $-\frac{x}{x^2+y^2} + \frac{y}{x^2+y^2}i$
4. The value of $(-1 + \sqrt{-3})^2 + (-1 - \sqrt{-3})^2$ is
a. 8
b. -4
c. -2
d. 4

- 5. The value of $\left(\frac{1+\omega}{\omega^2}\right)^3$ is a. 1
 - b. -1
 - c. none of these
 - d. 0
- 6. Fill in the blanks:

The unique value of heta such that $-\pi$ < $heta \leq \pi$ is called the _____ value fo the

argument.

7. Fill in the blanks:

The value of $\sqrt{-25}$ + $3\sqrt{-4}$ + $2\sqrt{-9}$ is _____.

- 8. If |z| = 1, then find the value of $\frac{1+z}{1+\overline{z}}$
- 9. Find the sum of the complex number (5 + i3), (- 4 i).
- 10. Find the multiplicative inverse of the complex numbers -i
- 11. If z_1 and z_2 are complex numbers, then prove that Re ($z_1 z_2$) = Re (Z_1) Re (z_2) Im (z_1) Im (z_2).
- 12. Solve $\sqrt{2} x^2 + x + \sqrt{2} = 0$.
- 13. If $z_1 = 3 + 5i$ and $z_2 = 2 3i$, then verify that $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$.
- 14. If z_1 and z_2 are two complex numbers such that $|z_1| = |z_2|$ and $\arg(z_1) + \arg(z_2) = \pi$, then prove that $z_2 = \overline{-z_1}$
- 15. If Z_1 is a complex number other than -1 such that $|z_1| = 1$ and $z_2 = \frac{z_1 1}{z_1 + 1}$, then show that the real parts of z_2 is zero.

CBSE Test Paper 05 CH-05 Complex & Quadratic

Solution

1. (a) $(x+y)\left(x+y\omega
ight)\left(x+y\omega^{2}
ight)$

Explanation:

We have $x^3+y^3=(x+y)\left(x^2-xy+y^2
ight)$

Now consider $x^2 - yx + y^2 = 0$ which is a quadratic equation in x with a=1,b=-y and c= y^2

Hence the roots are

$$egin{aligned} &x = rac{-(-y) \pm \sqrt{(-y)^2 - 4.1.y^2}}{2.1} = rac{y \pm \sqrt{-3y^2}}{2} = rac{y \pm iy \sqrt{3}}{2} = rac{y(1 \pm i\sqrt{3})}{2} \ &\Rightarrow x = y \omega \quad or \quad y \omega^2 \ & ext{Hence } x^3 + y^3 = (x+y) \left(x^2 - xy + y^2
ight) = \ (x+y) \left(x + y \omega
ight) \left(x + y \omega^2
ight) \end{aligned}$$

2. (b) 13/5

Explanation:

Given
$$(x + iy) (3 - 4i) = (5 + 12i)$$

 $\Rightarrow x + iy = \frac{5 + 12i}{3 - 4i} = \frac{(5 + 12i)(3 + 4i)}{(3 - 4i)(3 + 4i)}$
 $\frac{(15 - 48) + i(20 + 36)}{9 + 16} = \frac{-33 + 56i}{25}$
 $\Rightarrow x = \frac{-33}{25}, y = \frac{56}{25}$
 $\therefore \sqrt{x^2 + y^2} = \sqrt{\left(\frac{-33}{25}\right)^2 + \left(\frac{56}{25}\right)^2}$
 $= \sqrt{\frac{1089 + 3136}{625}} = \sqrt{\frac{4225}{625}} = \frac{65}{25} = \frac{13}{5}$
3. (c) $\frac{x}{x^2 + y^2} - \frac{y}{x^2 + y^2}i$

Explanation:

Multiplicative inverse of the complex number x + iy =

$$rac{1}{x+iy}=rac{1}{x+iy}.rac{x-iy}{x-iy}=rac{x-iy}{x^2-(iy)^2}=rac{x-iy}{x^2+y^2}\qquadig[\because i^2=-1ig]$$

4. (b) -4

Explanation:

We have $\sqrt{-3} = \sqrt{-1.3} = \sqrt{-1}\sqrt{3} = \sqrt{3}i$ $\therefore -1 + \sqrt{-3} = -1 + i\sqrt{3} = 2\omega$ and $-1 - \sqrt{-3} = -1 - i\sqrt{3} = 2\omega^2$ $(-1 + \sqrt{-3})^2 + (-1 - \sqrt{-3})^2 = (2\omega)^2 + (2\omega^2)^2 = 4\omega^2 + 4\omega^4 = 4(\omega^2 + \omega^3.\omega)$

5. (b) -1

Explanation:

$$\left(\frac{1+\omega}{\omega^2}\right)^3 = \left(\frac{-\omega^2}{\omega^2}\right)^3 = (-1)^3 = -1$$
 $\left[\because 1+\omega+\omega^2=0\right]$

- 6. principal
- 7. 17i
- 8. Given, |z| = 1

$$\Rightarrow |z|^{2} = 1 \Rightarrow z\overline{z} = 1$$

Now, $\frac{1+z}{1+\overline{z}} = \frac{z\overline{z}+z}{1+\overline{z}}$ [:: $1 = z\overline{z}$]
 $= \frac{z(\overline{z}+1)}{(\overline{z}+1)} = z = 1$

9.
$$(5+i3) + (-4-i) = (5-4) + i(3-1) = 1 + i2$$

10. M.I. of $-i = \frac{1}{-i} = \frac{i}{-i^2} = \frac{i}{-(i)} = i$

11. Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ Then, $z_1 z_2 = (x_1 x_2 - y_1 y_2) + i (x_1 y_2 + y_1 x_2)$ ∴ Re $(z_1 z_2) = x_1 x_2 - y_1 y_2$ = Re (z_1) Re (z_2) - Im (z_1) Im (Z_2) Hence proved. 12. We have, $\sqrt{2} x^2 + x + \sqrt{2} = 0...(i)$

On comparing Eq. (i) with $ax^2 + bx + c = 0$, we get $a = \sqrt{2}$, b = 1 and $c = \sqrt{2}$ Then, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $= \frac{-1 \pm \sqrt{(1)^2 - 4 \times \sqrt{2} \times \sqrt{2}}}{\frac{2 \times \sqrt{2}}{2}}$ $= \frac{-1 \pm \sqrt{1 - 8}}{\frac{2\sqrt{2}}{2\sqrt{2}}}$ $= \frac{-1 \pm \sqrt{-7}}{2\sqrt{2}}$ $= \frac{-1 \pm \sqrt{7i}}{2\sqrt{2}}$ $x = \frac{-1 \pm \sqrt{7i}}{2\sqrt{2}}$ or $x = \frac{-1 - \sqrt{7i}}{2\sqrt{2}}$

Hence, the roots of the given equation are $\frac{-1+\sqrt{7}i}{2\sqrt{2}}$ and $\frac{-1-\sqrt{7}i}{2\sqrt{2}}$.

13. Now,
$$\frac{z_1}{z_2} = \frac{3+5i}{2-3i} = \frac{3+5i}{2-3i} \times \frac{2+3i}{2+3i}$$

[multiplying numerator and denominator by conjugate of 2 - 3i i.e., 2 + 3i]

$$= \frac{6+9i+10i+15i^{2}}{4-9i^{2}} = \frac{6+19i-15}{4+9} [::i^{2} = -1]$$

$$= \frac{-9+19i}{13} = \frac{-9}{13} + \frac{19}{13}i$$
LHS = $\frac{\overline{z_{1}}}{\overline{z_{2}}} = \frac{-9}{13} + \frac{19}{13}i = \frac{-9}{13} - \frac{19}{13}i$
RHS = $\frac{\overline{z_{1}}}{\overline{z_{2}}} = \frac{\overline{3+5i}}{2-3i} = \frac{3-5i}{2+3i} \times \frac{2-3i}{2-3i}$

[multiplying numerator and denominator by conjugate of 2 + 3i i.e., 2 - 3i]

$$=rac{6-9i-10i+15i^2}{4-9i^2}=rac{6-19i-15}{4+9}\ =rac{-9-19i}{13}=rac{-9}{13}-rac{19}{13}i\ \therefore \overline{\left(rac{z_1}{z_2}
ight)}=rac{\overline{z_1}}{\overline{z_2}}$$

Hence verified.

14. Let, $z_1 = r_1 (\cos \theta_1 + i \sin \theta_1)$ and $z_2 = r_2 (\cos \theta_2 + i \sin \theta_2)$

Since,
$$|z_2| = |z_1|$$

 $\therefore r_2 = r_1 = r [say]$

Also, arg (z₁) + arg (z₂) = π

$$\therefore \arg (z_2) = \pi - \arg (z_1)$$

$$\Rightarrow \arg (z_2) = \pi - \theta_1$$

$$\therefore z_2 = r \{\cos (\pi - \theta_1) + i \sin (\pi - \theta_1)\}$$

$$= r (-\cos \theta_1 + i \sin \theta_1)$$

$$= -r (\cos \theta_1 - i \sin \theta_1) = -\overline{z}_1$$

$$\Rightarrow z_2 = -\overline{z}_1$$

Hence proved.

15. Let,
$$z_1 = x_1 + iy_1$$
, $z_2 = x_2 + iy_2$
Given: $|z_1| = 1$
 $\therefore x_1^2 + y_1^2 = 1$
Also, $z_2 = \frac{z_1 - 1}{z_1 + 1}$
 $\therefore x_2 + iy_2 = \frac{x_1 - iy_1 - 1}{x_1 + iy_1 + 1}$
 $\Rightarrow x_2 + iy_2 = \frac{x_1 - 1 + iy_1}{x_1 + 1 + iy_1}$ [Rationalizing the denominator]
 $\Rightarrow x_2 + iy_2 = \frac{(x_1 - 1 + iy_1)(x_1 + 1 - iy_1)}{(x_1 + 1) - iy_1(x_1 - 1) + iy_1(x_1 + 1) + y_1^2}$
 $\Rightarrow x_2 + iy_2 = \frac{(x_1 - 1)(x_1 + 1) - iy_1(x_1 - 1) + iy_1(x_1 + 1) + y_1^2}{(x_1 + 1)^2 - (iy_1)^2}$
 $\Rightarrow x_2 + iy_2 = \frac{x_1^2 - 1 + y_1^2 - iy_1 x_1 + iy_1 + iy_1 x_1 + iy_1}{(x_1 + 1)^2 - (iy_1)^2}$
 $\Rightarrow x_2 + iy_2 = \frac{x_1^2 + y_1^2 - 1 + 2iy_1}{(x_1 + 1)^2 - (iy_1)^2}$
 $\Rightarrow x_2 + iy_2 = \frac{x_1^2 + y_1^2 - 1 + 2iy_1}{(x_1 + 1)^2 - (iy_1)^2}$
 $\Rightarrow x_2 + iy_2 = \frac{x_1^2 - 1 + 2iy_1}{(x_1 + 1)^2 - (iy_1)^2}$ [$\because x_1^2 + y_1^2 = 1$]
 $\Rightarrow x_2 + iy_2 = \frac{2iy_1}{(x_1 + 1)^2 - (iy_1)^2}$ [$\because x_1^2 + y_1^2 = 1$]
Since there is no real in the RHS, therefore $x_2 = 0$.

Thus, the real part of the z_2 = 0.