15. Area

- Area of a parallelogram:
 - The perpendicular dropped on a side from its opposite vertex is known as the height and the side is known as the base.
 - Area of a parallelogram = Base × Height

Example:

Find the height of the parallelogram PQRS corresponding to the base RQ.

Solution:

Let the height corresponding to the base RQ be x cm.

Area of the parallelogram
$$\overrightarrow{PQRS} = \overrightarrow{PQ} \times \overrightarrow{ST}$$

= 10 cm × 7.2 cm

$$= 72 \text{ cm}^2$$

Area of the parallelogram = $RQ \times x$

$$= 8 \text{ cm} \times x \text{ cm}$$

$$= 8x \text{ cm}^2$$

$$\therefore 8x = 72$$
$$\Rightarrow x = 9$$

Thus, the height of the parallelogram corresponding to the base RQ is 9 cm.

- Area of rhombus = $\frac{1}{2}$ (Product of its diagonals)
- Area and perimeter of various shapes:

Shape	Area	Perimeter
1. Rectangle with adjacent sides	$a \times b$	2(a + b)
a and b		

2. Square with side <i>a</i>3. Circle with radius <i>r</i>	a^2 πr^2	4 <i>a</i> 2π <i>r</i>
4. Triangle with base <i>b</i> and its corresponding height <i>h</i>	$\frac{1}{2} \times b \times h$	Sum of the three sides Sum of the four sides
5. Parallelogram with base <i>b</i> and its corresponding height <i>h</i>	$b \times h$	

Area of trapezium = $\frac{1}{2}$ (Sum of the lengths of the parallel sides) × (Perpendicular distance between them)

Area of triangle using Heron's formula:

When all the three sides of a triangle are given, its area can be calculated using Heron's formula, which is given by:

Area of triangle =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

Here, s is the semi-perimeter of the triangle and is given by, $s = \frac{a+b+c}{2}$

Example:

Find the area of a triangle whose sides are 9 cm, 28 cm and 35 cm.

Let
$$a = 9$$
 cm, $b = 28$ cm and $c = 35$ cm
Semi-perimeter, $s = \frac{a+b+c}{2} = \frac{9+28+35}{2}$ cm = 36 cm
Area of triangle = $\sqrt{36(36-9)(36-28)(36-35)}$ cm²

$$= \sqrt{36 \times 27 \times 8 \times 1} \text{ cm}^2$$
$$= 36\sqrt{6} \text{ cm}^2$$

· Area of quadrilaterals using Heron's formula:

Area of a quadrilateral can also be calculated using Heron's formula. In this, the quadrilateral is divided into two triangles and then the area of each triangle is calculated using Heron's formula.

Example:

What is the area of the given quadrilateral?

Solution:

 \triangle ABD is a right-angled triangle.

Using Pythagoras Theorem, we get

BD =
$$\sqrt{(AD)^2 - (AB)^2} = (\sqrt{(17)^2 - (8)^2})$$
cm = 15 cm
Area ($\triangle ABD$) = $\frac{1}{2} \times B$ as $e \times Height = \frac{1}{2} \times 15 \times 8 = 60$ cm²
For $\triangle BCD$, let $a = 6$ cm, $b = 11$ cm and $c = 15$ cm
Semi-perimeter, $s = \frac{a+b+c}{2} = (\frac{6+11+15}{2})$ cm = 16 cm
Area ($\triangle BCD$) = $\sqrt{s(s-a)(s-b)(s-c)}$
= $\sqrt{16(16-6)(16-11)(16-15)}$ cm²

Semi-perimeter,
$$s = \frac{a+b+c}{2} = \left(\frac{b+11+15}{2}\right)$$
cm = 16 c
Area $(\Delta BCD) = \sqrt{s(s-a)(s-b)(s-c)}$
 $= \sqrt{16(16-6)(16-11)(16-15)}$ cm²
 $= \sqrt{16 \times 10 \times 5 \times 1}$ cm²

$$=20\sqrt{2} \text{ cm}^2$$

Area of quadrilateral ABCD =
$$(60 + 20\sqrt{2})$$
cm² = $20(3 + \sqrt{2})$ cm²

- The distance around a circular region is known as its circumference.
- The circumference of a circle = $\pi \times \text{Diameter} = 2\pi \times \text{Radius}$ The value of pi (π) is $\frac{22}{7}$ or 3.14.
- Area of a circle = $\pi \times (\text{Radius})^2$

Example: What is the area of a circle whose circumference is 44 cm? $\left(\pi = \frac{22}{7}\right)$

Solution:

Circumference =
$$2\pi r = 44$$
 cm
 $\Rightarrow 2 \times \frac{22}{7} \times r = 44$ cm

$$\Rightarrow r = 44 \times \frac{7}{22 \times 2} = 7 \text{ cm}$$

$$\therefore \text{ Area of the circle} = \pi r^2 = \frac{22}{7} \times 7 \times 7 = 154 \text{ cm}^2$$

• The region enclosed by a closed figure is called its area.

- Units of area are square cm, square m etc.
- The concept of area is widely used in our daily life. For example, to find the area of the carpet required to cover the floor, etc.
- We can estimate the area of a surface by drawing it on a square graph paper, where every square measures $1 \text{ cm} \times 1 \text{ cm}$. For this, we have to adopt the following conventions.
 - The area of 1 full square is taken as 1 square unit.
 - The area of a region which is more than half the square is taken as 1 square unit.
 - The area of half the square is taken as $\frac{1}{2}$ square unit.
 - We have to ignore the portions of area that are less than half a square.

Example: Find the area of the following figure.

Solution: We can represent the number of full-filled squares, half filled squares etc. in a tabular form as follows:

Area covered	Number	Area estimate (square unit)
Full-filled squares	6	6
Half-filled squares	2	$\frac{1}{2} \times 2 = 1$
More than half-filled squares	2	2
Less than half-filled squares	2	0

 \therefore Total area = (6 + 1 + 2) square units = 9 square units