Binomial Theorem

Question 1.

The number $(101)^{100} - 1$ is divisible by (a) 100 (b) 1000 (c) 10000 (d) All the above

Answer: (d) All the above Given, $(101)^{100} - 1 = (1 + 100)^{100} - 1$ $= [^{100}C_0 + {}^{100}C_1 \times 100 + {}^{100}C_2 \times (100)^2 + \dots + {}^{100}C_{100} \times (100)^{100}] - 1$ $= 1 + [^{100}C_1 \times 100 + {}^{100}C_2 \times (100)^2 + \dots + {}^{100}C_{100} \times (100)^{100}] - 1$ $= {}^{100}C_1 \times 100 + {}^{100}C_2 \times (100)^2 + \dots + {}^{100}C_{100} \times (100)^{100}$ $= 100 \times 100 + {}^{100}C_2 \times (100)^2 + \dots + {}^{100}C_{100} \times (100)^{100}$ $= (100)^2 + {}^{100}C_2 \times (100)^2 + \dots + {}^{100}C_{100} \times (100)^{100}$ $= (100)^2 [1 + {}^{100}C_2 + \dots + {}^{100}C_{100} \times (100)^{98}]$ Which is divisible by 100, 1000 and 10000

Question 2. The value of -1° is (a) 1 (b) -1(c) 0 (d) None of these Answer: (b) -1First we find 10 So, 10 = 1Now, -10 = -1 Question 3. If the fourth term in the expansion $(ax + 1/x)^n$ is 5/2, then the value of x is (a) 4 (b) 6 (c) 8 (d) 5 Answer: (b) 6 Given, $T_4 = 5/2$ $\Rightarrow T_{3+1} = 5/2$ $\Rightarrow nC_3 \times (ax)^{n-3} \times (1/x)^3 = 5/2$ $\Rightarrow nC_3 \times a^{n-3} \times x^{n-3} \times (1/x)^2 = 5/2$ Clearly, RHS is independent of x, So, n - 6 = 0 $\Rightarrow n = 6$

Question 4. The number 111111 1 (91 times) is (a) not an odd number (b) none of these (c) not a prime (d) an even number

Answer: (c) not a prime 111111 1 (91 times) = $91 \times 1 = 91$, which is divisible by 7 and 13. So, it is not a prime number.

Question 5. In the expansion of $(a + b)^n$, if n is even then the middle term is (a) $(n/2 + 1)^{th}$ term (b) $(n/2)^{th}$ term (c) nth term (d) $(n/2 - 1)^{th}$ term Answer: (a) $(n/2 + 1)^{th}$ term In the expansion of $(a + b)^n$ if n is even then the middle term is $(n/2 + 1)^{th}$ term Question 6. The number of terms in the expansion $(2x + 3y - 4z)^n$ is (a) n + 1 (b) n + 3 (c) {(n + 1) × (n + 2)}/2 (d) None of these Answer: (c) {(n + 1) × (n + 2)}/2 Total number of terms in $(2x + 3y - 4z)^n$ is = ${}^{n+3-1}C_{3-1}$ = ${}^{n+2}C_2$ = {(n + 1) × (n + 2)}/2

Question 7.

If A and B are the coefficient of x^n in the expansion $(1 + x)^{2n}$ and $(1 + x)^{2n-1}$ respectively, then A/B equals

(a) 1 (b) 2 (c) 1/2 (d) 1/n Answer: (b) 2 $A/B = {}^{2n}C_n / {}^{2n-1}C_n$ $= \{(2n)!/(n! \times n!)\}/\{(2n-1)!/(n! \times (n-1!))\}$ $= \{2n(2n-1)!/(n(n-1)! \times n!)\}/\{(2n-1)!/(n! \times (n-1!))\}$ = 2So, A/B = 2

Question 8.

The coefficient of y in the expansion of $(y^2 + c/y)^5$ is (a) 29c (b) 10c (c) 10c³ (d) 20c² Answer: (c) 10c³

We have, $T_{r+1} = {}^{5}C_{r} \times (y^{2})^{5-r} \times (c/y)^{r}$ $\Rightarrow T_{r+1} = {}^{5}C_{r} \times y^{10-3r} \times c^{r}$ For finding the coefficient of y, $\Rightarrow 10 - 3r = 1$ $\Rightarrow 33r = 9$ $\Rightarrow r = 3$ So, the coefficient of $y = {}^{5}C_{3} \times c^{3}$ $= 10c^{3}$

Question 9.

The coefficient of x^{-4} in $(3/2 - 3/x^2)^{10}$ is (a) 405/226 (b) 504/289 (c) 450/263 (d) None of these

Answer: (d) None of these Let x^{-4} occurs in (r + 1)th term. Now, $T_{r+1} = {}^{10}C_r \times (3/2)^{10-r} \times (-3/x^2)^r$ $\Rightarrow T_{r+1} = {}^{10}C_r \times (3/2)^{10-r} \times (-3)^r \times (x)^{-2r}$ Now, we have to find the coefficient of x^{-4} So, -2r = -4 $\Rightarrow r = 2$ Now, the coefficient of $x^{-4} = {}^{10}C_2 \times (3/2)^{10-2} \times (-3)^2$ $= {}^{10}C_2 \times (3/2)^8 \times (-3)^2$ $= 45 \times (3/2)^8 \times 9$ $= (3^{12} \times 5)/2^8$

Question 10.

If n is a positive integer, then $9^{n+1} - 8n - 9$ is divisible by (a) 8 (b) 16 (c) 32 (d) 64 Answer: (d) 64 Let n = 1, then $9^{n+1} - 8n - 9 = 9^{1+1} - 8 \times 1 - 9 = 9^2 - 8 - 9 = 81 - 17 = 64$ which is divisible by 64 Let n = 2, then $9^{n+1} - 8n - 9 = 9^{2+1} - 8 \times 2 - 9 = 9^3 - 16 - 9 = 729 - 25 = 704 = 11 \times 64$ which is divisible by 64 So, for any value of n, $9^{n+1} - 8n - 9$ is divisible by 64

Question 11. The general term of the expansion $(a + b)^n$ is (a) $T_{r+1} = {}^nC_r \times a^r \times b^r$ (b) $T_{r+1} = {}^nC_r \times a^r \times b^{n-r}$ (c) $T_{r+1} = {}^nC_r \times a^{n-r} \times b^{n-r}$ (d) $T_{r+1} = {}^nC_r \times a^{n-r} \times b^r$ Answer: (d) $T_{r+1} = {}^nC_r \times a^{n-r} \times b^r$

The general term of the expansion $(a + b)^n$ is $T_{r+1} = {}^nC_r \times a^{n-r} \times b^r$

Question 12. In the expansion of $(a + b)^n$, if n is even then the middle term is (a) $(n/2 + 1)^{\text{th}}$ term (b) $(n/2)^{\text{th}}$ term (c) n^{\text{th}} term (d) $(n/2 - 1)^{\text{th}}$ term Answer: (a) $(n/2 + 1)^{\text{th}}$ term

In the expansion of $(a + b)^n$, if n is even then the middle term is $(n/2 + 1)^{th}$ term

Question 13.

The smallest positive integer for which the statement $3^{n+1} < 4^n$ is true for all (a) 4 (b) 3 (c) 1 (d) 2 Answer: (a) 4 Given statement is: $3^{n+1} < 4^n$ is Let n = 1, then $3^{1+1} < 4^1 = 3^2 < 4 = 9 < 4$ is false Let n = 2, then $3^{2+1} < 4^2 = 3^3 < 4^2 = 27 < 16$ is false Let n = 3, then $3^{3+1} < 4^3 = 3^4 < 4^3 = 81 < 64$ is false Let n = 4, then $3^{4+1} < 4^4 = 3^5 < 4^4 = 243 < 256$ is true. So, the smallest positive number is 4

Question 14. The number of ordered triplets of positive integers which are solution of the equation x + y + z =100 is (a) 4815 (b) 4851 (c) 8451 (d) 8415 Answer: (b) 4851 Given, x + y + z = 100where $x \ge 1$, $y \ge 1$, $z \ge 1$ Let u = x - 1, v = y - 1, w = z - 1where $u \ge 0$, $v \ge 0$, $w \ge 0$ Now, equation becomes u + v + w = 97So, the total number of solution = ${}^{97+3-1}C_{3-1}$ = ⁹⁹C₂ $=(99 \times 98)/2$ =4851

Question 15. if n is a positive ineger then $2^{3n} - 7n - 1$ is divisible by (a) 7 (b) 9 (c) 49 (d) 81 Answer: (c) 49 Given, $2^{3n} - 7n - 1 = 2^{3 \times n} - 7n - 1$ $= 8^n - 7n - 1$ $= (1 + 7)^{n} - 7n - 1$ = {ⁿC₀ + ⁿC₁ 7 + ⁿC₂ 7² + + ⁿC_n 7ⁿ} - 7n - 1 = {1 + 7n + ⁿC₂ 7² + + ⁿC_n 7ⁿ} - 7n - 1 = ⁿC₂ 7² + + ⁿC_n 7ⁿ = 49(ⁿC₂ + + ⁿC_n 7ⁿ⁻²) which is divisible by 49 So, 2³ⁿ - 7n - 1 is divisible by 49

Question 16.

The greatest coefficient in the expansion of $(1 + x)^{10}$ is (a) 10!/(5!) (b) 10!/(5!)² (c) 10!/(5! × 4!)² (d) 10!/(5! × 4!)

Answer: (b) $10!/(5!)^2$

The coefficient of xr in the expansion of $(1 + x)^{10}$ is ${}^{10}C_r$ and ${}^{10}C_r$ is maximum for r = 10/= 5Hence, the greatest coefficient = ${}^{10}C_5$ = $10!/(5!)^2$

Question 17.

If A and B are the coefficient of xn in the expansion $(1 + x)^{2n}$ and $(1 + x)^{2n-1}$ respectively, then A/B equals (a) 1 (b) 2 (c) 1/2 (d) 1/n Answer: (b) 2 $A/B = {}^{2n}C_n/{}^{2n-1}C_n$ $= \{(2n)!/(n! \times n!)\}/\{(2n - 1)!/(n! \times (n - 1!))\}$ $= \{2n(2n - 1)!/(n(n - 1)! \times n!)\}/\{(2n - 1)!/(n! \times (n - 1!))\}$ = 2

So, A/B = 2

Question 18. (1.1)¹⁰⁰⁰⁰ is _____ 1000 (a) greater than (b) less than (c) equal to (d) None of these Answer: (a) greater than Given, $(1.1)^{10000} = (1 + 0.1)^{10000}$ $= {}^{10000}C_0 + {}^{10000}C_1 \times (0.1) + {}^{10000}C_2 \times (0.1)^2 + \text{other +ve terms}$ $= 1 + 10000 \times (0.1) + \text{other +ve terms}$ = 1 + 1000 + other +ve terms > 10000So, $(1.1)^{10000}$ is greater than 1000

Question 19.

If n is a positive integer, then $(\sqrt{3}+1)^{2n} + (\sqrt{3}-1)^{2n}$ is (a) an odd positive integer (b) none of these (c) an even positive integer (d) not an integer

Answer: (c) an even positive integer Since n is a positive integer, assume n = 1 $(\sqrt{3} + 1)^2 + (\sqrt{3} - 1)^2$ $= (3 + 2\sqrt{3} + 1) + (3 - 2\sqrt{3} + 1)$ {since $(x + y)^2 = x^2 + 2xy + y^2$ } = 8, which is an even positive number.

Question 20. if $y = 3x + 6x^2 + 10x^3 + \dots$ then x =(a) $4/3 - \{(1 \times 4)/(3^2 \times 2)\}y^2 + \{(1 \times 4 \times 7)/(3^2 \times 3)\}y^3 - \dots$ (b) $-4/3 + \{(1 \times 4)/(3^2 \times 2)\}y^2 - \{(1 \times 4 \times 7)/(3^2 \times 3)\}y^3 + \dots$ (c) $4/3 + \{(1 \times 4)/(3^2 \times 2)\}y^2 + \{(1 \times 4 \times 7)/(3^2 \times 3)\}y^3 + \dots$ (d) None of these Answer: (d) None of these Given, $y = 3x + 6x^2 + 10x^3 + \dots$ $\Rightarrow 1 + y = 1 + 3x + 6x^2 + 10x^3 + \dots$ $\Rightarrow 1 + y = (1 - x)^{-3}$ $\Rightarrow 1 - x = (1 + y)^{-1/3}$

 $\Rightarrow x = 1 - (1 + y)^{-1/3}$ $\Rightarrow x = (1/3)y - \{(1 \times 4)/(3^2 \times 2)\}y^2 + \{(1 \times 4 \times 7)/(3^2 \times 3!)\}y^3 - \dots$