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All three of these commonplace items
use magnetism to store information. The
cassette can store more than an hour of
music, the floppy disk can hold the equiv-
alent of hundreds of pages of informa-
tion, and many hours of television pro-
gramming can be recorded on the
videotape. How do these devices work?
(George Semple)
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n the preceding chapter, we discussed the magnetic force exerted on a charged
particle moving in a magnetic field. To complete the description of the mag-
netic interaction, this chapter deals with the origin of the magnetic field—mov-

ing charges. We begin by showing how to use the law of Biot and Savart to calcu-
late the magnetic field produced at some point in space by a small current
element. Using this formalism and the principle of superposition, we then calcu-
late the total magnetic field due to various current distributions. Next, we show
how to determine the force between two current-carrying conductors, which leads
to the definition of the ampere. We also introduce Ampère’s law, which is useful in
calculating the magnetic field of a highly symmetric configuration carrying a
steady current.

This chapter is also concerned with the complex processes that occur in mag-
netic materials. All magnetic effects in matter can be explained on the basis of
atomic magnetic moments, which arise both from the orbital motion of the elec-
trons and from an intrinsic property of the electrons known as spin.

THE BIOT – SAVART LAW
Shortly after Oersted’s discovery in 1819 that a compass needle is deflected by a
current-carrying conductor, Jean-Baptiste Biot (1774–1862) and Félix Savart
(1791–1841) performed quantitative experiments on the force exerted by an elec-
tric current on a nearby magnet. From their experimental results, Biot and Savart
arrived at a mathematical expression that gives the magnetic field at some point in
space in terms of the current that produces the field. That expression is based on
the following experimental observations for the magnetic field dB at a point P as-
sociated with a length element ds of a wire carrying a steady current I (Fig. 30.1):

• The vector dB is perpendicular both to ds (which points in the direction of the
current) and to the unit vector directed from ds to P.

• The magnitude of dB is inversely proportional to r 2, where r is the distance
from ds to P.

• The magnitude of dB is proportional to the current and to the magnitude ds of
the length element ds.

• The magnitude of dB is proportional to sin �, where � is the angle between the
vectors ds and .r̂

r̂

30.1
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Properties of the magnetic field
created by an electric current
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Figure 30.1 (a) The magnetic field dB at point P due to the current I through a length ele-
ment ds is given by the Biot–Savart law. The direction of the field is out of the page at P and into
the page at P�. (b) The cross product points out of the page when points toward P. 
(c) The cross product points into the page when points toward P�.r̂d s � r̂

r̂d s � r̂
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These observations are summarized in the mathematical formula known today as
the Biot–Savart law:

(30.1)

where �0 is a constant called the permeability of free space:

(30.2)

It is important to note that the field d B in Equation 30.1 is the field created by
the current in only a small length element ds of the conductor. To find the total
magnetic field B created at some point by a current of finite size, we must sum up
contributions from all current elements Ids that make up the current. That is, we
must evaluate B by integrating Equation 30.1:

(30.3)

where the integral is taken over the entire current distribution. This expression
must be handled with special care because the integrand is a cross product and
therefore a vector quantity. We shall see one case of such an integration in Exam-
ple 30.1.

Although we developed the Biot–Savart law for a current-carrying wire, it is
also valid for a current consisting of charges flowing through space, such as the
electron beam in a television set. In that case, ds represents the length of a small
segment of space in which the charges flow.

Interesting similarities exist between the Biot–Savart law for magnetism 
and Coulomb’s law for electrostatics. The current element produces a magnetic
field, whereas a point charge produces an electric field. Furthermore, the magni-
tude of the magnetic field varies as the inverse square of the distance from the 
current element, as does the electric field due to a point charge. However, the 
directions of the two fields are quite different. The electric field created by a 
point charge is radial, but the magnetic field created by a current element is per-
pendicular to both the length element ds and the unit vector , as described by
the cross product in Equation 30.1. Hence, if the conductor lies in the plane of
the page, as shown in Figure 30.1, dB points out of the page at P and into the page
at P �.

Another difference between electric and magnetic fields is related to the
source of the field. An electric field is established by an isolated electric charge.
The Biot–Savart law gives the magnetic field of an isolated current element at
some point, but such an isolated current element cannot exist the way an isolated
electric charge can. A current element must be part of an extended current distrib-
ution because we must have a complete circuit in order for charges to flow. Thus,
the Biot–Savart law is only the first step in a calculation of a magnetic field; it must
be followed by an integration over the current distribution.

In the examples that follow, it is important to recognize that the magnetic
field determined in these calculations is the field created by a current-carry-
ing conductor. This field is not to be confused with any additional fields that may
be present outside the conductor due to other sources, such as a bar magnet
placed nearby.

r̂

B �
�0I
4�

 � ds � r̂
r 2

�0 � 4� � 10�7 T�m/A

d B �
�0

4�
 
I ds � r̂

r 2 Biot–Savart law

Permeability of free space
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Magnetic Field Surrounding a Thin, Straight ConductorEXAMPLE 30.1
an expression in which the only variable is �. We can now ob-
tain the magnitude of the magnetic field at point P by inte-
grating Equation (4) over all elements, subtending angles
ranging from �1 to �2 as defined in Figure 30.2b:

(30.4)

We can use this result to find the magnetic field of any
straight current-carrying wire if we know the geometry and
hence the angles �1 and �2 . Consider the special case of an
infinitely long, straight wire. If we let the wire in Figure 30.2b
become infinitely long, we see that �1 � 0 and �2 � � for
length elements ranging between positions x � � 	 and x �

 	. Because (cos �1 � cos �2) � (cos 0 � cos �) � 2, Equa-
tion 30.4 becomes

(30.5)

Equations 30.4 and 30.5 both show that the magnitude of

B �
�0I
2�a

B �
�0I
4�a

 ��2

�1

 sin � d� �
�0I
4�a

 (cos �1 � cos �2)

Consider a thin, straight wire carrying a constant current I
and placed along the x axis as shown in Figure 30.2. Deter-
mine the magnitude and direction of the magnetic field at
point P due to this current.

Solution From the Biot–Savart law, we expect that the
magnitude of the field is proportional to the current in the
wire and decreases as the distance a from the wire to point P
increases. We start by considering a length element ds lo-
cated a distance r from P. The direction of the magnetic field
at point P due to the current in this element is out of the
page because ds � is out of the page. In fact, since all of
the current elements I ds lie in the plane of the page, they all
produce a magnetic field directed out of the page at point P.
Thus, we have the direction of the magnetic field at point P,
and we need only find the magnitude.

Taking the origin at O and letting point P be along the
positive y axis, with k being a unit vector pointing out of the
page, we see that

where, from Chapter 3, represents the magnitude of
ds � Because is a unit vector, the unit of the cross prod-
uct is simply the unit of ds, which is length. Substitution into
Equation 30.1 gives

Because all current elements produce a magnetic field in the
k direction, let us restrict our attention to the magnitude of
the field due to one current element, which is

(1)

To integrate this expression, we must relate the variables �, x,
and r. One approach is to express x and r in terms of �. From
the geometry in Figure 30.2a, we have

(2)

Because tan from the right triangle in Figure
30.2a (the negative sign is necessary because ds is located at a
negative value of x), we have

Taking the derivative of this expression gives 

(3)

Substitution of Equations (2) and (3) into Equation (1) gives

(4) dB �
�0I
4�

 
a csc2 � sin � d�

a2 csc2 �
�

�0I
4�a

 sin � d�

dx � a csc2 � d�

x � �a cot �

� � a/(�x)

r �
a

sin �
� a csc �

dB �
�0I
4�

 
dx sin �

r 2

dB � (dB)k �
�0 I
4�

 
dx sin �

r 2  k

r̂r̂.
�ds � r̂ �

ds � r̂ � k � ds � r̂ � � k(dx sin �)

r̂

(a)

O
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ds

I

θ
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Pds  = dx

x

(b)

θ1

P

θ2θ
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y

Figure 30.2 (a) A thin, straight wire carrying a current I. The
magnetic field at point P due to the current in each element ds of
the wire is out of the page, so the net field at point P is also out of
the page. (b) The angles �1 and �2 , used for determining the net
field. When the wire is infinitely long, �1 � 0 and �2 � 180°.
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The result of Example 30.1 is important because a current in the form of a
long, straight wire occurs often. Figure 30.3 is a three-dimensional view of the
magnetic field surrounding a long, straight current-carrying wire. Because of the
symmetry of the wire, the magnetic field lines are circles concentric with the wire
and lie in planes perpendicular to the wire. The magnitude of B is constant on any
circle of radius a and is given by Equation 30.5. A convenient rule for determining
the direction of B is to grasp the wire with the right hand, positioning the thumb
along the direction of the current. The four fingers wrap in the direction of the
magnetic field.

the magnetic field is proportional to the current and de-
creases with increasing distance from the wire, as we ex-
pected. Notice that Equation 30.5 has the same mathematical
form as the expression for the magnitude of the electric field
due to a long charged wire (see Eq. 24.7).

Exercise Calculate the magnitude of the magnetic field 
4.0 cm from an infinitely long, straight wire carrying a cur-
rent of 5.0 A.

Answer 2.5 � 10�5 T.

a

I

Figure 30.3 The right-hand rule for determining the di-
rection of the magnetic field surrounding a long, straight
wire carrying a current. Note that the magnetic field lines
form circles around the wire.

Magnetic Field Due to a Curved Wire SegmentEXAMPLE 30.2
Calculate the magnetic field at point O for the current-carry-
ing wire segment shown in Figure 30.4. The wire consists of
two straight portions and a circular arc of radius R , which
subtends an angle �. The arrowheads on the wire indicate the
direction of the current.

Solution The magnetic field at O due to the current in
the straight segments AA� and CC� is zero because ds is paral-
lel to along these paths; this means that ds � Each
length element ds along path AC is at the same distance R
from O, and the current in each contributes a field element
dB directed into the page at O. Furthermore, at every point
on AC , ds is perpendicular to hence, Using
this information and Equation 30.1, we can find the magni-
tude of the field at O due to the current in an element of
length ds:

dB �
�0 I
4�

 
ds
R2

� ds � r̂ � � ds.r̂;

r̂ � 0.r̂
ds

θO

A

r̂

C

I
C ′

A ′

R

R

Figure 30.4 The magnetic field at O due to the current in the
curved segment AC is into the page. The contribution to the field at
O due to the current in the two straight segments is zero.



942 C H A P T E R  3 0 Sources of the Magnetic Field

Magnetic Field on the Axis of a Circular Current LoopEXAMPLE 30.3

(at x � 0) (30.8)

which is consistent with the result of the exercise in Example
30.2.

It is also interesting to determine the behavior of the mag-
netic field far from the loop—that is, when x is much greater
than R . In this case, we can neglect the term R 2 in the de-
nominator of Equation 30.7 and obtain

(for (30.9)

Because the magnitude of the magnetic moment � of the
loop is defined as the product of current and loop area (see
Eq. 29.10)—� � I(�R 2) for our circular loop—we can ex-
press Equation 30.9 as

(30.10)

This result is similar in form to the expression for the electric
field due to an electric dipole, (see ExampleE � ke(2qa/y3)

B �
�0

2�
 

�

x3

x W R)B �
�0IR2

2x3

B �
�0I
2R

Consider a circular wire loop of radius R located in the yz
plane and carrying a steady current I, as shown in Figure
30.5. Calculate the magnetic field at an axial point P a dis-
tance x from the center of the loop.

Solution In this situation, note that every length element
ds is perpendicular to the vector at the location of the ele-
ment. Thus, for any element, sin 90° � ds.
Furthermore, all length elements around the loop are at the
same distance r from P, where Hence, the mag-
nitude of dB due to the current in any length element ds is

The direction of dB is perpendicular to the plane formed by
and ds, as shown in Figure 30.5. We can resolve this vector

into a component dBx along the x axis and a component dBy
perpendicular to the x axis. When the components dBy are
summed over all elements around the loop, the resultant
component is zero. That is, by symmetry the current in any
element on one side of the loop sets up a perpendicular com-
ponent of dB that cancels the perpendicular component set
up by the current through the element diametrically opposite
it. Therefore, the resultant field at P must be along the x axis and
we can find it by integrating the components 
That is, where

and we must take the integral over the entire loop. Because �,
x, and R are constants for all elements of the loop and be-
cause cos we obtain

(30.7)

where we have used the fact that (the circumfer-
ence of the loop).

To find the magnetic field at the center of the loop, we set
x � 0 in Equation 30.7. At this special point, therefore,

ds � 2�R�

�0IR2

2(x2 
 R2)3/2Bx �
�0IR

4�(x2 
 R2)3/2  �ds �

� � R /(x2 
 R2)1/2,

Bx � � dB cos � �
�0I
4�

 � 
ds cos �
x2 
 R2

B � Bx i,
dBx � dB cos �.

r̂

dB �
�0I
4�

 
� ds � r̂ �

r 2 �
�0I
4�

 
ds

(x2 
 R2)

r 2 � x2 
 R2.

ds � r̂ � (ds)(1)
r̂

Because I and R are constants, we can easily integrate this ex-
pression over the curved path AC :

(30.6)

where we have used the fact that with � measured ins � R�

�0I
4�R

 �B �
�0I

4�R2  � ds �
�0I

4�R2  s �

radians. The direction of B is into the page at O because
is into the page for every length element.

Exercise A circular wire loop of radius R carries a current I.
What is the magnitude of the magnetic field at its center?

Answer �0I/2R .

ds � r̂

O

R

θ

ds

y

z

I

I

r̂

r

x
θ

P
xdBx

dBy
dB

Figure 30.5 Geometry for calculating the magnetic field at a
point P lying on the axis of a current loop. By symmetry, the total
field B is along this axis.
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(a) (b) (c)

S

N

I
S

N

Figure 30.6 (a) Magnetic field lines surrounding a current loop. (b) Magnetic field lines surrounding a current loop, displayed with iron
filings (Education Development Center, Newton, MA). (c) Magnetic field lines surrounding a bar magnet. Note the similarity between this line
pattern and that of a current loop.

23.6), where is the electric dipole moment as de-
fined in Equation 26.16.

The pattern of the magnetic field lines for a circular cur-
rent loop is shown in Figure 30.6a. For clarity, the lines are

2qa � p drawn for only one plane—one that contains the axis of the
loop. Note that the field-line pattern is axially symmetric and
looks like the pattern around a bar magnet, shown in Figure
30.6c.

2

1

B2

�

a

I1

I2

F1

a

THE MAGNETIC FORCE BETWEEN TWO
PARALLEL CONDUCTORS

In Chapter 29 we described the magnetic force that acts on a current-carrying con-
ductor placed in an external magnetic field. Because a current in a conductor sets
up its own magnetic field, it is easy to understand that two current-carrying con-
ductors exert magnetic forces on each other. As we shall see, such forces can be
used as the basis for defining the ampere and the coulomb.

Consider two long, straight, parallel wires separated by a distance a and carry-
ing currents I1 and I2 in the same direction, as illustrated in Figure 30.7. We can
determine the force exerted on one wire due to the magnetic field set up by the
other wire. Wire 2, which carries a current I2 , creates a magnetic field B2 at the lo-
cation of wire 1. The direction of B2 is perpendicular to wire 1, as shown in Figure
30.7. According to Equation 29.3, the magnetic force on a length � of wire 1 is

� Because � is perpendicular to B2 in this situation, the magnitude
of F1 is Because the magnitude of B2 is given by Equation 30.5, we see
that

(30.11)

The direction of F1 is toward wire 2 because � � B2 is in that direction. If the field
set up at wire 2 by wire 1 is calculated, the force F2 acting on wire 2 is found to be
equal in magnitude and opposite in direction to F1 . This is what we expect be-

F1 � I1�B2 � I1�� �0I2

2�a � �
�0I1I2

2�a
 �

F1 � I1�B 2 .
� B2.F1 � I1

30.2

Figure 30.7 Two parallel wires
that each carry a steady current ex-
ert a force on each other. The field
B2 due to the current in wire 2 ex-
erts a force of magnitude

on wire 1. The force is
attractive if the currents are paral-
lel (as shown) and repulsive if the
currents are antiparallel.

F 1 � I 1 �B2 



In deriving Equations 30.11 and 30.12, we assumed that both wires are long
compared with their separation distance. In fact, only one wire needs to be long.
The equations accurately describe the forces exerted on each other by a long wire
and a straight parallel wire of limited length .

For and in Figure 30.7, which is true: (a) (b) or 
(c) 

A loose spiral spring is hung from the ceiling, and a large current is sent through it. Do the
coils move closer together or farther apart?

Quick Quiz 30.2

F1 � F2 ?
F1 � F2/3,F1 � 3F2 ,I2 � 6 AI1 � 2 A

Quick Quiz 30.1

�
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cause Newton’s third law must be obeyed.1 When the currents are in opposite di-
rections (that is, when one of the currents is reversed in Fig. 30.7), the forces are
reversed and the wires repel each other. Hence, we find that parallel conductors
carrying currents in the same direction attract each other, and parallel con-
ductors carrying currents in opposite directions repel each other.

Because the magnitudes of the forces are the same on both wires, we denote
the magnitude of the magnetic force between the wires as simply FB . We can
rewrite this magnitude in terms of the force per unit length:

(30.12)

The force between two parallel wires is used to define the ampere as follows:

FB

�
�

�0I1I2

2�a

When the magnitude of the force per unit length between two long, parallel
wires that carry identical currents and are separated by 1 m is 2 � 10�7 N/m,
the current in each wire is defined to be 1 A.

The value 2 � 10�7 N/m is obtained from Equation 30.12 with and
m. Because this definition is based on a force, a mechanical measurement

can be used to standardize the ampere. For instance, the National Institute of
Standards and Technology uses an instrument called a current balance for primary
current measurements. The results are then used to standardize other, more con-
ventional instruments, such as ammeters.

The SI unit of charge, the coulomb, is defined in terms of the ampere:

a � 1
I1 � I2 � 1 A

When a conductor carries a steady current of 1 A, the quantity of charge that
flows through a cross-section of the conductor in 1 s is 1 C.

1 Although the total force exerted on wire 1 is equal in magnitude and opposite in direction to the to-
tal force exerted on wire 2, Newton’s third law does not apply when one considers two small elements
of the wires that are not exactly opposite each other. This apparent violation of Newton’s third law and
of the law of conservation of momentum is described in more advanced treatments on electricity and
magnetism.

Definition of the ampere

Definition of the coulomb

web
Visit http://physics.nist.gov/cuu/Units/
ampere.html for more information.
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12.4

AMPÈRE’S LAW
Oersted’s 1819 discovery about deflected compass needles demonstrates that a
current-carrying conductor produces a magnetic field. Figure 30.8a shows how this
effect can be demonstrated in the classroom. Several compass needles are placed
in a horizontal plane near a long vertical wire. When no current is present in the
wire, all the needles point in the same direction (that of the Earth’s magnetic
field), as expected. When the wire carries a strong, steady current, the needles all
deflect in a direction tangent to the circle, as shown in Figure 30.8b. These obser-
vations demonstrate that the direction of the magnetic field produced by the cur-
rent in the wire is consistent with the right-hand rule described in Figure 30.3.
When the current is reversed, the needles in Figure 30.8b also reverse.

Because the compass needles point in the direction of B, we conclude that the
lines of B form circles around the wire, as discussed in the preceding section. By
symmetry, the magnitude of B is the same everywhere on a circular path centered
on the wire and lying in a plane perpendicular to the wire. By varying the current
and distance a from the wire, we find that B is proportional to the current and in-
versely proportional to the distance from the wire, as Equation 30.5 describes.

Now let us evaluate the product B � ds for a small length element ds on the cir-
cular path defined by the compass needles, and sum the products for all elements
over the closed circular path. Along this path, the vectors ds and B are parallel at
each point (see Fig. 30.8b), so B � ds � B ds. Furthermore, the magnitude of B is
constant on this circle and is given by Equation 30.5. Therefore, the sum of the
products B ds over the closed path, which is equivalent to the line integral of
B � ds, is

where is the circumference of the circular path. Although this result
was calculated for the special case of a circular path surrounding a wire, it holds

�ds � 2�r

�B � ds � B �ds �
�0I
2�r

 (2�r) � �0I

30.3

Andre-Marie Ampère
(1775– 1836) Ampère, a Frenchman,
is credited with the discovery of elec-
tromagnetism — the relationship be-
tween electric currents and magnetic
fields. Ampère’s genius, particularly in
mathematics, became evident by the
time he was 12 years old; his personal
life, however, was filled with tragedy.
His father, a wealthy city official, was
guillotined during the French Revolu-
tion, and his wife died young, in 1803.
Ampère died at the age of 61 of pneu-
monia. His judgment of his life is clear
from the epitaph he chose for his
gravestone: Tandem Felix (Happy at
Last). (AIP Emilio Segre Visual Archive)

(a) (b)

I  =  0

I

ds

B

Figure 30.8 (a) When no current is present in the wire, all compass needles point in the same
direction (toward the Earth’s north pole). (b) When the wire carries a strong current, the com-
pass needles deflect in a direction tangent to the circle, which is the direction of the magnetic
field created by the current. (c) Circular magnetic field lines surrounding a current-carrying con-
ductor, displayed with iron filings.

(c)
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for a closed path of any shape surrounding a current that exists in an unbroken cir-
cuit. The general case, known as Ampère’s law, can be stated as follows:

The line integral of B �ds around any closed path equals �0I, where I is the total
continuous current passing through any surface bounded by the closed path.

(30.13)�B � ds � �0IAmpère’s law

Ampère’s law describes the creation of magnetic fields by all continuous cur-
rent configurations, but at our mathematical level it is useful only for calculating
the magnetic field of current configurations having a high degree of symmetry. Its
use is similar to that of Gauss’s law in calculating electric fields for highly symmet-
ric charge distributions.

Rank the magnitudes of for the closed paths in Figure 30.9, from least to greatest.�B � ds

Quick Quiz 30.3

Rank the magnitudes of for the closed paths in Figure 30.10, from least to greatest.�B � ds

Quick Quiz 30.4

×

1 A
5 A

b

a

d

c

2 A

a

b

c

d

Figure 30.9 Four closed paths around three current-
carrying wires.

Figure 30.10 Several closed paths near a single 
current-carrying wire.
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The Magnetic Field Created by a Long Current-Carrying WireEXAMPLE 30.4
by circle 2 must equal the ratio of the area �r 2 enclosed by
circle 2 to the cross-sectional area �R 2 of the wire:2

Following the same procedure as for circle 1, we apply Am-
père’s law to circle 2:

(for r � R) (30.15)

This result is similar in form to the expression for the electric
field inside a uniformly charged sphere (see Example 24.5).
The magnitude of the magnetic field versus r for this configu-
ration is plotted in Figure 30.12. Note that inside the wire, 
B : 0 as r : 0. Note also that Equations 30.14 and 30.15 give
the same value of the magnetic field at r � R , demonstrating
that the magnetic field is continuous at the surface of the
wire.

B � � �0 I0

2�R 2 �r

�B � ds � B(2�r) � �0 I � �0� r 2

R 2  I0�

 I �
r 2

R 2  I0

I
I0

�
�r 2

�R 2

A long, straight wire of radius R carries a steady current I0
that is uniformly distributed through the cross-section of the
wire (Fig. 30.11). Calculate the magnetic field a distance r
from the center of the wire in the regions and 

Solution For the case, we should get the same result
we obtained in Example 30.1, in which we applied the
Biot–Savart law to the same situation. Let us choose for our
path of integration circle 1 in Figure 30.11. From symmetry,
B must be constant in magnitude and parallel to ds at every
point on this circle. Because the total current passing
through the plane of the circle is I0, Ampère’s law gives

(for r � R) (30.14)

which is identical in form to Equation 30.5. Note how much
easier it is to use Ampère’s law than to use the Biot–Savart
law. This is often the case in highly symmetric situations.

Now consider the interior of the wire, where r � R. Here
the current I passing through the plane of circle 2 is less than
the total current I0 . Because the current is uniform over the
cross-section of the wire, the fraction of the current enclosed

B �
�0 I0

2�r

�B � ds � B�ds � B(2�r) � �0 I0

r � R

r � R.r � R

2 Another way to look at this problem is to see that the current enclosed by circle 2 must equal the
product of the current density and the area �r 2 of this circle.J � I0/�R 2

2
R

r

1 I0

ds R
r

B ∝ 1/r

B ∝ r

B

Figure 30.11 A long, straight wire of radius R carrying a steady
current I0 uniformly distributed across the cross-section of the wire.
The magnetic field at any point can be calculated from Ampère’s law
using a circular path of radius r, concentric with the wire.

Figure 30.12 Magnitude of the magnetic field versus r for the
wire shown in Figure 30.11. The field is proportional to r inside the
wire and varies as 1/r outside the wire.

The Magnetic Field Created by a ToroidEXAMPLE 30.5
ing N closely spaced turns of wire, calculate the magnetic
field in the region occupied by the torus, a distance r from
the center.

A device called a toroid (Fig. 30.13) is often used to create an
almost uniform magnetic field in some enclosed area. The
device consists of a conducting wire wrapped around a ring
(a torus) made of a nonconducting material. For a toroid hav-
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Magnetic Field Created by an Infinite Current SheetEXAMPLE 30.6
the electric field due to an infinite sheet of charge does not
depend on distance from the sheet. Thus, we might expect a
similar result here for the magnetic field.

To evaluate the line integral in Ampère’s law, let us take a
rectangular path through the sheet, as shown in Figure 30.14.
The rectangle has dimensions � and w , with the sides of
length � parallel to the sheet surface. The net current passing
through the plane of the rectangle is Js�. We apply Ampère’s
law over the rectangle and note that the two sides of length w
do not contribute to the line integral because the component
of B along the direction of these paths is zero. By symmetry,
we can argue that the magnetic field is constant over the
sides of length � because every point on the infinitely large
sheet is equivalent, and hence the field should not vary from
point to point. The only choices of field direction that are
reasonable for the symmetry are perpendicular or parallel to
the sheet, and a perpendicular field would pass through the
current, which is inconsistent with the Biot–Savart law. As-
suming a field that is constant in magnitude and parallel to
the plane of the sheet, we obtain

This result shows that the magnetic field is independent of distance
from the current sheet, as we suspected.

B � �0 
Js

2

 2B� � �0 Js � 

�B � ds � �0 I � �0 Js �

So far we have imagined currents through wires of small
cross-section. Let us now consider an example in which a cur-
rent exists in an extended object. A thin, infinitely large sheet
lying in the yz plane carries a current of linear current density
Js . The current is in the y direction, and Js represents the cur-
rent per unit length measured along the z axis. Find the mag-
netic field near the sheet.

Solution This situation brings to mind similar calculations
involving Gauss’s law (see Example 24.8). You may recall that

Solution To calculate this field, we must evaluate 
over the circle of radius r in Figure 30.13. By symmetry, we
see that the magnitude of the field is constant on this circle
and tangent to it, so Furthermore, note thatB � ds � B ds.

�B � ds the circular closed path surrounds N loops of wire, each of
which carries a current I. Therefore, the right side of Equa-
tion 30.13 is �0NI in this case.

Ampère’s law applied to the circle gives

(30.16)

This result shows that B varies as 1/r and hence is nonuni-
form in the region occupied by the torus. However, if r is very
large compared with the cross-sectional radius of the torus,
then the field is approximately uniform inside the torus.

For an ideal toroid, in which the turns are closely spaced,
the external magnetic field is zero. This can be seen by not-
ing that the net current passing through any circular path ly-
ing outside the toroid (including the region of the “hole in
the doughnut”) is zero. Therefore, from Ampère’s law we
find that in the regions exterior to the torus.B � 0

B �
�0NI
2�r

�B � ds � B �ds � B(2�r) � �0NI

�

w

x

z

Js(out of page)

B

B

B

r

a

ds

I

I

Figure 30.13 A toroid consisting of many turns of wire. If the
turns are closely spaced, the magnetic field in the interior of the
torus (the gold-shaded region) is tangent to the dashed circle and
varies as 1/r. The field outside the toroid is zero. The dimension a is
the cross-sectional radius of the torus.

Figure 30.14 End view of an infinite current sheet lying in the yz
plane, where the current is in the y direction (out of the page). This
view shows the direction of B on both sides of the sheet.
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Is a net force acting on the current loop in Example 30.7? A net torque?

THE MAGNETIC FIELD OF A SOLENOID
A solenoid is a long wire wound in the form of a helix. With this configuration, a
reasonably uniform magnetic field can be produced in the space surrounded by
the turns of wire—which we shall call the interior of the solenoid—when the sole-
noid carries a current. When the turns are closely spaced, each can be approxi-
mated as a circular loop, and the net magnetic field is the vector sum of the fields
resulting from all the turns.

Figure 30.16 shows the magnetic field lines surrounding a loosely wound sole-
noid. Note that the field lines in the interior are nearly parallel to one another, are
uniformly distributed, and are close together, indicating that the field in this space
is uniform and strong. The field lines between current elements on two adjacent
turns tend to cancel each other because the field vectors from the two elements
are in opposite directions. The field at exterior points such as P is weak because
the field due to current elements on the right-hand portion of a turn tends to can-
cel the field due to current elements on the left-hand portion.

30.4

Quick Quiz 30.5

The Magnetic Force on a Current SegmentEXAMPLE 30.7
consider the force exerted by wire 1 on a small segment ds of
wire 2 by using Equation 29.4. This force is given by

where and B is the magnetic field cre-
ated by the current in wire 1 at the position of ds. From Am-
père’s law, the field at a distance x from wire 1 (see Eq.
30.14) is

where the unit vector � k is used to indicate that the field 
at ds points into the page. Because wire 2 is along the x axis,
ds � dx i, and we find that

Integrating over the limits x � a to x � a 
 b gives

The force points in the positive y direction, as indicated by
the unit vector j and as shown in Figure 30.15.

Exercise What are the magnitude and direction of the
force exerted on the bottom wire of length b?

Answer The force has the same magnitude as the force on
wire 2 but is directed downward.

�0 I1I2

2�
 ln�1 


b
a � jFB �

�0 I1I2

2�
 ln x�

a

a
b
 j �

dFB �
�0 I1I2

2�x
 [ i � (� k)]dx �

�0 I1I2

2�
 
dx
x

 j

B �
�0 I1

2�x
 (� k)

I � I2dFB � I ds � B,

Wire 1 in Figure 30.15 is oriented along the y axis and carries
a steady current I1 . A rectangular loop located to the right of
the wire and in the xy plane carries a current I2 . Find the
magnetic force exerted by wire 1 on the top wire of length b
in the loop, labeled “Wire 2” in the figure.

Solution You may be tempted to use Equation 30.12 to
obtain the force exerted on a small segment of length dx of
wire 2. However, this equation applies only to two parallel
wires and cannot be used here. The correct approach is to

Wire 1 Wire 2

×

y
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×

×

×

×

×

×

×
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×

×

×
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×
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×
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×
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I1 x

I2

ds

ba

FB

Figure 30.15

P

Exterior

Interior

Figure 30.16 The magnetic field
lines for a loosely wound solenoid.
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If the turns are closely spaced and the solenoid is of finite length, the mag-
netic field lines are as shown in Figure 30.17a. This field line distribution is similar
to that surrounding a bar magnet (see Fig. 30.17b). Hence, one end of the sole-
noid behaves like the north pole of a magnet, and the opposite end behaves like
the south pole. As the length of the solenoid increases, the interior field becomes
more uniform and the exterior field becomes weaker. An ideal solenoid is ap-
proached when the turns are closely spaced and the length is much greater than
the radius of the turns. In this case, the external field is zero, and the interior field
is uniform over a great volume.

S

N

Figure 30.17 (a) Magnetic field lines for a tightly wound solenoid of finite length, carrying a
steady current. The field in the interior space is nearly uniform and strong. Note that the field
lines resemble those of a bar magnet, meaning that the solenoid effectively has north and south
poles. (b) The magnetic field pattern of a bar magnet, displayed with small iron filings on a sheet
of paper.

3

2

4

1 �

w

B

×
×
×
×
×
×
×
×
×
×
×

Figure 30.18 Cross-sectional view of an ideal solenoid,
where the interior magnetic field is uniform and the ex-
terior field is zero. Ampère’s law applied to the red
dashed path can be used to calculate the magnitude of
the interior field.

A technician studies the scan of a
patient’s head. The scan was ob-
tained using a medical diagnostic
technique known as magnetic reso-
nance imaging (MRI). This instru-
ment makes use of strong magnetic
fields produced by superconduct-
ing solenoids.

(a) (b)
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We can use Ampère’s law to obtain an expression for the interior magnetic
field in an ideal solenoid. Figure 30.18 shows a longitudinal cross-section of part of
such a solenoid carrying a current I. Because the solenoid is ideal, B in the inte-
rior space is uniform and parallel to the axis, and B in the exterior space is zero.
Consider the rectangular path of length � and width w shown in Figure 30.18. We
can apply Ampère’s law to this path by evaluating the integral of over each
side of the rectangle. The contribution along side 3 is zero because in this
region. The contributions from sides 2 and 4 are both zero because B is perpen-
dicular to ds along these paths. Side 1 gives a contribution B� to the integral be-
cause along this path B is uniform and parallel to ds. The integral over the closed
rectangular path is therefore

The right side of Ampère’s law involves the total current passing through the
area bounded by the path of integration. In this case, the total current through
the rectangular path equals the current through each turn multiplied by the num-
ber of turns. If N is the number of turns in the length �, the total current through
the rectangle is NI. Therefore, Ampère’s law applied to this path gives

(30.17)

where is the number of turns per unit length.
We also could obtain this result by reconsidering the magnetic field of a toroid

(see Example 30.5). If the radius r of the torus in Figure 30.13 containing N turns
is much greater than the toroid’s cross-sectional radius a, a short section of the
toroid approximates a solenoid for which In this limit, Equation 30.16
agrees with Equation 30.17.

Equation 30.17 is valid only for points near the center (that is, far from the
ends) of a very long solenoid. As you might expect, the field near each end is
smaller than the value given by Equation 30.17. At the very end of a long solenoid,
the magnitude of the field is one-half the magnitude at the center.

MAGNETIC FLUX
The flux associated with a magnetic field is defined in a manner similar to that
used to define electric flux (see Eq. 24.3). Consider an element of area dA on an
arbitrarily shaped surface, as shown in Figure 30.19. If the magnetic field at this el-
ement is B, the magnetic flux through the element is where dA is a vector
that is perpendicular to the surface and has a magnitude equal to the area dA.
Hence, the total magnetic flux 
B through the surface is

(30.18)
B � �B � dA

B � dA,

30.5

n � N/2�r.

n � N/�

B � �0 
N
�

 I � �0nI

�B � ds � B� � �0NI

�B � ds � �
path 1

B � ds � B �
path 1

ds � B�

B � 0
B � ds

Magnetic field inside a solenoid

Definition of magnetic flux

web
For a more detailed discussion of the
magnetic field along the axis of a solenoid,
visit www.saunderscollege.com/physics/

12.5

QuickLab
Wrap a few turns of wire around a
compass, essentially putting the com-
pass inside a solenoid. Hold the ends
of the wire to the two terminals of a
flashlight battery. What happens to
the compass? Is the effect as strong
when the compass is outside the turns
of wire?
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Consider the special case of a plane of area A in a uniform field B that makes
an angle � with dA. The magnetic flux through the plane in this case is

(30.19)

If the magnetic field is parallel to the plane, as in Figure 30.20a, then � � 90° and
the flux is zero. If the field is perpendicular to the plane, as in Figure 30.20b, then
� � 0 and the flux is BA (the maximum value).

The unit of flux is the which is defined as a weber (Wb); 1 
1 T �m2.

Wb �T�m2,


B � BA cos �

Magnetic Flux Through a Rectangular LoopEXAMPLE 30.8

The factor 1/r indicates that the field varies over the loop,
and Figure 30.21 shows that the field is directed into the
page. Because B is parallel to dA at any point within the loop,
the magnetic flux through an area element dA is

(Because B is not uniform but depends on r, it cannot be re-
moved from the integral.)

To integrate, we first express the area element (the tan re-
gion in Fig. 30.21) as Because r is now the only
variable in the integral, we have

Exercise Apply the series expansion formula for ln(1 
 x)
(see Appendix B.5) to this equation to show that it gives a
reasonable result when the loop is far from the wire relative
to the loop dimensions (in other words, when 

Answer 
B : 0.

c W a).

�0 Ib
2�

 ln�1 

a
c � �

�0 Ib
2�

 ln� a 
 c
c � �


B �
�0 Ib
2�

 �a
c

c
 
dr
r

�
�0 Ib
2�

 ln r �
c

a
c

dA � b dr.


B � �B dA � � �0 I
2�r

 dA

B �
�0 I
2�r

A rectangular loop of width a and length b is located near a
long wire carrying a current I (Fig. 30.21). The distance be-
tween the wire and the closest side of the loop is c . The wire
is parallel to the long side of the loop. Find the total mag-
netic flux through the loop due to the current in the wire.

Solution From Equation 30.14, we know that the magni-
tude of the magnetic field created by the wire at a distance r
from the wire is

Figure 30.19 The magnetic flux
through an area element dA is

cos �, where dA is a
vector perpendicular to the sur-
face.

B � d A � BdA

B

d A θ

(a) (b)

B

dA

B

dA

Figure 30.20 Magnetic flux through a plane lying in a magnetic field. (a) The flux through
the plane is zero when the magnetic field is parallel to the plane surface. (b) The flux through
the plane is a maximum when the magnetic field is perpendicular to the plane.

b
rI

c a

dr
× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

Figure 30.21 The magnetic field due to the wire carrying a cur-
rent I is not uniform over the rectangular loop.
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This statement is based on the experimental fact, mentioned in the opening of
Chapter 29, that isolated magnetic poles (monopoles) have never been de-
tected and perhaps do not exist. Nonetheless, scientists continue the search be-

GAUSS’S LAW IN MAGNETISM
In Chapter 24 we found that the electric flux through a closed surface surround-
ing a net charge is proportional to that charge (Gauss’s law). In other words, the
number of electric field lines leaving the surface depends only on the net charge
within it. This property is based on the fact that electric field lines originate and
terminate on electric charges.

The situation is quite different for magnetic fields, which are continuous and
form closed loops. In other words, magnetic field lines do not begin or end at any
point—as illustrated by the magnetic field lines of the bar magnet in Figure 30.22.
Note that for any closed surface, such as the one outlined by the dashed red line
in Figure 30.22, the number of lines entering the surface equals the number leav-
ing the surface; thus, the net magnetic flux is zero. In contrast, for a closed surface
surrounding one charge of an electric dipole (Fig. 30.23), the net electric flux is
not zero.

Gauss’s law in magnetism states that

30.6

the net magnetic flux through any closed surface is always zero:

(30.20)�B � dA � 0 Gauss’s law for magnetism

12.5

N

S

–

+

Figure 30.22 The magnetic field
lines of a bar magnet form closed
loops. Note that the net magnetic
flux through the closed surface
(dashed red line) surrounding one
of the poles (or any other closed
surface) is zero.

Figure 30.23 The electric field
lines surrounding an electric di-
pole begin on the positive charge
and terminate on the negative
charge. The electric flux through a
closed surface surrounding one of
the charges is not zero.
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cause certain theories that are otherwise successful in explaining fundamental
physical behavior suggest the possible existence of monopoles.

DISPLACEMENT CURRENT AND THE GENERAL
FORM OF AMPÈRE’S LAW

We have seen that charges in motion produce magnetic fields. When a current-
carrying conductor has high symmetry, we can use Ampère’s law to calculate the mag-
netic field it creates. In Equation 30.13, the line integral is over any
closed path through which the conduction current passes, and the conduction cur-
rent is defined by the expression (In this section we use the term conduc-
tion current to refer to the current carried by the wire, to distinguish it from a new type
of current that we shall introduce shortly.) We now show that Ampère’s law in this
form is valid only if any electric fields present are constant in time. Maxwell
recognized this limitation and modified Ampère’s law to include time-varying electric
fields.

We can understand the problem by considering a capacitor that is being
charged as illustrated in Figure 30.24. When a conduction current is present, the
charge on the positive plate changes but no conduction current passes across the gap be-
tween the plates. Now consider the two surfaces S1 and S2 in Figure 30.24, bounded
by the same path P. Ampère’s law states that around this path must equal
�0I, where I is the total current through any surface bounded by the path P.

When the path P is considered as bounding S1 , is �0I because the con-
duction current passes through S1 . When the path is considered as bounding S2 ,
however, because no conduction current passes through S2 . Thus, we ar-
rive at a contradictory situation that arises from the discontinuity of the current! Max-
well solved this problem by postulating an additional term on the right side of Equa-
tion 30.13, which includes a factor called the displacement current Id , defined as3

(30.21)

where �0 is the permittivity of free space (see Section 23.3) and is the
electric flux (see Eq. 24.3).

As the capacitor is being charged (or discharged), the changing electric field
between the plates may be considered equivalent to a current that acts as a contin-
uation of the conduction current in the wire. When the expression for the dis-
placement current given by Equation 30.21 is added to the conduction current on
the right side of Ampère’s law, the difficulty represented in Figure 30.24 is re-
solved. No matter which surface bounded by the path P is chosen, either conduc-
tion current or displacement current passes through it. With this new term Id , 
we can express the general form of Ampère’s law (sometimes called the
Ampère–Maxwell law) as4

(30.22)�B � d s � �0(I 
 Id) � �0I 
 �0�0 
d
E

dt


E � �E � dA

Id � �0 
d
E

dt

�B � ds � 0

�B � ds

�B � ds

I � dq/dt.

�B � ds � �0I,

30.7

Ampère–Maxwell law

3 Displacement in this context does not have the meaning it does in Chapter 2. Despite the inaccurate
implications, the word is historically entrenched in the language of physics, so we continue to use it.
4 Strictly speaking, this expression is valid only in a vacuum. If a magnetic material is present, one must
change �0 and �0 on the right-hand side of Equation 30.22 to the permeability �m and permittivity �
characteristic of the material. Alternatively, one may include a magnetizing current Im on the righthand
side of Equation 30.22 to make Ampère’s law fully general. On a microscopic scale, Im is as real as I.

Displacement current

12.9

Path P

A

–Q

S1

S2

Q

I

Figure 30.24 Two surfaces S1
and S2 near the plate of a capacitor
are bounded by the same path P.
The conduction current in the 
wire passes only through S1 . 
This leads to a contradiction in
Ampère’s law that is resolved 
only if one postulates a displace-
ment current through S2 .
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We can understand the meaning of this expression by referring to Figure 30.25.
The electric flux through surface S2 is where A is the area of
the capacitor plates and E is the magnitude of the uniform electric field between
the plates. If Q is the charge on the plates at any instant, then (see
Section 26.2). Therefore, the electric flux through S2 is simply

Hence, the displacement current through S2 is

(30.23)

That is, the displacement current through S2 is precisely equal to the conduction
current I through S1 !

By considering surface S2 , we can identify the displacement current as the
source of the magnetic field on the surface boundary. The displacement current
has its physical origin in the time-varying electric field. The central point of this
formalism, then, is that

Id � �0 
d
E

dt
�

dQ
dt


E � EA �
Q
�0

E � Q /�0A


E � �E � dA � EA,

magnetic fields are produced both by conduction currents and by time-varying
electric fields.

Displacement Current in a CapacitorEXAMPLE 30.9
the capacitor is to find the displacement current:

The displacement current varies sinusoidally with time and
has a maximum value of 4.52 A.

(4.52 A) cos(1.88 � 104t) �

 � (8.00 � 10�6  F) 
d
dt

 [(30.0 V) sin(1.88 � 104t)]

Id �
dQ
dt

�
d
dt

 (C �V ) � C 
d
dt

 (�V ) 

Q � C �VA sinusoidally varying voltage is applied across an 8.00-�F ca-
pacitor. The frequency of the voltage is 3.00 kHz, and the
voltage amplitude is 30.0 V. Find the displacement current
between the plates of the capacitor.

Solution The angular frequency of the source, from Equa-
tion 13.6, is � � 2�f � 2�(3.00 � 103 Hz) � 1.88 � 104 s�1.
Hence, the voltage across the capacitor in terms of t is

We can use Equation 30.23 and the fact that the charge on

�V � �Vmax sin �t � (30.0 V) sin(1.88 � 104t)

This result was a remarkable example of theoretical work by Maxwell, and it con-
tributed to major advances in the understanding of electromagnetism.

What is the displacement current for a fully charged 3-�F capacitor?

Quick Quiz 30.6

E–Q

S2
S1

Q

II

Figure 30.25 Because it exists only in the
wires attached to the capacitor plates, the
conduction current passes
through S1 but not through S2 . Only the dis-
placement current passes
through S2 . The two currents must be equal
for continuity.

I d � �0 d 
E /dt

I � dQ /dt
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Optional Section

MAGNETISM IN MATTER
The magnetic field produced by a current in a coil of wire gives us a hint as to
what causes certain materials to exhibit strong magnetic properties. Earlier we
found that a coil like the one shown in Figure 30.17 has a north pole and a south
pole. In general, any current loop has a magnetic field and thus has a magnetic di-
pole moment, including the atomic-level current loops described in some models
of the atom. Thus, the magnetic moments in a magnetized substance may be de-
scribed as arising from these atomic-level current loops. For the Bohr model of the
atom, these current loops are associated with the movement of electrons around
the nucleus in circular orbits. In addition, a magnetic moment is intrinsic to elec-
trons, protons, neutrons, and other particles; it arises from a property called spin.

The Magnetic Moments of Atoms

It is instructive to begin our discussion with a classical model of the atom in which
electrons move in circular orbits around the much more massive nucleus. In this
model, an orbiting electron constitutes a tiny current loop (because it is a moving
charge), and the magnetic moment of the electron is associated with this orbital mo-
tion. Although this model has many deficiencies, its predictions are in good agree-
ment with the correct theory, which is expressed in terms of quantum physics.

Consider an electron moving with constant speed v in a circular orbit of radius
r about the nucleus, as shown in Figure 30.26. Because the electron travels a dis-
tance of 2�r (the circumference of the circle) in a time T, its orbital speed is

The current I associated with this orbiting electron is its charge e di-
vided by T. Using and we have

The magnetic moment associated with this current loop is where 
is the area enclosed by the orbit. Therefore,

(30.24)

Because the magnitude of the orbital angular momentum of the electron is
(Eq. 11.16 with � � 90°), the magnetic moment can be written as

(30.25)

This result demonstrates that the magnetic moment of the electron is propor-
tional to its orbital angular momentum. Note that because the electron is nega-
tively charged, the vectors � and L point in opposite directions. Both vectors are
perpendicular to the plane of the orbit, as indicated in Figure 30.26.

A fundamental outcome of quantum physics is that orbital angular momen-
tum is quantized and is equal to multiples of where
h is Planck’s constant. The smallest nonzero value of the electron’s magnetic mo-
ment resulting from its orbital motion is

(30.26)

We shall see in Chapter 42 how expressions such as Equation 30.26 arise.

� � !2 
e

2me
 �

� � h/2� � 1.05 � 10�34 J �s,

� � � e
2me

�L

L � mevr

� � IA � � ev
2�r ��r 2 � 1

2evr

A � �r 2� � IA,

I �
e
T

�
e�

2�
�

ev
2�r

� � v/r,T � 2�/�
v � 2�r /T.
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Orbital magnetic moment

Angular momentum is quantized

r

µ

L

Figure 30.26 An electron mov-
ing in a circular orbit of radius r
has an angular momentum L in
one direction and a magnetic mo-
ment � in the opposite direction.
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Because all substances contain electrons, you may wonder why not all sub-
stances are magnetic. The main reason is that in most substances, the magnetic
moment of one electron in an atom is canceled by that of another electron orbit-
ing in the opposite direction. The net result is that, for most materials, the mag-
netic effect produced by the orbital motion of the electrons is either zero or
very small.

In addition to its orbital magnetic moment, an electron has an intrinsic prop-
erty called spin that also contributes to its magnetic moment. In this regard, the
electron can be viewed as spinning about its axis while it orbits the nucleus, as
shown in Figure 30.27. (Warning: This classical description should not be taken lit-
erally because spin arises from relativistic dynamics that must be incorporated into
a quantum-mechanical analysis.) The magnitude of the angular momentum S as-
sociated with spin is of the same order of magnitude as the angular momentum L
due to the orbital motion. The magnitude of the spin angular momentum pre-
dicted by quantum theory is

The magnetic moment characteristically associated with the spin of an electron has
the value

(30.27)

This combination of constants is called the Bohr magneton:

(30.28)

Thus, atomic magnetic moments can be expressed as multiples of the Bohr mag-
neton. (Note that 1 J/T � 1 A � m2.)

In atoms containing many electrons, the electrons usually pair up with their
spins opposite each other; thus, the spin magnetic moments cancel. However,
atoms containing an odd number of electrons must have at least one unpaired
electron and therefore some spin magnetic moment. The total magnetic moment
of an atom is the vector sum of the orbital and spin magnetic moments, and a few
examples are given in Table 30.1. Note that helium and neon have zero moments
because their individual spin and orbital moments cancel.

The nucleus of an atom also has a magnetic moment associated with its con-
stituent protons and neutrons. However, the magnetic moment of a proton or
neutron is much smaller than that of an electron and can usually be neglected. We
can understand this by inspecting Equation 30.28 and replacing the mass of the
electron with the mass of a proton or a neutron. Because the masses of the proton
and neutron are much greater than that of the electron, their magnetic moments
are on the order of 103 times smaller than that of the electron.

Magnetization Vector and Magnetic Field Strength

The magnetic state of a substance is described by a quantity called the magnetiza-
tion vector M. The magnitude of this vector is defined as the magnetic mo-
ment per unit volume of the substance. As you might expect, the total magnetic
field B at a point within a substance depends on both the applied (external) field
B0 and the magnetization of the substance. 

To understand the problems involved in measuring the total magnetic field B
in such situations, consider this: Scientists use small probes that utilize the Hall ef-

�B �
e�

2me
� 9.27 � 10�24 J/T

� spin �
e�

2me

S �
!3
2

 �
Spin angular momentum

Bohr magneton

TABLE 30.1
Magnetic Moments of Some
Atoms and Ions

Atom Magnetic Moment
or Ion (10�24 J/T)

H 9.27
He 0
Ne 0
Ce3
 19.8
Yb3
 37.1

spinµµ

Figure 30.27 Classical model of
a spinning electron. This model
gives an incorrect magnitude for
the magnetic moment, incorrect
quantum numbers, and too many
degrees of freedom.

Magnetization vector M
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fect (see Section 29.6) to measure magnetic fields. What would such a probe read
if it were positioned inside the solenoid mentioned in the QuickLab on page 951
when you inserted the compass? Because the compass is a magnetic material, the
probe would measure a total magnetic field B that is the sum of the solenoid (ex-
ternal) field B0 and the (magnetization) field Bm due to the compass. This tells us
that we need a way to distinguish between magnetic fields originating from cur-
rents and those originating from magnetic materials. Consider a region in which a
magnetic field B0 is produced by a current-carrying conductor. If we now fill that
region with a magnetic substance, the total magnetic field B in the region is

where Bm is the field produced by the magnetic substance. We can
express this contribution in terms of the magnetization vector of the substance as

hence, the total magnetic field in the region becomes

(30.29)

When analyzing magnetic fields that arise from magnetization, it is convenient
to introduce a field quantity, called the magnetic field strength H within the
substance. The magnetic field strength represents the effect of the conduction
currents in wires on a substance. To emphasize the distinction between the field
strength H and the field B, the latter is often called the magnetic flux density or the
magnetic induction. The magnetic field strength is a vector defined by the relation-
ship Thus, Equation 30.29 can be written

(30.30)

The quantities H and M have the same units. In SI units, because M is magnetic
moment per unit volume, the units are (ampere)(meter)2/(meter)3, or amperes
per meter.

To better understand these expressions, consider the torus region of a toroid
that carries a current I. If this region is a vacuum, M � 0 (because no magnetic
material is present), the total magnetic field is that arising from the current alone,
and Because in the torus region, where n is the num-
ber of turns per unit length of the toroid, or

(30.31)

In this case, the magnetic field B in the torus region is due only to the current in
the windings of the toroid.

If the torus is now made of some substance and the current I is kept constant, H
in the torus region remains unchanged (because it depends on the current only)
and has magnitude nI. The total field B, however, is different from that when the
torus region was a vacuum. From Equation 30.30, we see that part of B arises from
the term �0H associated with the current in the toroid, and part arises from the
term �0M due to the magnetization of the substance of which the torus is made.

Classification of Magnetic Substances

Substances can be classified as belonging to one of three categories, depending on
their magnetic properties. Paramagnetic and ferromagnetic materials are those
made of atoms that have permanent magnetic moments. Diamagnetic materials
are those made of atoms that do not have permanent magnetic moments.

For paramagnetic and diamagnetic substances, the magnetization vector M is
proportional to the magnetic field strength H. For these substances placed in an
external magnetic field, we can write

(30.32)M � �H

H � nI

H � B0/�0 � �0nI/�0 ,
B0 � �0nIB � B0 � �0H.

B � �0(H 
 M)

H � B0/�0 � (B/�0) � M.

B � B0 
 �0M

Bm � �0M;

B � B0 
 Bm ,

Oxygen, a paramagnetic substance,
is attracted to a magnetic field. The
liquid oxygen in this photograph is
suspended between the poles of
the magnet.

Magnetic field strength H
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where � (Greek letter chi) is a dimensionless factor called the magnetic suscepti-
bility. For paramagnetic substances, � is positive and M is in the same direction 
as H. For diamagnetic substances, � is negative and M is opposite H. (It is im-
portant to note that this linear relationship between M and H does not apply to
ferromagnetic substances.) The susceptibilities of some substances are given in
Table 30.2.

Substituting Equation 30.32 for M into Equation 30.30 gives

or

(30.33)

where the constant �m is called the magnetic permeability of the substance and
is related to the susceptibility by

(30.34)

Substances may be classified in terms of how their magnetic permeability �m
compares with �0 (the permeability of free space), as follows:

Because � is very small for paramagnetic and diamagnetic substances (see Table
30.2), �m is nearly equal to �0 for these substances. For ferromagnetic substances,
however, �m is typically several thousand times greater than �0 (meaning that � is
very great for ferromagnetic substances). 

Although Equation 30.33 provides a simple relationship between B and H, we
must interpret it with care when dealing with ferromagnetic substances. As men-
tioned earlier, M is not a linear function of H for ferromagnetic substances. This is
because the value of �m is not only a characteristic of the ferromagnetic substance
but also depends on the previous state of the substance and on the process it un-
derwent as it moved from its previous state to its present one. We shall investigate
this more deeply after the following example.

 Diamagnetic  �m � �0

Paramagnetic  �m � �0

�m � �0(1 
 �)

B � �mH

B � �0(H 
 M) � �0(H 
 �H) � �0(1 
 �)H

TABLE 30.2 Magnetic Susceptibilities of Some Paramagnetic and
Diamagnetic Substances at 300 K

Paramagnetic Diamagnetic
Substance � Substance �

Aluminum 2.3 � 10�5 Bismuth � 1.66 � 10�5

Calcium 1.9 � 10�5 Copper � 9.8 � 10�6

Chromium 2.7 � 10�4 Diamond � 2.2 � 10�5

Lithium 2.1 � 10�5 Gold � 3.6 � 10�5

Magnesium 1.2 � 10�5 Lead � 1.7 � 10�5

Niobium 2.6 � 10�4 Mercury � 2.9 � 10�5

Oxygen 2.1 � 10�6 Nitrogen � 5.0 � 10�9

Platinum 2.9 � 10�4 Silver � 2.6 � 10�5

Tungsten 6.8 � 10�5 Silicon � 4.2 � 10�6

Magnetic susceptibility �

Magnetic permeability �m
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A current in a solenoid having air in the interior creates a magnetic field De-
scribe qualitatively what happens to the magnitude of B as (a) aluminum, (b) copper, and
(c) iron are placed in the interior.

Ferromagnetism

A small number of crystalline substances in which the atoms have permanent mag-
netic moments exhibit strong magnetic effects called ferromagnetism. Some ex-
amples of ferromagnetic substances are iron, cobalt, nickel, gadolinium, and dys-
prosium. These substances contain atomic magnetic moments that tend to align
parallel to each other even in a weak external magnetic field. Once the moments
are aligned, the substance remains magnetized after the external field is removed.
This permanent alignment is due to a strong coupling between neighboring mo-
ments, a coupling that can be understood only in quantum-mechanical terms.

All ferromagnetic materials are made up of microscopic regions called do-
mains, regions within which all magnetic moments are aligned. These domains
have volumes of about 10�12 to 10�8 m3 and contain 1017 to 1021 atoms. The
boundaries between the various domains having different orientations are called
domain walls. In an unmagnetized sample, the domains are randomly oriented
so that the net magnetic moment is zero, as shown in Figure 30.28a. When the
sample is placed in an external magnetic field, the magnetic moments of the
atoms tend to align with the field, which results in a magnetized sample, as in Fig-
ure 30.28b. Observations show that domains initially oriented along the external
field grow larger at the expense of the less favorably oriented domains. When the
external field is removed, the sample may retain a net magnetization in the direc-
tion of the original field. At ordinary temperatures, thermal agitation is not suffi-
cient to disrupt this preferred orientation of magnetic moments.

A typical experimental arrangement that is used to measure the magnetic
properties of a ferromagnetic material consists of a torus made of the material
wound with N turns of wire, as shown in Figure 30.29, where the windings are rep-
resented in black and are referred to as the primary coil . This apparatus is some-
times referred to as a Rowland ring. A secondary coil (the red wires in Fig. 30.29)
connected to a galvanometer is used to measure the total magnetic flux through
the torus. The magnetic field B in the torus is measured by increasing the current
in the toroid from zero to I . As the current changes, the magnetic flux through

B � �0H.

Quick Quiz 30.7

An Iron-Filled ToroidEXAMPLE 30.10

This value of B is 5 000 times the value in the absence of iron!

Exercise Determine the magnitude of the magnetization
vector inside the iron torus.

Answer .M � 1.5 � 106 A/m

1.88 T � 5 000�4� � 10�7 
T �m

A ��300 
A � turns

m � �

B � �m H � 5 000�0H A toroid wound with 60.0 turns/m of wire carries a current of
5.00 A. The torus is iron, which has a magnetic permeability
of �m � 5 000�0 under the given conditions. Find H and B
inside the iron.

Solution Using Equations 30.31 and 30.33, we obtain

300 
A � turns

m
H � nI � �60.0 

turns
m �(5.00 A) �

(b)
B0

(a)

Figure 30.28 (a) Random orien-
tation of atomic magnetic moments
in an unmagnetized substance. 
(b) When an external field B0 is
applied, the atomic magnetic mo-
ments tend to align with the field,
giving the sample a net magnetiza-
tion vector M.



30.8 Magnetism in Matter 961

the secondary coil changes by an amount BA, where A is the cross-sectional area of
the toroid. As we shall find in Chapter 31, because of this changing flux, an emf
that is proportional to the rate of change in magnetic flux is induced in the sec-
ondary coil. If the galvanometer is properly calibrated, a value for B correspond-
ing to any value of the current in the primary coil can be obtained. The magnetic
field B is measured first in the absence of the torus and then with the torus in
place. The magnetic properties of the torus material are then obtained from a
comparison of the two measurements.

Now consider a torus made of unmagnetized iron. If the current in the pri-
mary coil is increased from zero to some value I, the magnitude of the magnetic
field strength H increases linearly with I according to the expression Fur-
thermore, the magnitude of the total field B also increases with increasing current,
as shown by the curve from point O to point a in Figure 30.30. At point O, the do-
mains in the iron are randomly oriented, corresponding to As the increas-
ing current in the primary coil causes the external field B0 to increase, the do-
mains become more aligned until all of them are nearly aligned at point a. At this
point the iron core is approaching saturation, which is the condition in which all
domains in the iron are aligned.

Next, suppose that the current is reduced to zero, and the external field is
consequently eliminated. The B versus H curve, called a magnetization curve,
now follows the path ab in Figure 30.30. Note that at point b, B is not zero even
though the external field is The reason is that the iron is now magnetized
due to the alignment of a large number of its domains (that is, B � Bm). At this
point, the iron is said to have a remanent magnetization.

If the current in the primary coil is reversed so that the direction of the exter-
nal magnetic field is reversed, the domains reorient until the sample is again un-
magnetized at point c, where B � 0. An increase in the reverse current causes the
iron to be magnetized in the opposite direction, approaching saturation at point d
in Figure 30.30. A similar sequence of events occurs as the current is reduced to
zero and then increased in the original (positive) direction. In this case the mag-
netization curve follows the path def. If the current is increased sufficiently, the
magnetization curve returns to point a, where the sample again has its maximum
magnetization.

The effect just described, called magnetic hysteresis, shows that the magneti-
zation of a ferromagnetic substance depends on the history of the substance as
well as on the magnitude of the applied field. (The word hysteresis means “lagging
behind.”) It is often said that a ferromagnetic substance has a “memory” because it
remains magnetized after the external field is removed. The closed loop in Figure
30.30 is referred to as a hysteresis loop. Its shape and size depend on the proper-

B0 � 0.

Bm � 0.

H � nI.

QuickLab
You’ve probably done this experi-
ment before. Magnetize a nail by re-
peatedly dragging it across a bar mag-
net. Test the strength of the nail’s
magnetic field by picking up some pa-
per clips. Now hit the nail several
times with a hammer, and again test
the strength of its magnetism. Ex-
plain what happens in terms of do-
mains in the steel of the nail.

R

G

Sε

B

H

a

b

c

d

e

fO

Figure 30.29 A toroidal winding
arrangement used to measure the
magnetic properties of a material.
The torus is made of the material
under study, and the circuit con-
taining the galvanometer measures
the magnetic flux.

Figure 30.30 Magnetization curve for a ferromagnetic
material.
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ties of the ferromagnetic substance and on the strength of the maximum applied
field. The hysteresis loop for “hard” ferromagnetic materials is characteristically
wide like the one shown in Figure 30.31a, corresponding to a large remanent mag-
netization. Such materials cannot be easily demagnetized by an external field.
“Soft” ferromagnetic materials, such as iron, have a very narrow hysteresis loop
and a small remanent magnetization (Fig. 30.31b.) Such materials are easily mag-
netized and demagnetized. An ideal soft ferromagnet would exhibit no hysteresis
and hence would have no remanent magnetization. A ferromagnetic substance
can be demagnetized by being carried through successive hysteresis loops, due to a
decreasing applied magnetic field, as shown in Figure 30.32.

Which material would make a better permanent magnet, one whose hysteresis loop looks
like Figure 30.31a or one whose loop looks like Figure 30.31b?

The magnetization curve is useful for another reason: The area enclosed by
the magnetization curve represents the work required to take the material
through the hysteresis cycle. The energy acquired by the material in the magne-
tization process originates from the source of the external field—that is, the emf
in the circuit of the toroidal coil. When the magnetization cycle is repeated, dissi-
pative processes within the material due to realignment of the domains result in a
transformation of magnetic energy into internal energy, which is evidenced by an
increase in the temperature of the substance. For this reason, devices subjected to
alternating fields (such as ac adapters for cell phones, power tools, and so on) use
cores made of soft ferromagnetic substances, which have narrow hysteresis loops
and correspondingly little energy loss per cycle.

Magnetic computer disks store information by alternating the direction of B
for portions of a thin layer of ferromagnetic material. Floppy disks have the layer
on a circular sheet of plastic. Hard disks have several rigid platters with magnetic
coatings on each side. Audio tapes and videotapes work the same way as floppy
disks except that the ferromagnetic material is on a very long strip of plastic. Tiny
coils of wire in a recording head are placed close to the magnetic material (which
is moving rapidly past the head). Varying the current through the coils creates a
magnetic field that magnetizes the recording material. To retrieve the informa-
tion, the magnetized material is moved past a playback coil. The changing magnet-
ism of the material induces a current in the coil, as we shall discuss in Chapter 31.
This current is then amplified by audio or video equipment, or it is processed by
computer circuitry.

Quick Quiz 30.8

B

H

(a)

B

H

(b)

B

H

Figure 30.31 Hysteresis loops for (a) a hard ferromagnetic material and (b) a soft ferromag-
netic material.

Figure 30.32 Demagnetizing a
ferromagnetic material by carrying
it through successive hysteresis
loops.
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Paramagnetism

Paramagnetic substances have a small but positive magnetic susceptibility
resulting from the presence of atoms (or ions) that have permanent

magnetic moments. These moments interact only weakly with each other and are
randomly oriented in the absence of an external magnetic field. When a paramag-
netic substance is placed in an external magnetic field, its atomic moments tend to
line up with the field. However, this alignment process must compete with thermal
motion, which tends to randomize the magnetic moment orientations.

Pierre Curie (1859–1906) and others since him have found experimentally
that, under a wide range of conditions, the magnetization of a paramagnetic sub-
stance is proportional to the applied magnetic field and inversely proportional to
the absolute temperature:

(30.35)

This relationship is known as Curie’s law after its discoverer, and the constant C
is called Curie’s constant. The law shows that when B0 � 0, the magnetization is
zero, corresponding to a random orientation of magnetic moments. As the ratio of
magnetic field to temperature becomes great, the magnetization approaches its
saturation value, corresponding to a complete alignment of its moments, and
Equation 30.35 is no longer valid.

When the temperature of a ferromagnetic substance reaches or exceeds a 
critical temperature called the Curie temperature, the substance loses its resid-
ual magnetization and becomes paramagnetic (Fig. 30.33). Below the Curie tem-
perature, the magnetic moments are aligned and the substance is ferromag-
netic. Above the Curie temperature, the thermal agitation is great enough to 
cause a random orientation of the moments, and the substance becomes para-
magnetic. Curie temperatures for several ferromagnetic substances are given in
Table 30.3.

Diamagnetism

When an external magnetic field is applied to a diamagnetic substance, a weak
magnetic moment is induced in the direction opposite the applied field. This
causes diamagnetic substances to be weakly repelled by a magnet. Although dia-
magnetism is present in all matter, its effects are much smaller than those of para-
magnetism or ferromagnetism, and are evident only when those other effects do
not exist.

We can attain some understanding of diamagnetism by considering a classical
model of two atomic electrons orbiting the nucleus in opposite directions but with
the same speed. The electrons remain in their circular orbits because of the attrac-
tive electrostatic force exerted by the positively charged nucleus. Because the mag-
netic moments of the two electrons are equal in magnitude and opposite in direc-
tion, they cancel each other, and the magnetic moment of the atom is zero. When
an external magnetic field is applied, the electrons experience an additional force

This added force combines with the electrostatic force to increase the or-
bital speed of the electron whose magnetic moment is antiparallel to the field and
to decrease the speed of the electron whose magnetic moment is parallel to the
field. As a result, the two magnetic moments of the electrons no longer cancel,
and the substance acquires a net magnetic moment that is opposite the applied
field.

qv � B.

M � C 
B0

T

(0 � � V 1)

web
Visit www.exploratorium.edu/snacks/
diamagnetism_www/index.html for an
experiment showing that grapes are
repelled by magnets!

TABLE 30.3
Curie Temperatures for
Several Ferromagnetic
Substances

Substance TCurie (K)

Iron 1 043
Cobalt 1 394
Nickel 631
Gadolinium 317
Fe2O3 893

Paramagnetic

Ferromagnetic

M

T
TCurie

Ms

0

Figure 30.33 Magnetization ver-
sus absolute temperature for a fer-
romagnetic substance. The mag-
netic moments are aligned below
the Curie temperature TCurie ,
where the substance is ferromag-
netic. The substance becomes para-
magnetic (magnetic moments un-
aligned) above TCurie .
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As you recall from Chapter 27, a superconductor is a substance in which the
electrical resistance is zero below some critical temperature. Certain types of su-
perconductors also exhibit perfect diamagnetism in the superconducting state. As
a result, an applied magnetic field is expelled by the superconductor so that the
field is zero in its interior. This phenomenon of flux expulsion is known as the
Meissner effect. If a permanent magnet is brought near a superconductor, 
the two objects repel each other. This is illustrated in Figure 30.34, which shows a
small permanent magnet levitated above a superconductor maintained at 77 K.

Saturation MagnetizationEXAMPLE 30.11
each atom contributes one Bohr magneton (due to one un-
paired spin) to the magnetic moment, we obtain

This is about one-half the experimentally determined satura-
tion magnetization for iron, which indicates that actually two
unpaired electron spins are present per atom.

8.0 � 105 A/m�

Ms � �8.6 � 1028 
atoms

m3 ��9.27 � 10�24 
A�m2

atom �

Estimate the saturation magnetization in a long cylinder of
iron, assuming one unpaired electron spin per atom.

Solution The saturation magnetization is obtained when
all the magnetic moments in the sample are aligned. If the
sample contains n atoms per unit volume, then the saturation
magnetization Ms has the value

where � is the magnetic moment per atom. Because the mo-
lar mass of iron is 55 g/mol and its density is 7.9 g/cm3, the
value of n for iron is 8.6 � 1028 atoms/m3. Assuming that

Ms � n�

Optional Section

THE MAGNETIC FIELD OF THE EARTH
When we speak of a compass magnet having a north pole and a south pole, we
should say more properly that it has a “north-seeking” pole and a “south-seeking”
pole. By this we mean that one pole of the magnet seeks, or points to, the north
geographic pole of the Earth. Because the north pole of a magnet is attracted to-
ward the north geographic pole of the Earth, we conclude that the Earth’s south
magnetic pole is located near the north geographic pole, and the Earth’s
north magnetic pole is located near the south geographic pole. In fact, the
configuration of the Earth’s magnetic field, pictured in Figure 30.35, is very much
like the one that would be achieved by burying a gigantic bar magnet deep in the
interior of the Earth.

30.9

web
For a more detailed description of the
unusual properties of superconductors,
visit www.saunderscollege.com/physics/

Figure 30.34 A small permanent mag-
net levitated above a disk of the supercon-
ductor YBa2Cu3O7 cooled to liquid nitro-
gen temperature (77 K).
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If a compass needle is suspended in bearings that allow it to rotate in the verti-
cal plane as well as in the horizontal plane, the needle is horizontal with respect to
the Earth’s surface only near the equator. As the compass is moved northward, the
needle rotates so that it points more and more toward the surface of the Earth. Fi-
nally, at a point near Hudson Bay in Canada, the north pole of the needle points
directly downward. This site, first found in 1832, is considered to be the location
of the south magnetic pole of the Earth. It is approximately 1 300 mi from the
Earth’s geographic North Pole, and its exact position varies slowly with time. Simi-
larly, the north magnetic pole of the Earth is about 1 200 mi away from the Earth’s
geographic South Pole.

Because of this distance between the north geographic and south magnetic
poles, it is only approximately correct to say that a compass needle points north.
The difference between true north, defined as the geographic North Pole, and
north indicated by a compass varies from point to point on the Earth, and the dif-
ference is referred to as magnetic declination. For example, along a line through
Florida and the Great Lakes, a compass indicates true north, whereas in Washing-
ton state, it aligns 25° east of true north.

QuickLab
A gold ring is very weakly repelled by
a magnet. To see this, suspend a 14-
or 18-karat gold ring on a long loop
of thread, as shown in (a). Gently tap
the ring and estimate its period of os-
cillation. Now bring the ring to rest,
letting it hang for a few moments so
that you can verify that it is not mov-
ing. Quickly bring a very strong mag-
net to within a few millimeters of the
ring, taking care not to bump it, as
shown in (b). Now pull the magnet
away. Repeat this action many times,
matching the oscillation period you
estimated earlier. This is just like
pushing a child on a swing. A small
force applied at the resonant fre-
quency results in a large-amplitude
oscillation. If you have a platinum
ring, you will be able to see a similar
effect except that platinum is weakly
attracted to a magnet because it is
paramagnetic.

(a) (b)

North
geographic

pole

South
magnetic

pole

Geographic
equator

South
geographic

pole

North
magnetic

pole

N

S

Magnetic equator

Figure 30.35 The Earth’s magnetic field lines. Note that a south magnetic pole is near the
north geographic pole, and a north magnetic pole is near the south geographic pole.

The north end of a compass needle points
to the south magnetic pole of the Earth.
The “north” compass direction varies from
true geographic north depending on the
magnetic declination at that point on the
Earth’s surface.
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If we wanted to cancel the Earth’s magnetic field by running an enormous current loop
around the equator, which way would the current have to flow: east to west or west to east?

Although the magnetic field pattern of the Earth is similar to the one that
would be set up by a bar magnet deep within the Earth, it is easy to understand
why the source of the Earth’s magnetic field cannot be large masses of perma-
nently magnetized material. The Earth does have large deposits of iron ore deep
beneath its surface, but the high temperatures in the Earth’s core prevent the iron
from retaining any permanent magnetization. Scientists consider it more likely
that the true source of the Earth’s magnetic field is charge-carrying convection
currents in the Earth’s core. Charged ions or electrons circulating in the liquid in-
terior could produce a magnetic field just as a current loop does. There is also
strong evidence that the magnitude of a planet’s magnetic field is related to the
planet’s rate of rotation. For example, Jupiter rotates faster than the Earth, and
space probes indicate that Jupiter’s magnetic field is stronger than ours. Venus, on
the other hand, rotates more slowly than the Earth, and its magnetic field is found
to be weaker. Investigation into the cause of the Earth’s magnetism is ongoing.

There is an interesting sidelight concerning the Earth’s magnetic field. It has
been found that the direction of the field has been reversed several times during
the last million years. Evidence for this is provided by basalt, a type of rock that
contains iron and that forms from material spewed forth by volcanic activity on the
ocean floor. As the lava cools, it solidifies and retains a picture of the Earth’s mag-
netic field direction. The rocks are dated by other means to provide a timeline for
these periodic reversals of the magnetic field.

SUMMARY

The Biot–Savart law says that the magnetic field dB at a point P due to a length
element ds that carries a steady current I is

(30.1)

where is the permeability of free space, r is the dis-
tance from the element to the point P , and r̂ is a unit vector pointing from ds to
point P. We find the total field at P by integrating this expression over the entire
current distribution.

The magnetic field at a distance a from a long, straight wire carrying an elec-
tric current I is

(30.5)

The field lines are circles concentric with the wire.
The magnetic force per unit length between two parallel wires separated by a

distance a and carrying currents I1 and I2 has a magnitude

(30.12)

The force is attractive if the currents are in the same direction and repulsive if
they are in opposite directions.

FB

�
�

�0I1I2

2�a

B �
�0I
2�a

�0 � 4� � 10�7 T�m/A

dB �
�0

4�
 
I ds � r̂

r 2

Quick Quiz 30.9
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Ampère’s law says that the line integral of around any closed path
equals �0I, where I is the total steady current passing through any surface
bounded by the closed path:

(30.13)

Using Ampère’s law, one finds that the fields inside a toroid and solenoid are

(30.16)

(30.17)

where N is the total number of turns.
The magnetic flux �B through a surface is defined by the surface integral

(30.18)

Gauss’s law of magnetism states that the net magnetic flux through any
closed surface is zero.

The general form of Ampère’s law, which is also called the Ampère-Maxwell
law, is

(30.22)

This law describes the fact that magnetic fields are produced both by conduction
currents and by changing electric fields.

�B � ds � �0I 
 �0�0 
d
E

dt


B � �B � dA

B � �0 
N
�

 I � �0nI  (solenoid)

B �
�0NI
2�r

  (toroid) 

�B � ds � �0I

B � ds

QUESTIONS

8. Is the magnetic field inside a toroid uniform? Explain.
9. Describe the similarities between Ampère’s law in mag-

netism and Gauss’s law in electrostatics.
10. A hollow copper tube carries a current along its length.

Why does B = 0 inside the tube? Is B nonzero outside the
tube?

11. Why is B nonzero outside a solenoid? Why does B � 0
outside a toroid? (Remember that the lines of B must
form closed paths.)

12. Describe the change in the magnetic field in the interior
of a solenoid carrying a steady current I (a) if the length
of the solenoid is doubled but the number of turns re-
mains the same and (b) if the number of turns is doubled
but the length remains the same.

13. A flat conducting loop is positioned in a uniform mag-
netic field directed along the x axis. For what orientation
of the loop is the flux through it a maximum? A mini-
mum?

14. What new concept does Maxwell’s general form of Am-
père’s law include?

15. Many loops of wire are wrapped around a nail and then
connected to a battery. Identify the source of M, of H,
and of B.

1. Is the magnetic field created by a current loop uniform?
Explain.

2. A current in a conductor produces a magnetic field that
can be calculated using the Biot–Savart law. Because cur-
rent is defined as the rate of flow of charge, what can you
conclude about the magnetic field produced by stationary
charges? What about that produced by moving charges?

3. Two parallel wires carry currents in opposite directions.
Describe the nature of the magnetic field created by the
two wires at points (a) between the wires and (b) outside
the wires, in a plane containing them.

4. Explain why two parallel wires carrying currents in oppo-
site directions repel each other.

5. When an electric circuit is being assembled, a common
practice is to twist together two wires carrying equal cur-
rents in opposite directions. Why does this technique re-
duce stray magnetic fields?

6. Is Ampère’s law valid for all closed paths surrounding a
conductor? Why is it not useful for calculating B for all
such paths?

7. Compare Ampère’s law with the Biot–Savart law. Which 
is more generally useful for calculating B for a current-
carrying conductor?
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16. A magnet attracts a piece of iron. The iron can then at-
tract another piece of iron. On the basis of domain align-
ment, explain what happens in each piece of iron.

17. You are stranded on a planet that does not have a mag-
netic field, with no test equipment. You have two bars of
iron in your possession; one is magnetized, and one is
not. How can you determine which is which?

18. Why does hitting a magnet with a hammer cause the mag-
netism to be reduced?

19. Is a nail attracted to either pole of a magnet? Explain
what is happening inside the nail when it is placed near
the magnet.

20. A Hindu ruler once suggested that he be entombed in a
magnetic coffin with the polarity arranged so that he
would be forever suspended between heaven and Earth.
Is such magnetic levitation possible? Discuss.

21. Why does M � 0 in a vacuum? What is the relationship
between B and H in a vacuum?

22. Explain why some atoms have permanent magnetic mo-
ments and others do not.

23. What factors contribute to the total magnetic moment of
an atom?

24. Why is the magnetic susceptibility of a diamagnetic sub-
stance negative?

25. Why can the effect of diamagnetism be neglected in a
paramagnetic substance?

26. Explain the significance of the Curie temperature for a
ferromagnetic substance.

27. Discuss the differences among ferromagnetic, paramag-
netic, and diamagnetic substances.

28. What is the difference between hard and soft ferromag-
netic materials?

29. Should the surface of a computer disk be made from a
hard or a soft ferromagnetic substance?

30. Explain why it is desirable to use hard ferromagnetic ma-
terials to make permanent magnets.

31. Would you expect the tape from a tape recorder to be at-
tracted to a magnet? (Try it, but not with a recording you
wish to save.)

32. Given only a strong magnet and a screwdriver, how would
you first magnetize and then demagnetize the screwdriver?

33. Figure Q30.33 shows two permanent magnets, each hav-
ing a hole through its center. Note that the upper magnet
is levitated above the lower one. (a) How does this occur?
(b) What purpose does the pencil serve? (c) What can
you say about the poles of the magnets on the basis of this
observation? (d) What do you suppose would happen if
the upper magnet were inverted?

Figure Q30.33 Magnetic levitation using two ceramic mag-
nets.

PROBLEMS

field at the center of the square. (b) If this conductor is
formed into a single circular turn and carries the same
current, what is the value of the magnetic field at the
center?

Section 30.1 The Biot – Savart Law
1. In Niels Bohr’s 1913 model of the hydrogen atom, 

an electron circles the proton at a distance of 
5.29 � 10�11 m with a speed of 2.19 � 106 m/s. Com-
pute the magnitude of the magnetic field that this mo-
tion produces at the location of the proton.

2. A current path shaped as shown in Figure P30.2 pro-
duces a magnetic field at P, the center of the arc. If the
arc subtends an angle of 30.0° and the radius of the arc
is 0.600 m, what are the magnitude and direction of the
field produced at P if the current is 3.00 A?

3. (a) A conductor in the shape of a square of edge length
� � 0.400 m carries a current I � 10.0 A (Fig. P30.3).
Calculate the magnitude and direction of the magnetic

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

I

P
30.0°

Figure P30.2
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4. Calculate the magnitude of the magnetic field at a point
100 cm from a long, thin conductor carrying a current
of 1.00 A.

5. Determine the magnetic field at a point P located a dis-
tance x from the corner of an infinitely long wire bent
at a right angle, as shown in Figure P30.5. The wire car-
ries a steady current I.

10. Consider a flat, circular current loop of radius R carry-
ing current I. Choose the x axis to be along the axis 
of the loop, with the origin at the center of the loop.
Graph the ratio of the magnitude of the magnetic 
field at coordinate x to that at the origin, for x � 0 to 
x � 5R . It may be helpful to use a programmable calcu-
lator or a computer to solve this problem.

11. Consider the current-carrying loop shown in Figure
P30.11, formed of radial lines and segments of circles
whose centers are at point P. Find the magnitude and
direction of B at P.

WEB

I

�

Figure P30.3

x

P

I

I

6. A wire carrying a current of 5.00 A is to be formed into
a circular loop of one turn. If the required value of the
magnetic field at the center of the loop is 10.0 �T, what
is the required radius?

7. A conductor consists of a circular loop of radius R �
0.100 m and two straight, long sections, as shown in Fig-
ure P30.7. The wire lies in the plane of the paper and
carries a current of I � 7.00 A. Determine the magni-
tude and direction of the magnetic field at the center of
the loop.

8. A conductor consists of a circular loop of radius R and
two straight, long sections, as shown in Figure P30.7.
The wire lies in the plane of the paper and carries a cur-
rent I. Determine the magnitude and direction of the
magnetic field at the center of the loop.

9. The segment of wire in Figure P30.9 carries a current of
I � 5.00 A, where the radius of the circular arc is R �
3.00 cm. Determine the magnitude and direction of the
magnetic field at the origin.

12. Determine the magnetic field (in terms of I, a, and d)
at the origin due to the current loop shown in Figure
P30.12.

13. The loop in Figure P30.13 carries a current I. Determine
the magnetic field at point A in terms of I, R, and L .

14. Three long, parallel conductors carry currents of I �
2.00 A. Figure P30.14 is an end view of the conductors,
with each current coming out of the page. If a �
1.00 cm, determine the magnitude and direction of the
magnetic field at points A, B, and C .

15. Two long, parallel conductors carry currents I1 �
3.00 A and I2 � 3.00 A, both directed into the page in

Figure P30.5

Figure P30.7 Problems 7 and 8.

Figure P30.9

Figure P30.11

I = 7.00 A

I

R

60°

b

a
P

I
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Figure P30.15. Determine the magnitude and direction
of the resultant magnetic field at P.

Section 30.2 The Magnetic Force Between 
Two Parallel Conductors

16. Two long, parallel conductors separated by 10.0 cm
carry currents in the same direction. The first wire car-
ries current I1 � 5.00 A, and the second carries I2 �
8.00 A. (a) What is the magnitude of the magnetic field
created by I1 and acting on I2 ? (b) What is the force per
unit length exerted on I2 by I1 ? (c) What is the magni-
tude of the magnetic field created by I2 at the location
of I1 ? (d) What is the force per unit length exerted by
I2 on I1 ?

17. In Figure P30.17, the current in the long, straight wire
is I1 � 5.00 A, and the wire lies in the plane of the rec-
tangular loop, which carries 10.0 A. The dimensions are
c � 0.100 m, a � 0.150 m, and � � 0.450 m. Find the
magnitude and direction of the net force exerted on
the loop by the magnetic field created by the wire.

18. The unit of magnetic flux is named for Wilhelm Weber.
The practical-size unit of magnetic field is named for
Johann Karl Friedrich Gauss. Both were scientists at
Göttingen, Germany. In addition to their individual ac-
complishments, they built a telegraph together in 1833.
It consisted of a battery and switch that were positioned
at one end of a transmission line 3 km long and oper-
ated an electromagnet at the other end. (Andre 
Ampère suggested electrical signaling in 1821; Samuel
Morse built a telegraph line between Baltimore and
Washington in 1844.) Suppose that Weber and Gauss’s
transmission line was as diagrammed in Figure P30.18.
Two long, parallel wires, each having a mass per unit
length of 40.0 g/m, are supported in a horizontal plane
by strings 6.00 cm long. When both wires carry the same
current I, the wires repel each other so that the angle �

Figure P30.12

Figure P30.13
I1

�

c a

I2

13.0 cm

5.00 cm

12.0 cm

I2

I1

P

×

×

I

I

aa

a

a

a
B

A
C

I

A

I

R

L
2
–

L

– a + aO

d

I

I

y

x

Figure P30.14

Figure P30.15

Figure P30.17
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between the supporting strings is 16.0°. (a) Are the cur-
rents in the same direction or in opposite directions?
(b) Find the magnitude of the current.

2.00-A currents in opposite directions. The two wires
are 3.00 mm apart. Find the magnetic field 40.0 cm
away from the middle of the straight cord, in the plane
of the two wires. (c) At what distance is it one-tenth as
large? (d) The center wire in a coaxial cable carries cur-
rent 2.00 A in one direction, and the sheath around it
carries current 2.00 A in the opposite direction. What
magnetic field does the cable create at points outside?

23. The magnetic coils of a tokamak fusion reactor are 
in the shape of a toroid having an inner radius of 
0.700 m and an outer radius of 1.30 m. If the toroid has
900 turns of large-diameter wire, each of which carries a
current of 14.0 kA, find the magnitude of the magnetic
field inside the toroid (a) along the inner radius and
(b) along the outer radius.

24. A cylindrical conductor of radius carries a
current of along its length; this current is
uniformly distributed throughout the cross-section of
the conductor. (a) Calculate the magnetic field midway
along the radius of the wire (that is, at 
(b) Find the distance beyond the surface of the conduc-
tor at which the magnitude of the magnetic field has
the same value as the magnitude of the field at 

25. A packed bundle of 100 long, straight, insulated wires
forms a cylinder of radius R � 0.500 cm. (a) If each
wire carries 2.00 A, what are the magnitude and direc-
tion of the magnetic force per unit length acting on a
wire located 0.200 cm from the center of the bundle?
(b) Would a wire on the outer edge of the bundle expe-
rience a force greater or less than the value calculated
in part (a)?

26. Niobium metal becomes a superconductor when cooled
below 9 K. If superconductivity is destroyed when the
surface magnetic field exceeds 0.100 T, determine the
maximum current a 2.00-mm-diameter niobium wire
can carry and remain superconducting, in the absence
of any external magnetic field.

27. A long, cylindrical conductor of radius R carries a cur-
rent I, as shown in Figure P30.27. The current density J,
however, is not uniform over the cross-section of the

r � R/2.

r � R/2).

I � 2.50 A
R � 2.50 cm

WEB

WEB

20. A long, straight wire lies on a horizontal table and car-
ries a current of 1.20 �A. In a vacuum, a proton moves
parallel to the wire (opposite the current) with a con-
stant velocity of 2.30 � 104 m/s at a distance d above
the wire. Determine the value of d. You may ignore the
magnetic field due to the Earth.

21. Figure P30.21 is a cross-sectional view of a coaxial cable.
The center conductor is surrounded by a rubber layer,
which is surrounded by an outer conductor, which is
surrounded by another rubber layer. In a particular ap-
plication, the current in the inner conductor is 1.00 A
out of the page, and the current in the outer conductor
is 3.00 A into the page. Determine the magnitude and
direction of the magnetic field at points a and b.

22. The magnetic field 40.0 cm away from a long, straight
wire carrying current 2.00 A is 1.00 �T. (a) At what dis-
tance is it 0.100 �T? (b) At one instant, the two con-
ductors in a long household extension cord carry equal

Section 30.3 Ampère’s Law

19. Four long, parallel conductors carry equal currents of 
I � 5.00 A. Figure P30.19 is an end view of the conduc-
tors. The direction of the current is into the page at
points A and B (indicated by the crosses) and out of the
page at C and D (indicated by the dots). Calculate the
magnitude and direction of the magnetic field at point
P, located at the center of the square with an edge
length of 0.200 m.

ba
1.00 A

1 mm 1 mm 1 mm

3.00 A

. .

×
×

×

×
×

×

×

×

0.200 m

0.200 m

A

B

C

P

D

×

××

16.0°

x

6.00 cm

z

y

θ

Figure P30.18

Figure P30.19

Figure P30.21



972 C H A P T E R  3 0 Sources of the Magnetic Field

conductor but is a function of the radius according to
where b is a constant. Find an expression for the

magnetic field B (a) at a distance and (b) at a
distance measured from the axis.

28. In Figure P30.28, both currents are in the negative x di-
rection. (a) Sketch the magnetic field pattern in the yz
plane. (b) At what distance d along the z axis is the
magnetic field a maximum?

r2 � R ,
r1 � R

J � br,

Section 30.5 Magnetic Flux
33. A cube of edge length � � 2.50 cm is positioned as

shown in Figure P30.33. A uniform magnetic field given
by exists throughout
the region. (a) Calculate the flux through the shaded
face. (b) What is the total flux through the six faces?

B � (5.00 i 
 4.00 j 
 3.00k) T

34. A solenoid 2.50 cm in diameter and 30.0 cm long has
300 turns and carries 12.0 A. (a) Calculate the flux
through the surface of a disk of radius 5.00 cm that is
positioned perpendicular to and centered on the axis of
the solenoid, as in Figure P30.34a. (b) Figure P30.34b
shows an enlarged end view of the same solenoid. Cal-
culate the flux through the blue area, which is defined
by an annulus that has an inner radius of 0.400 cm and
outer radius of 0.800 cm.

Section 30.4 The Magnetic Field of a Solenoid
29. What current is required in the windings of a long sole-

noid that has 1 000 turns uniformly distributed over a
length of 0.400 m, to produce at the center of the sole-
noid a magnetic field of magnitude 1.00 � 10�4 T?

30. A superconducting solenoid is meant to generate a
magnetic field of 10.0 T. (a) If the solenoid winding has
2 000 turns/m, what current is required? (b) What
force per unit length is exerted on the windings by this
magnetic field?

31. A solenoid of radius is made of a long
piece of wire of radius r � 2.00 mm, length � � 10.0 m

and resistivity � � 1.70 � 10�8 � � m. Find the
magnetic field at the center of the solenoid if the wire is
connected to a battery having an emf 

32. A single-turn square loop of wire with an edge length of
2.00 cm carries a clockwise current of 0.200 A. The loop
is inside a solenoid, with the plane of the loop perpen-
dicular to the magnetic field of the solenoid. The sole-
noid has 30 turns/cm and carries a clockwise current of
15.0 A. Find the force on each side of the loop and the
torque acting on the loop.

� � 20.0 V.

(� W R)

R � 5.00 cm

R
r1

I

r2

x
y

a

a

I

I

z

Figure P30.27

Figure P30.28

Figure P30.33

Figure P30.34
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35. Consider the hemispherical closed surface in Figure
P30.35. If the hemisphere is in a uniform magnetic field
that makes an angle � with the vertical, calculate the
magnetic flux (a) through the flat surface S1 and 
(b) through the hemispherical surface S2 .

quired if there are 470 turns of wire in the winding?
The thickness of the iron ring is small compared to 
10 cm, so the field in the material is nearly uniform.

41. A coil of 500 turns is wound on an iron ring (�m �
750�0) with a 20.0-cm mean radius and an 8.00-cm2

cross-sectional area. Calculate the magnetic flux 
B
in this Rowland ring when the current in the coil is
0.500 A.

42. A uniform ring with a radius of 2.00 cm and a total
charge of 6.00 �C rotates with a constant angular speed
of 4.00 rad/s around an axis perpendicular to the plane
of the ring and passing through its center. What is the
magnetic moment of the rotating ring?

43. Calculate the magnetic field strength H of a magnetized
substance in which the magnetization is 880 kA/m and
the magnetic field has a magnitude of 4.40 T.

44. At saturation, the alignment of spins in iron can con-
tribute as much as 2.00 T to the total magnetic field B .
If each electron contributes a magnetic moment of 
9.27 � 10�24 A � m2 (one Bohr magneton), how many
electrons per atom contribute to the saturated field of
iron? (Hint: Iron contains 8.50 � 1028 atoms/m3.)

45. (a) Show that Curie’s law can be stated in the following
way: The magnetic susceptibility of a paramagnetic sub-
stance is inversely proportional to the absolute tempera-
ture, according to � � C�0/T, where C is Curie’s con-
stant. (b) Evaluate Curie’s constant for chromium. 

(Optional)
Section 30.9 The Magnetic Field of the Earth

46. A circular coil of 5 turns and a diameter of 30.0 cm is
oriented in a vertical plane with its axis perpendicular
to the horizontal component of the Earth’s magnetic
field. A horizontal compass placed at the center of the
coil is made to deflect 45.0° from magnetic north by a
current of 0.600 A in the coil. (a) What is the horizontal
component of the Earth’s magnetic field? (b) The cur-
rent in the coil is switched off. A “dip needle” is a mag-
netic compass mounted so that it can rotate in a vert-
ical north-south plane. At this location a dip needle
makes an angle of 13.0° from the vertical. What is the
total magnitude of the Earth’s magnetic field at this 
location?

47. The magnetic moment of the Earth is approximately
8.00 � 1022 A � m2. (a) If this were caused by the com-
plete magnetization of a huge iron deposit, how many
unpaired electrons would this correspond to? (b) At
two unpaired electrons per iron atom, how many kilo-
grams of iron would this correspond to? (Iron has a
density of 7 900 kg/m3 and approximately 8.50 � 1028

atoms/m3.)

ADDITIONAL PROBLEMS

48. A lightning bolt may carry a current of 1.00 � 104 A for
a short period of time. What is the resultant magnetic

Section 30.6 Gauss’s Law in Magnetism
Section 30.7 Displacement Current and the 
General Form of Ampère’s Law

36. A 0.200-A current is charging a capacitor that has circu-
lar plates 10.0 cm in radius. If the plate separation is
4.00 mm, (a) what is the time rate of increase of electric
field between the plates? (b) What is the magnetic field
between the plates 5.00 cm from the center?

37. A 0.100-A current is charging a capacitor that has
square plates 5.00 cm on each side. If the plate separa-
tion is 4.00 mm, find (a) the time rate of change of
electric flux between the plates and (b) the displace-
ment current between the plates.

(Optional)
Section 30.8 Magnetism in Matter

38. In Bohr’s 1913 model of the hydrogen atom, the elec-
tron is in a circular orbit of radius 5.29 � 10�11 m, and
its speed is 2.19 � 106 m/s. (a) What is the magnitude
of the magnetic moment due to the electron’s motion?
(b) If the electron orbits counterclockwise in a horizon-
tal circle, what is the direction of this magnetic moment
vector?

39. A toroid with a mean radius of 20.0 cm and 630 turns
(see Fig. 30.29) is filled with powdered steel whose mag-
netic susceptibility � is 100. If the current in the wind-
ings is 3.00 A, find B (assumed uniform) inside the
toroid.

40. A magnetic field of 1.30 T is to be set up in an iron-core
toroid. The toroid has a mean radius of 10.0 cm and
magnetic permeability of 5 000�0 . What current is re-

Figure P30.35

S1

R

θ

S2

B



974 C H A P T E R  3 0 Sources of the Magnetic Field

field 100 m from the bolt? Suppose that the bolt ex-
tends far above and below the point of observation.

49. The magnitude of the Earth’s magnetic field at either
pole is approximately 7.00 � 10�5 T. Suppose that the
field fades away, before its next reversal. Scouts, sailors,
and wire merchants around the world join together in a
program to replace the field. One plan is to use a cur-
rent loop around the equator, without relying on mag-
netization of any materials inside the Earth. Determine
the current that would generate such a field if this plan
were carried out. (Take the radius of the Earth as

50. Two parallel conductors carry current in opposite direc-
tions, as shown in Figure P30.50. One conductor carries a
current of 10.0 A. Point A is at the midpoint between the
wires, and point C is a distance d/2 to the right of the
10.0-A current. If cm and I is adjusted so that
the magnetic field at C is zero, find (a) the value of the
current I and (b) the value of the magnetic field at A.

d � 18.0

R E � 6.37 � 106 m.)

in the plane of the strip at a distance b away from the
strip.

54. For a research project, a student needs a solenoid that
produces an interior magnetic field of 0.030 0 T. She
decides to use a current of 1.00 A and a wire 0.500 mm
in diameter. She winds the solenoid in layers on an insu-
lating form 1.00 cm in diameter and 10.0 cm long. De-
termine the number of layers of wire she needs and the
total length of the wire.

55. A nonconducting ring with a radius of 10.0 cm is
uniformly charged with a total positive charge of 
10.0 �C. The ring rotates at a constant angular speed of
20.0 rad/s about an axis through its center, perpendicu-
lar to the plane of the ring. What is the magnitude of
the magnetic field on the axis of the ring, 5.00 cm from
its center?

56. A nonconducting ring of radius R is uniformly charged
with a total positive charge q. The ring rotates at a con-
stant angular speed � about an axis through its center,
perpendicular to the plane of the ring. What is the mag-
nitude of the magnetic field on the axis of the ring a
distance R/2 from its center?

57. Two circular coils of radius R are each perpendicular to
a common axis. The coil centers are a distance R apart,
and a steady current I flows in the same direction
around each coil, as shown in Figure P30.57. (a) Show
that the magnetic field on the axis at a distance x from
the center of one coil is

(b) Show that dB/dx and d 2B/dx2 are both zero at a
point midway between the coils. This means that the
magnetic field in the region midway between the coils is
uniform. Coils in this configuration are called
Helmholtz coils.

58. Two identical, flat, circular coils of wire each have 100
turns and a radius of 0.500 m. The coils are arranged as

B �
�0 IR2

2
 	 1

(R2 
 x2)3/2 

1

(2R2 
 x2 � 2Rx)3/2 �

51. Suppose you install a compass on the center of the
dashboard of a car. Compute an order-of-magnitude es-
timate for the magnetic field that is produced at this lo-
cation by the current when you switch on the head-
lights. How does your estimate compare with the Earth’s
magnetic field? You may suppose the dashboard is made
mostly of plastic.

52. Imagine a long, cylindrical wire of radius R that has a
current density for r � R and 
J(r) � 0 for r � R, where r is the distance from the axis
of the wire. (a) Find the resulting magnetic field inside 
(r � R) and outside (r � R) the wire. (b) Plot the mag-
nitude of the magnetic field as a function of r. (c) Find
the location where the magnitude of the magnetic field
is a maximum, and the value of that maximum field.

53. A very long, thin strip of metal of width w carries a cur-
rent I along its length, as shown in Figure P30.53. Find
the magnetic field at point P in the diagram. Point P is

J(r) � J0(1 � r 2/R2)

P
y

w

I

x

z

0

b

I 10.0 A

A C

d

Figure P30.50

Figure P30.53

WEB



Problems 975

a set of Helmholtz coils (see Fig. P30.57), parallel and
with a separation of 0.500 m. If each coil carries a cur-
rent of 10.0 A, determine the magnitude of the mag-
netic field at a point on the common axis of the coils
and halfway between them.

59. Two circular loops are parallel, coaxial, and almost in
contact, 1.00 mm apart (Fig. P30.59). Each loop is 
10.0 cm in radius. The top loop carries a clockwise cur-
rent of 140 A. The bottom loop carries a counterclock-
wise current of 140 A. (a) Calculate the magnetic force
that the bottom loop exerts on the top loop. (b) The
upper loop has a mass of 0.021 0 kg. Calculate its accel-
eration, assuming that the only forces acting on it are the
force in part (a) and its weight. (Hint: Think about how
one loop looks to a bug perched on the other loop.)

to the side of a proton moving at 2.00 � 107 m/s. 
(c) Find the magnetic force on a second proton at this
point, moving with the same speed in the opposite 
direction. (d) Find the electric force on the second 
proton.

61. Rail guns have been suggested for launching projectiles
into space without chemical rockets, and for ground-to-
air antimissile weapons of war. A tabletop model rail
gun (Fig. P30.61) consists of two long parallel horizon-
tal rails 3.50 cm apart, bridged by a bar BD of mass 
3.00 g. The bar is originally at rest at the midpoint of
the rails and is free to slide without friction. When the
switch is closed, electric current is very quickly estab-
lished in the circuit ABCDEA. The rails and bar have low
electrical resistance, and the current is limited to a con-
stant 24.0 A by the power supply. (a) Find the magni-
tude of the magnetic field 1.75 cm from a single very
long, straight wire carrying current 24.0 A. (b) Find the
vector magnetic field at point C in the diagram, the
midpoint of the bar, immediately after the switch is
closed. (Hint: Consider what conclusions you can draw
from the Biot–Savart law.) (c) At other points along the
bar BD, the field is in the same direction as at point C ,
but greater in magnitude. Assume that the average ef-
fective magnetic field along BD is five times larger than
the field at C . With this assumption, find the vector
force on the bar. (d) Find the vector acceleration with
which the bar starts to move. (e) Does the bar move
with constant acceleration? (f) Find the velocity of the
bar after it has traveled 130 cm to the end of the rails.

62. Two long, parallel conductors carry currents in the
same direction, as shown in Figure P30.62. Conductor A
carries a current of 150 A and is held firmly in position.
Conductor B carries a current IB and is allowed to slide
freely up and down (parallel to A) between a set of non-
conducting guides. If the mass per unit length of con-
ductor B is 0.100 g/cm, what value of current IB will re-
sult in equilibrium when the distance between the two
conductors is 2.50 cm?

63. Charge is sprayed onto a large nonconducting belt
above the left-hand roller in Figure P30.63. The belt
carries the charge, with a uniform surface charge den-
sity �, as it moves with a speed v between the rollers as
shown. The charge is removed by a wiper at the right-
hand roller. Consider a point just above the surface of
the moving belt. (a) Find an expression for the magni-

60. What objects experience a force in an electric field?
Chapter 23 gives the answer: any electric charge, sta-
tionary or moving, other than the charge that created
the field. What creates an electric field? Any electric
charge, stationary or moving, also as discussed in Chap-
ter 23. What objects experience a force in a magnetic
field? An electric current or a moving electric charge
other than the current or charge that created the field,
as discovered in Chapter 29. What creates a magnetic
field? An electric current, as you found in Section 30.11,
or a moving electric charge, as in this problem. (a) To
display how a moving charge creates a magnetic field,
consider a charge q moving with velocity v. Define the
unit vector to point from the charge to some lo-
cation. Show that the magnetic field at that location is

(b) Find the magnitude of the magnetic field 1.00 mm

B �
�0

4�
 
qv � r̂

r 2

r̂ � r/r

B

C

DE

A
y

x

z

140 A

140 A

R

I
I

R

R

Figure P30.57 Problems 57 and 58.

Figure P30.59

Figure P30.61
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tude of the magnetic field B at this point. (b) If the belt
is positively charged, what is the direction of B? (Note
that the belt may be considered as an infinite sheet.)

64. A particular paramagnetic substance achieves 10.0% of
its saturation magnetization when placed in a magnetic
field of 5.00 T at a temperature of 4.00 K. The density of
magnetic atoms in the sample is 8.00 � 1027 atoms/m3,
and the magnetic moment per atom is 5.00 Bohr magne-
tons. Calculate the Curie constant for this substance.

65. A bar magnet (mass � 39.4 g, magnetic moment �
7.65 J/T, length � 10.0 cm) is connected to the ceiling
by a string. A uniform external magnetic field is applied
horizontally, as shown in Figure P30.65. The magnet is
in equilibrium, making an angle � with the horizontal.
If � � 5.00°, determine the magnitude of the applied
magnetic field.

68. Measurements of the magnetic field of a large tornado
were made at the Geophysical Observatory in Tulsa, 
Oklahoma, in 1962. If the tornado’s field was B �
15.0 nT pointing north when the tornado was 9.00 km
east of the observatory, what current was carried up or
down the funnel of the tornado, modeled as a long
straight wire?

67. A wire is bent into the shape shown in Figure P30.67a,
and the magnetic field is measured at P1 when the cur-
rent in the wire is I. The same wire is then formed into
the shape shown in Figure P30.67b, and the magnetic
field is measured at point P2 when the current is again I.
If the total length of wire is the same in each case, what
is the ratio of B1/B2 ?

66. An infinitely long, straight wire carrying a current I1 is
partially surrounded by a loop, as shown in Figure
P30.66. The loop has a length L and a radius R and car-
ries a current I2 . The axis of the loop coincides with the
wire. Calculate the force exerted on the loop.

(b)

P2 ��

(a)

�P1

��

�

2�

R

L
I 1 I 2

v

+ + ++ + +
+ + ++ + +

+ + ++ + +
+ + ++ + +

+ + ++ + +
+ + ++ + +

N
θ

S
B

IA

IB

A

B

Figure P30.62

Figure P30.63

Figure P30.65

Figure P30.66

Figure P30.67



Problems 977

74. Review Problem. A sphere of radius R has a constant
volume charge density �. Determine the magnetic di-

73. Review Problem. A sphere of radius R has a constant
volume charge density �. Determine the magnetic field
at the center of the sphere when it rotates as a rigid
body with angular velocity � about an axis through its
center (Fig. P30.73).

Thus, in this case tan � � 1, and � � �/4.
Therefore, the angle between ds and is � � � �
3�/4. Also,

72. Table P30.72 contains data taken for a ferromagnetic
material. (a) Construct a magnetization curve from the
data. Remember that (b) Determine
the ratio B/B0 for each pair of values of B and B0 , and
construct a graph of B/B0 versus B0 . (The fraction
B/B0 is called the relative permeability and is a measure
of the induced magnetic field.)

B � B0 
 �0M.

ds �
dr

sin �/4
� !2 dr

r̂
r � e�,

70. The force on a magnetic dipole � aligned with a
nonuniform magnetic field in the x direction is given
by Suppose that two flat loops of wire
each have radius R and carry current I. (a) If the loops
are arranged coaxially and separated by variable dis-
tance x, which is great compared to R , show that the
magnetic force between them varies as 1/x4. (b) Evalu-
ate the magnitude of this force if 

and x � 5.00 cm.
71. A wire carrying a current I is bent into the shape of an

exponential spiral from � � 0 to � � 2�, as in
Figure P30.71. To complete a loop, the ends of the spi-
ral are connected by a straight wire along the x axis.
Find the magnitude and direction of B at the origin.
Hints: Use the Biot–Savart law. The angle � between a
radial line and its tangent line at any point on the curve

is related to the function in the following way:

tan � �
r

dr/d�

r � f (�)

r � e�

R � 0.500 cm,
I � 10.0 A,

Fx � � � � dB/dx.

69. A wire is formed into a square of edge length L (Fig.
P30.69). Show that when the current in the loop is I,
the magnetic field at point P, a distance x from the cen-
ter of the square along its axis, is

B �
�0 IL2

2�(x2 
 L2/4)!x2 
 L2/2

R

�

r = eθ

y

x

r
dr

d s

θ

r̂

   =   /4πβ

x

PI

L

L

Figure P30.69

Figure P30.71

Figure P30.73 Problems 73 and 74.

TABLE P30.72

B(T) B0 (T)

0.2 4.8 � 10�5

0.4 7.0 � 10�5

0.6 8.8 � 10�5

0.8 1.2 � 10�4

1.0 1.8 � 10�4

1.2 3.1 � 10�4

1.4 8.7 � 10�4

1.6 3.4 � 10�3

1.8 1.2 � 10�1



978 C H A P T E R  3 0 Sources of the Magnetic Field

ANSWERS TO QUICK QUIZZES

forces on all four sides of the loop lie in the plane of the
loop, there is no net torque.

30.6 Zero; no charges flow into a fully charged capacitor, so
no change occurs in the amount of charge on the plates,
and the electric field between the plates is constant. It is
only when the electric field is changing that a displace-
ment current exists.

30.7 (a) Increases slightly; (b) decreases slightly; (c) in-
creases greatly. Equations 30.33 and 30.34 indicate 
that, when each metal is in place, the total field is

Table 30.2 indicates that 
is slightly greater than �0H for aluminum and slightly
less for copper. For iron, the field can be made thou-
sands of times stronger, as we saw in Example 30.10.

30.8 One whose loop looks like Figure 30.31a because the re-
manent magnetization at the point corresponding to
point b in Figure 30.30 is greater.

30.9 West to east. The lines of the Earth’s magnetic field en-
ter the planet in Hudson Bay and emerge from Antarc-
tica; thus, the field lines resulting from the current
would have to go in the opposite direction. Compare
Figure 30.6a with Figure 30.35.

�0(1 
 �)HB � �0(1 
 �)H.

30.1 (c) F1 � F2 because of Newton’s third law. Another way
to arrive at this answer is to realize that Equation 30.11
gives the same result whether the multiplication of cur-
rents is (2 A)(6 A) or (6 A)(2 A).

30.2 Closer together; the coils act like wires carrying parallel
currents and hence attract one another.

30.3 b, d, a, c. Equation 30.13 indicates that the value of the
line integral depends only on the net current through
each closed path. Path b encloses 1 A, path d encloses 
3 A, path a encloses 4 A, and path c encloses 6 A.

30.4 b, then Paths a, c, and d all give the same
nonzero value �0I because the size and shape of the
paths do not matter. Path b does not enclose the cur-
rent, and hence its line integral is zero.

30.5 Net force, yes; net torque, no. The forces on the top and
bottom of the loop cancel because they are equal in
magnitude but opposite in direction. The current in the
left side of the loop is parallel to I1 , and hence the force
FL exerted by I1 on this side is attractive. The current in
the right side of the loop is antiparallel to I1 , and hence
the force FR exerted by I1 on this side of the loop is re-
pulsive. Because the left side is closer to wire 1, 
and a net force is directed toward wire 1. Because the

FL � FR

a � c � d.

pole moment of the sphere when it rotates as a rigid
body with angular velocity � about an axis through its
center (see Fig. P30.73).

75. A long, cylindrical conductor of radius a has two cylin-
drical cavities of diameter a through its entire length, as
shown in cross-section in Figure P30.75. A current I is
directed out of the page and is uniform through a cross
section of the conductor. Find the magnitude and direc-
tion of the magnetic field in terms of �0 , I, r, and a
(a) at point P1 and (b) at point P2 .

P1

P2

r

r

a

a

Figure P30.75


