Quadrilaterals

Multiple Choice Questions (MCQs)

How many angles are there in a quadrilat-1. eral?

(b) 2 (a) 4 (c) 1 (d) 3

2. The three consecutive angles of a quadrilateral are 70°, 120° and 50°. The fourth angle of the quadrilateral is

(a) 45° (b) 60° (c) 120° (d) 30°

If the sum of angles of a triangle is X and 3. the sum of the angles of a quadrilateral is Y, then

(a) X = 2Y(b) 2X = Y(c) X = Y(d) $X + Y = 360^{\circ}$

One of the angles of a quadrilateral is 90° 4. and the remaining three angles are in the ratio 2:3:4. Find the largest angle of the quadrilateral. (a) 120° (b) 90° (c) 140° (d) 100°

5. In the figure, ABCD is a quadrilateral whose sides AB, BC, CD and DA are produced R^{\bullet} in order to P, Q, R and S. Then x + y + z + t is equal to

(a) 180° (b) 360° (c) 380° (d) 270°

If only one pair of opposite sides of a **6**. quadrilateral are parallel, then the quadrilateral is a

- (a) Parallelogram (b) Trapezium
- Rhombus (d) Rectangle (c)
- 7. A blackboard is in the shape of a
- (a) Parallelogram (b) Rhombus
- (c) Rectangle (d) Kite

8. The angle between the diagonals of a rhombus is

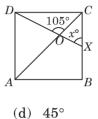
 45° (b) 90° (c) 30° (d) 60° (a)

A quadrilateral whose all the four sides and 9. all the four angles are equal is called a

- (a) Rectangle (b) Rhombus
- Square (d) Parallelogram (c)
- **10.** Which of the following is not true?
- (a) The diagonals of a rectangle are equal.
- (b) Diagonals of a square are equal.

- (c) Diagonals of a parallelogram are not always equal.
- (d) Diagonals of a kite are equal.

11. In the adjoining figure, ABCD is a square. A line segment DX cuts the side BCat X and the diagonal AC at *O* such that $\angle COD = 105^{\circ}$ and $\angle OXC = x$. Find the value of x. (a) 75° (b) 80° (c) 60°



12. If angles *A*, *B*, *C* and *D* of the quadrilateral ABCD, taken in order, are in the ratio 3:7:6:4, then *ABCD* is a

- (a) rhombus (b) parallelogram
- (c) trapezium (d) kite

13. In a parallelogram *ABCD*, if $\angle A = 75^{\circ}$, then the measure of $\angle B$ is

(a) 10° (b) 20° (c) 105° (d) 90°

14. In parallelogram *ABCD*, $\angle DAB = 70^\circ$, $\angle DBC$ = 70°, then $\angle CDB$ is equal to

- 40° (a)
- 60° (b)
- 70° (c)
- (d) 30°

15. In the given figure, ABCD is a parallelogram. E and Fare points on opposite sides AD and BC respectively, such

R E

that $ED = \frac{1}{2}AD$ and $BF = \frac{1}{3}BC$. If $\angle ADF = 60^{\circ}$, then find $\angle BFD$.

(a) 120° (b) 130° (c) 125°

(d) 115°

16. Two angles of a quadrilateral are 55° and 65° . The other two angles are in the ratio 3:5. The two angles are

- (a) 100°, 110° (b) 85°, 125°
- (c) $100^{\circ}, 120^{\circ}$ (d) 90°, 150°

17. In a quadrilateral ABCD, diagonals bisect each other at right angle. Also, AB = BC = AD= 5 cm, then find the length of CD.

(a) 5 cm (b) 4 cm (c) 2 cm(d) 6 cm 18. In the given figure, ABCD is a parallelogram, what is the sum of the angles x, y and z? (a) 180° (b) 45° (c) 60° (d) 90°

19. If a pair of opposite sides of a quadrilateral is equal and parallel, then the quadrilateral is a (a) parallelogram (b) rectangle

- (c) rhombus (d) square
- **20.** In $\triangle ABC$, $EF \parallel BC$, F is the mid-

point of AC and AE = 3.5 cm. Then AB is equal to

- (a) 7 cm
- (b) 5 cm
- (c) 5.5 cm
- (d) 4.5 cm

21. The triangle formed by joining the midpoints of the sides of an equilateral triangle is

- (a) scalene (b) right angled
- (c) equilateral (d) isosceles

22. The four triangles formed by joining the mid-points of the sides of a triangle are

- (a) congruent to each other
- (b) non- congruent to each other
- (c) always right angled triangle
- (d) can't be determined

23. If *M* and *N* are the mid-points of non parallel sides of a trapezium PQRS, then which of the following conditions is/are true?

(a)
$$MN \parallel PQ$$

(b)
$$MN = \frac{1}{2} (PQ + RS)$$

(c) $MN = \frac{1}{2} (PQ - RS)$

(d) Both (a) and(b)

24. In the given figure, *ABCD* is a rhombus. If $\angle A = 70^{\circ}$, then $\angle CDB$ is equal to

- (a) 65°
- (b) 55°
- (c) 75°
- (d) 80°

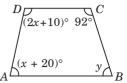
25. Two adjacent angles of a parallelogram are $(2x + 25)^{\circ}$ and $(3x - 5)^{\circ}$. The value of x is

(a) 28 (b) 32 (c) 36 (d) 42

26. In a quadrilateral *STAR*, if $\angle S = 120^{\circ}$, and

- $\angle T : \angle A : \angle R = 5 : 3 : 7$, then measure of $\angle R =$
- (a) 112° (b) 120°
- (c) 110° (d) None of these

27. In figure, *ABCD* is a trapezium. Find the values of x and y.



- (b) $x = 50^\circ, y = 88^\circ$ (c) $x = 80^{\circ}, y = 50^{\circ}$
- (d) None of these

(a) $x = 50^{\circ}, y = 80^{\circ}$

28. In a quadrilateral *ABCD*, $\angle A + \angle C$ is 2 times $\angle B + \angle D$. If $\angle A = 140^{\circ}$ and $\angle D = 60^{\circ}$, then $\angle B =$

- (a) 60° (b) 80°
- (c) 120° (d) None of these

29. The measure of all the angles of a parallelogram, if an angle is 24 less than twice the smallest angle, is

- (a) 37°, 143°, 37°, 143°
- (b) 108°, 72°, 108°, 72°
- (c) 68°, 112°, 68°, 112°
- (d) None of these

30. Which type of quadrilateral is formed when the angles A, B, C and D are in the ratio 2:4:5:7?

- (a) Rhombus (b) Square
- (c) Trapezium (d) Rectangle

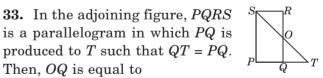
31. In $\triangle PQR$, A and B are respectively the midpoints of sides PQ and PR. If $\angle PAB = 60^{\circ}$, then $\angle PQR =$

(a) 40° (b) 80° (c) 60° (d) 70°

32. Sides AB and CD of a quadrilateral ABCD are extended as in figure. Then a + b is equal to

(a) x + 2y(b) x - y

- (c) x + y
- (d) 2x + y



Then, OQ is equal to (a) OS(b) *OR*

produced to T such that QT = PQ.

(d) None of these (c) OT

34. If consecutive sides of a parallelogram are equal, then it is necessarily a

- (a) Rectangle (b) Rhombus
- Trapezium (d) None of these (c)

35. The triangle formed by joining the midpoints of the sides of a right angled triangle is

- (a) scalene (b) isosceles
- (c) equilateral (d) right angled

4 cm

8 cm

Case Based MCQs

Case I. Read the following passage and answer the questions from 36 to 40.

Laveena's class teacher gave students some colourful papers in the shape of quadrilaterals. She asked students to make a parallelogram from it using paper folding. Laveena made the following parallelogram.



36. How can a parallelogram be formed by using paper folding?

- (a) Joining the sides of quadrilateral
- (b) Joining the mid-points of sides of quadrilateral
- (c) Joining the various quadrilaterals
- $(d) \quad None \ of \ these$

37. Which of the following is true?

(a)
$$PQ = BD$$
 (b) $PQ = \frac{1}{2}BD$

(c)
$$3PQ = BD$$
 (d) $PQ = 2BD$

38. Which of the following is correct combination?

(a)
$$2RS = BD$$
 (b) $RS = \frac{1}{2}BD$

- (c) RS = BD (d) RS = 2BD
- **39.** Which of the following is correct?
- (a) SR = 2PQ (b) PQ = SR
- (c) SR = 3PQ (d) SR = 4PQ

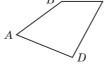
40. Write the formula used to find the perimeter of quadrilateral *PQRS*.

- (a) PQ + QR + RS + SP
- (b) PQ QR + RS SP
- (c) $\frac{PQ+QR+RS+SP}{2}$

(d)
$$\frac{PQ+QR+RS+SP}{3}$$

Case II. Read the following passage and answer the questions from 41 to 45. $B \longrightarrow C$

After summervacation, Manit's class teacher organised a $_A$ small MCQ quiz, based on the properties of quadrilaterals.



During quiz, she asks different questions to students.

Some of the questions are listed below.

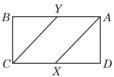
41. Which of the following is/are the condition(s) for *ABCD* to be a quadrilateral?

- (a) The four points A, B, C and D must be distinct and co-planar.
- (b) No three of points A, B, C and D are collinear.
- (c) Line segments *i.e.*, *AB*, *BC*, *CD*, *DA* intersect at their end points only.
- $(d) \quad All \ of \ these$
- 42. Which of the following is wrong condition
- for a quadrilateral said to be a parallelogram?
- (a) Opposite sides are equal
- (b) Opposite angles are equal
- (c) Diagonal can't bisect each other
- $(d) \quad None \ of \ these$

43. If *AX* and *CY* are the bisectors of the angles *A* and *C* of a parallelogram *ABCD*, then

- (a) $AX \parallel CY$
- (b) *AX* || *CD*
- (c) $AX \parallel AB$

(d) None of these



44. *ABCD* and *AEFG* are two parallelograms. If $\angle C = 63^{\circ}$, then determine $\angle G$.

- 0) 117
- (c) 90°
- (d) 120°

45. If angles of a quadrilateral are in ratio

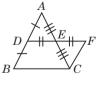
3:5:5:7, then find all the angles.

- (a) 54° , 80° , 80° , 146° (b) 34° , 100° , 100° , 126°
- (c) 54° , 90° , 90° , 126° (d) None of these

Case III. Read the following passage and answer the questions from 46 to 50.

Anjali and Meena were trying to prove mid point theorem.

They draw a triangle ABC, where D and E are found to be the midpoints of AB and ACrespectively. DE was joined and extended to F such that DE = EF and FC is also joined.



46. $\triangle ADE$ and $\triangle CFE$ are congruent by which criterion?

(a) SSS (b) SAS (c) RHS (d) ASA

47. $\angle EFC$ is equal to which angle?	49. CF is equal to
(a) $\angle DAE$ (b) $\angle EDA$ (c) $\angle AED$ (d) $\angle DBC$	(a) EC (b) BE (c) BC (d) AD
48. $\angle ECF$ is equal to which angle?	50. CF is parallel to
(a) $\angle EAD$ (b) $\angle ADE$ (c) $\angle AED$ (d) $\angle B$	(a) AE (b) CE (c) BD (d) AC

SAssertion & Reasoning Based MCQs

Directions (Q.51 to 55) : In these questions, a statement of Assertion is followed by a statement of Reason is given. Choose the correct answer out of the following choices :

- (a) Assertion and Reason both are correct statements and Reason is the correct explanation of Assertion.
- (b) Assertion and Reason both are correct statements but Reason is not the correct explanation of Assertion.
- (c) Assertion is correct statement but Reason is wrong statement.
- (d) Assertion is wrong statement but Reason is correct statement.

51. Assertion : In $\triangle ABC$, median AD is produced to X such that AD = DX. Then ABXC is a parallelogram.

Reason : Diagonals of a parallelogram are perpendicular to each other.

52. Assertion : ABCD and PQRC are rectangles and Q is the mid-point of AC. Then DP = PC.

Reason : The line segment joining the midpoints of any two sides of a triangle is parallel to the third side and equal to half of it. **53.** Assertion : Two opposite angles of a parallelogram are $(3x - 2)^{\circ}$ and $(50 - x)^{\circ}$. The measure of one of the angle is 37° .

Reason : Opposite angles of a parallelogram are equal.

54. Assertion : *ABCD* is a square. *AC* and *BD* intersect at *O*. The measure of $\angle AOB = 90^{\circ}$.

Reason : Diagonals of a square bisect each other at right angles.

55. Assertion : In $\triangle ABC$, *E* and *F* are the midpoints of *AC* and *AB* respectively. The altitude *AP* at *BC* intersects *FE* at *Q*. Then, AQ = QP.

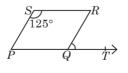
Reason : If Q is the midpoint of AP, then AQ = QP.

SUBJECTIVE TYPE QUESTIONS

Very Short Answer Type Questions (VSA)

1. Two consecutive angles of a parallelogram are $(x + 60^\circ)$ and $(2x + 30^\circ)$. What special name can you give to this parallelogram?

2. In the given figure, *PQRS* is a parallelogram in which $\angle PSR = 125^{\circ}$. Find the measure of $\angle RQT$.



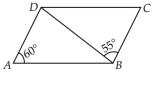
3. Can the angles 110°, 80°, 70° and 95° be the angles of a quadrilateral ? Why or why not?

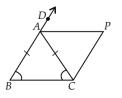
4. In the figure, it is given that QLMN and NLRM are parallelograms. Can you say that QL = LR? Why or why not?

5. ABCD is a parallelogram in which $\angle A = 78^{\circ}$. Compute $\angle B$, $\angle C$ and $\angle D$.

6. In the given figure, ABCD is a parallelogram in which $\angle DAB = 60^{\circ}$ and $\angle DBC = 55^{\circ}$. Compute $\angle CDB$ and $\angle ADB$.

7. In the given figure, AB = ACand $CP \parallel BA$ and AP is the bisector of exterior $\angle CAD$ of $\triangle ABC$. Prove that $\angle PAC = \angle BCA$ and ABCP is a parallelogram.





8. If one angle of a rhombus is a right angle, then it is necessarily a _____.

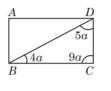
9. In a rhombus *ABCD*, if $\angle A = 60^\circ$, then find the sum of $\angle A$ and $\angle C$.

Short Answer Type Questions (SA-I)

11. In a quadrilateral *ABCD*, *CO* and *DO* are the bisectors of $\angle C$ and $\angle D$ respectively.

Prove that $\angle COD = \frac{1}{2}(\angle A + \angle B).$

12. In the given parallelogram *ABCD*, the sum of any two consecutive angles is 180° and opposite angles are equal. Find the value of $\angle A$.



13. Diagonals of a quadrilateral *ABCD* bisect each other. $\angle A = 45^{\circ}$ and $\angle B = 135^{\circ}$. Is it true? Justify your answer.

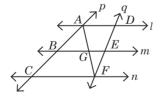
14. *D* and *E* are the mid-points of sides *AB* and *AC* respectively of triangle *ABC*. If the perimeter of $\triangle ABC = 35$ cm, then find the perimeter of $\triangle ADE$.

15. In $\triangle ABC$, AD is the median and $DE \parallel AB$, such that *E* is a point on *AC*. Prove that *BE* is another median.

Short Answer Type Questions (SA-II)

21. In a parallelogram *PQRS*, if $\angle QRS = 2x$, $\angle PQS = 4x$ and $\angle PSQ = 4x$, then find the angles of the parallelogram.

22. l, m and n are three parallel lines intersected by transversals p and q such that l, m and ncut off equal intercepts AB and BC on p (see figure).

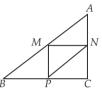


Show that l, m and n cut off equal intercepts DE and EF on q also.

23. The side of a rhombus is 10 cm. The smaller diagonal is $\frac{1}{3}$ of the greater diagonal. Find the length of the greater diagonal.

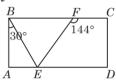
10. *ABCD* is a trapezium in which $AB \parallel DC$ and $\angle A = \angle B = 45^{\circ}$. Find angles *C* and *D* of the trapezium.

16. In the given figure, M, Nand P are the midpoints of AB, AC and BC respectively. If MN = 3 cm, NP = 3.5 cm and MP = 2.5 cm, then find (BC + AC) - AB.



17. Let $\triangle ABC$ be an isosceles triangle with AB = AC and let D, E and F be the mid-points of BC, CA and AB respectively. Show that $AD \perp FE$ and AD is bisected by FE.

18. In the given rectangle ABCD, $\angle ABE = 30^{\circ}$ and $\angle CFE = 144^{\circ}$. Find the measure of $\angle BEF$.

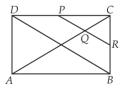


19. The perimeter of a parallelogram is 30 cm. If longer side is 9.5 cm, then find the length of shorter side.

20. In a parallelogram *ABCD*, if $\angle A = (3x - 20)^\circ$, $\angle B = (y + 15)^\circ$ and $\angle C = (x + 40)^\circ$, then find x + y (in degrees).

24. In $\triangle ABC$, $\angle A = 50^\circ$, $\angle B = 60^\circ$ and $\angle C = 70^\circ$. Find the measures of the angles of the triangle formed by joining the mid-points of the sides of this triangle.

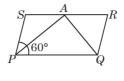
25. In given figure, *ABCD* is a parallelogram in which *P* is the midpoint of *DC* and *Q* is a point on *AC* such that $CQ = \frac{1}{4}AC$. If *PQ* produced *A*



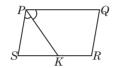
meet BC at R, then prove that R is a midpoint of BC.

26. *ABCD* is parallelogram. *P* is a point on *AD* such that $AP = \frac{1}{3}AD$ and *Q* is a point on *BC* such that $CQ = \frac{1}{3}BC$. Prove that AQCP is a parallelogram.

27. *PQRS* is a parallelogram and $\angle SPQ = 60^{\circ}$. If the bisectors of $\angle P$ and $\angle Q$ meet at point *A* on *RS*, prove that *A* is the mid-point of *RS*.



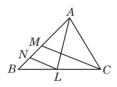
28. In the given figure, K is the mid-point of side SR of a parallelogram PQRS such that $\angle SPK = \angle QPK$. Prove that PQ = 2QR.



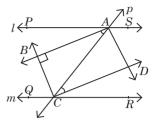
29. Rima has a photo-frame without a photo in the shape of a triangle with sides a, b, c in length. She wants to find the perimeter of a triangle formed by joining the mid-points of the sides of the photo-frame. Find the perimeter of the triangle formed by joining the mid-points of the frame.

30. In the following figure, AL and CM are medians of $\triangle ABC$ and $LN \parallel CM$. Prove that

 $BN = \frac{1}{4} AB.$

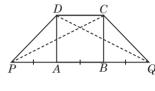


31. Two parallel lines land m are intersected by la transversal p (see figure). Show that the quadrilateral formed by the bisectors of interior mangles is a rectangle.



32. *PQRS* is a rhombus with $\angle QPS = 50$. Find $\angle RQS$.

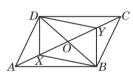
33. In the given figure, ABCD is a square, side AB is produced to points P and Q in such a way that PA = AB = BQ. Prove that DQ = CP.



34. In the adjoining figure, points *A* and *B* are on the same side of a line *m*, $AD \perp m$ and $BE \perp m$ and meet *m* at *D* and *E*, respectively. If *C* is the mid-point of *AB*, then prove that CD = CE.

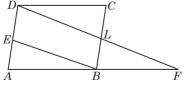
35. In the given quadrilateral *ABCD*, *X* and *Y*

are points on diagonal ACsuch that AX = CY and BXDY is a parallelogram. Show that ABCD is a parallelogram.

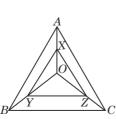


Long Answer Type Questions (LA)

36. In the given figure, ABCD is a parallelogram and E is the mid-point of AD. A line through D, drawn parallel to EB, meets AB produced at F and BC at L. Prove that (i) AF = 2DC (ii) DF = 2DL



37. In $\triangle ABC$, AB = 18 cm, BC = 19 cm and AC = 16 cm. *X*, *Y* and *Z* are mid-points of *AO*, *BO* and *CO* respectively as shown in the figure. Find the perimeter of $\triangle XYZ$.



38. Prove that the line segment joining the midpoints of the diagonals of a trapezium is parallel to each of the parallel sides and is equal to half the difference of these sides.

39. ABCD is a parallelogram. AB and AD are produced to P and Q respectively such that BP = AB and DQ = AD. Prove that P, C, Q lie on a straight line.

40. *P*, *Q*, *R* and *S* are respectively the mid-points of sides *AB*, *BC*, *CD* and *DA* of quadrilateral *ABCD* in which AC = BD and $AC \perp BD$. Prove that *PQRS* is a square.

ANSWERS

OBJECTIVE TYPE QUESTIONS

1. (a) : Number of angles in a guadrilateral = 4. (c) : Let the measure of fourth angle be *x*. 2. Now, sum of angles of a quadrilateral = 360° $\Rightarrow 70^{\circ} + 120^{\circ} + 50^{\circ} + x = 360^{\circ}$ $\Rightarrow 240^{\circ} + x = 360^{\circ} \Rightarrow x = 120^{\circ}$ (b): Here, $X = \text{Sum of angles of a triangle} = 180^{\circ}$, 3. Y = Sum of angles of a quadrilateral = 360° Now, $2X = 2 \times 180^{\circ} = 360^{\circ} = Y$ $\therefore 2X = Y$ 4. (a) : Let the quadrilateral be *ABCD* in which $\angle A = 90^\circ$, $\angle B = 2x$, $\angle C = 3x$ and $\angle D = 4x$. Then, $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ $\Rightarrow 90^\circ + 2x + 3x + 4x = 360^\circ$ $\Rightarrow 9x = 270^{\circ} \Rightarrow x = 30^{\circ}$ $\therefore \ \angle B = 60^\circ, \angle C = 90^\circ, \angle D = 120^\circ$ Hence, the largest angle is 120°. (b): We have, $x + \angle A = 180^{\circ}$ 5. (Linear pair) \Rightarrow x = 180° - $\angle A$ similarly, y = 180° - $\angle B$, $z = 180^{\circ} - \angle C, t = 180^{\circ} - \angle D$ D)

$$\Rightarrow x + y + z + t = 720^{\circ} - (\angle A + \angle B + \angle C + \angle D)$$
$$= 720^{\circ} - 360^{\circ} = 360^{\circ}$$

(b): In a trapezium, only one pair of opposite sides 6. are parallel.

7. (c) : A blackboard is in the shape of a rectangle.

(b): Diagonals of a rhombus are perpendicular to 8. each other. So, the angle between them is 90°.

(c) : In a square, all the four sides are equal and all 9. the angles are of equal measure, *i.e.*, 90°.

10. (d): Diagonals of a kite are not equal.

11. (c) : We know, the angles of a square are bisected by the diagonals.

 $\therefore \angle OCX = 45^{\circ}$

Also,
$$\angle COD + \angle COX = 180^{\circ}$$
 (Linear pair)

 \Rightarrow 105° + $\angle COX$ = 180° $\Rightarrow \angle COX$ = 180° - 105° = 75° Now, in $\triangle COX$, we have

 $\angle OCX + \angle COX + \angle OXC = 180^{\circ}$

$$\Rightarrow 45^\circ + 75^\circ + x = 180^\circ$$

 $\Rightarrow x = 180^{\circ} - 120^{\circ} = 60^{\circ}.$

12. (c) : Let the angles of quadrilateral *ABCD* be 3x, 7x, 6x and 4x respectively.

.•. $3x + 7x + 6x + 4x = 360^{\circ}$

[Angle sum property of a quadrilateral]

- $20x = 360^{\circ}$ \Rightarrow
- $\Rightarrow x = 18^{\circ}$
- .: Angles of the quadrilateral are $\angle A = 3 \times 18^\circ = 54^\circ$ $\angle B = 7 \times 18^\circ = 126^\circ$

 $\angle C = 6 \times 18^{\circ} = 108^{\circ}$

and $\angle D = 4 \times 18^\circ = 72^\circ$

Now, for the line segments *AD* and *BC*, with *AB* as transversal $\angle A$ and $\angle B$ are co-interior angles.

Also, $\angle A + \angle B = 54^{\circ} + 126^{\circ} = 180^{\circ}$

 \therefore AD || BC

Thus, *ABCD* is a trapezium.

13. (c) : Sum of adjacent angles of a parallelogram is 180°.

 $\therefore \quad \angle A + \angle B = 180^\circ \Rightarrow 75^\circ + \angle B = 180^\circ \Rightarrow \angle B = 105^\circ$

- **14.** (a) : $\angle ABC + \angle BAD = 180^{\circ}$
- (:: Sum of adjacent angles of a parallelogram is 180°)
- $\Rightarrow \angle ABC = 180^\circ 70^\circ = 110^\circ$

 $\Rightarrow \ \angle ABD = \angle ABC - \angle DBC = 110^{\circ} - 70^{\circ} = 40^{\circ}$

Now, $CD \parallel AB$ and BD is transversal.

$$\therefore \quad \angle CDB = \angle ABD = 40^{\circ} \qquad (Alternate angles)$$

15. (a) : Given, *ABCD* is a parallelogram.

 $AD \parallel BC$ and DF is a transversal. *.*•.

- $\angle ADF = \angle DFC = 60^{\circ}$ (Alternate angles) Also, $\angle BFD + \angle DFC = 180^\circ$ (Linear pair)
- $\Rightarrow \angle BFD + 60^\circ = 180^\circ \Rightarrow \angle BFD = 180^\circ 60^\circ = 120^\circ$
- **16.** (d): Let the other two angles be 3x and 5x. Now, sum of angles of a quadrilateral = 360° .
- $55^\circ + 65^\circ + 3x + 5x = 360^\circ$ *.*...
- $120^{\circ} + 8x = 360^{\circ} \Rightarrow 8x = 240^{\circ} \Rightarrow x = 30^{\circ}$ \Rightarrow
- Two angles are 90° and 150°. *.*..

17. (a) : Diagonals of quadrilateral bisect each other at right angle.

 \therefore It is a square or a rhombus.

Also, all the sides of square or rhombus are equal.

 \therefore CD = 5 cm.

18. (a) : In $\triangle ADC$,

 $x + y + \angle ADC = 180^{\circ}$ (By angle sum property of a triangle)

$$\Rightarrow \angle ADC = 180^{\circ} - (x + y) \qquad \dots(i)$$

$$\therefore \angle ABC = \angle ADC$$

(:: Opposite angles of parallelogram are equal)

 $z = 180^{\circ} - (x + y)$ [Using (i)] *.*..

$$\Rightarrow z + x + y = 180^{\circ}$$

19. (a) : If a pair of opposite sides of a quadrilateral is equal and parallel, then it is a parallelogram.

20. (a) : Here, $EF \parallel BC$ and F is mid-point of AC.

By converse of mid-point theorem, *E* is the mid-*.*... point of AB.

 \Rightarrow AB = 2(AE) = 2 × 3.5 cm = 7 cm

21. (c) : Let *ABC* be an equilateral triangle.

 $\therefore AB = BC = AC$...(i) Let *D*, *E*, *F* are mid-points of sides

BC, AC, AB respectively. By mid-point theorem

 $\therefore DE = EF = DF$

$$DE = \frac{1}{2}AB, EF = \frac{1}{2}BC, DF = \frac{1}{2}AC$$

Hence, *DEF* is an equilateral triangle.

(From (i))

 $\widetilde{3x}$ 7x () B **22.** (a) : Let *ABC* be the triangle and *D*, *E*, *F* are mid-points of sides *BC*, *AC*, *AB* respectively.

 \therefore By mid-point theorem,

 $DE \parallel AB, EF \parallel BC, DF \parallel AC$

:. *DEAF, BDEF, FDCE* are all parallelograms.

Now, DE is the diagonal of parallelogram FDCE

 $\therefore \quad \Delta DEC \cong \Delta EDF$

Similarly, $\Delta FAE \cong \Delta EDF$

and $\Delta BFD \cong \Delta EDF$

Hence, all four triangles are congruent.

23. (d): Given, *M* and *N* are respectively mid-points of non-parallel sides *PS* and *QR* of trapezium *PQRS*.

Join *RM* and produce it to meet *QP* produced at *X*. In ΔSMR and ΔPMX , $\angle SMR = \angle PMX$ (Vertically opposite angles)

 $\angle SRM = \angle PXM$

(: Alternate angles as, $SR \parallel QX$ and XR is transversal) SM = PM (: M is mid-point of PS)

$$\therefore \quad \Delta SMR \cong \Delta PMX \qquad (By AAS congruence rule)$$

 \Rightarrow MR = MX and SR = PX (By C.P.C.T.)

Now, in ΔRXQ , *M* is the mid-point of *XR*, as *XM* = *MR* and *N* is the mid-point of *RQ*.

$$\therefore \text{ By mid-point theorem, } MN \parallel XQ \text{ and } MN = \frac{1}{2}XQ$$

$$\Rightarrow MN \parallel PQ \text{ and } MN = \frac{1}{2}(XP + PQ) = \frac{1}{2}(SR + PQ)$$
$$(\because SR = XP)$$

Hence, $MN \parallel PQ$ and $MN = \frac{1}{2}(SR + PQ)$

24. (b): In $\triangle CDB$, we have CD = CB

[\therefore adjacent sides of rhombus are equal]

 $\Rightarrow \angle CBD = \angle CDB = x$ In $\triangle BCD$, $\angle BCD = 70^{\circ}$

- and $\angle CDB + \angle CBD + \angle DCB = 180^{\circ}$
- $\Rightarrow x + x + 70^{\circ} = 180^{\circ} \Rightarrow x = 55^{\circ}$
- $\Rightarrow \angle CDB = 55^{\circ}$

25. (b): Since, adjacent angles of a parallelogram are supplementary.

So, $2x + 25^{\circ} + 3x - 5^{\circ} = 180^{\circ}$

$$\Rightarrow 5x = 160^{\circ} \Rightarrow x = 32$$

26. (a) : Let the three angles $\angle T$, $\angle A$ and $\angle R$ be 5x, 3x and 7x respectively.

- $\therefore \quad \angle S + \angle T + \angle A + \angle R = 360^{\circ}$
- $\Rightarrow 120^{\circ} + 5x + 3x + 7x = 360^{\circ}$
- $\Rightarrow 15x = 240^{\circ} \Rightarrow x = 16^{\circ}$
- $\therefore \quad \angle R = 7 \times 16 = 112^{\circ}$
- **27.** (b): Since *ABCD* is a trapezium.

 $\therefore x + 20^{\circ} + 2x + 10^{\circ} = 180^{\circ}$ (Sum of measure of interior angles is 180°) $\Rightarrow 3x + 30 = 180^{\circ} \Rightarrow x = 50^{\circ}$

and $y + 92^\circ = 180^\circ \Rightarrow y = 88^\circ$

28. (a) : Given $\angle A + \angle C = 2(\angle B + \angle D)$ $140^\circ + \angle C = 2\angle B + 2 \times 60^\circ$ \Rightarrow $\Rightarrow 2\angle B - \angle C = 20^{\circ}$...(i) Also, $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ $140^{\circ} + \angle B + \angle C + 60^{\circ} = 360^{\circ}$ \Rightarrow $\angle B + \angle C = 160^{\circ}$ \rightarrow ...(ii) Using (i) and (ii), we get $\angle B = 60^{\circ}$ **29.** (c) : Let the smallest angle be $\angle A = x^\circ$, and other angle be $\angle B = (2x - 24)^\circ$ $\angle A + \angle B = 180^{\circ}$ *.*.. x + 2x - 24 = 180 \rightarrow $3x = 204 \implies x = 68$ \Rightarrow $\angle A = 68^{\circ}$ ÷. and $\angle B = (2x - 24)^{\circ} = (2 \times 68 - 24)^{\circ} = 112^{\circ}$ Since, opposite angles of a parallelogram are equal. So, $\angle A = \angle C = 68^\circ$, $\angle B = \angle D = 112^\circ$ 30. (c) : Let the measures of the angles be 2x, 4x, 5x and 7x. $\Rightarrow 2x + 4x + 5x + 7x = 360^{\circ}$ (Angle sum property) $18x = 360^\circ \implies x = 20^\circ$ \Rightarrow $\angle A = 40^{\circ}, \angle B = 80^{\circ}, \angle C = 100^{\circ}, \angle D = 140^{\circ}$ *.*. As $\angle A + \angle D = 180^{\circ}$ and $\angle B + \angle C = 180^{\circ}$ \Rightarrow CD || AB ABCD is a trapezium. *.*... **31.** (c) : In $\triangle PQR$, A and B are mid-points of *PQ* and *PR* respectively. *.*... $AB \parallel QR$ [By mid-point theorem] $\angle AQR = \angle PAB$ *.*.. [Corresponding angles] • $\angle POR = \angle PAB = 60^{\circ}$ **32.** (c) : We have, $\angle ADC + b = 180^{\circ}$ [Linear pair] $\angle ADC = 180^{\circ} - b$ \Rightarrow ...(i) Also, $\angle ABC + a = 180^{\circ}$ [Linear pair] $\Rightarrow \angle ABC = 180^\circ - a$...(ii) In quadrilateral *ABCD*, we have $\angle ABC + \angle BCD + \angle ADC + \angle BAD = 360^{\circ}$ [By angle sum property of a quadrilateral] $180^{\circ} - a + y + 180^{\circ} - b + x = 360^{\circ}$ [Using (i) and (ii)] \rightarrow \Rightarrow $360^{\circ} - a - b + x + y = 360^{\circ}$ x + y = a + b \Rightarrow **33.** (b): Given, *PQRS* is a parallelogram. $SR \mid PQ$ and SR = PQ. *.*. ...(i) But, QT = PQ(Given) ...(ii) From (i) and (ii), we have SR = PQ = QTIn $\triangle SRO$ and $\triangle TQO$ $\angle RSO = \angle QTO$ (Alternate angles) SR = QT(Proved above) $\angle SRO = \angle TQO$ (Alternate angles)

 $\therefore \quad \Delta SRO \cong \Delta TQO \qquad (By ASA congruency criteria) \\ \Rightarrow RO = OQ \qquad (By C.P.C.T.)$

34. (b): If consecutive sides of a parallelogram are equal, then it is necessarily a rhombus.

35. (d) : Let *ABC* be right angled triangle and $\angle ABC = 90^{\circ}$. Let *D*, *E*, *F* are mid-points of sides *BC*, *AC* and *AB* respectively. $\therefore EF \parallel BD$ and $BF \parallel DE$ (By mid-point theorem)

- \Rightarrow *BDEF* is a parallelogram.
- $\therefore \quad \angle FED = \angle FBD = 90^{\circ}$

(:: Opposite angles of a parallelogram are equal)

 \therefore *DEF* is right angled triangle.

36. (b): A parallelogram can be formed by joining the mid points of sides of quadrilateral.

37. (b) : As *P* and *Q* are mid points of *AB* and *AD* respectively.

$$\therefore PQ = \frac{1}{2}BD \qquad \dots (1)$$

and $PQ \parallel BD$

38. (a) : As, *R* and *S* are mid points of *CD* and *BC* respectively.

[By midpoint theorem]

$$\therefore RS \parallel BD \text{ and } RS = \frac{1}{2}BD \text{ i.e., } BD = 2RS \qquad \dots (2)$$

39. (b) : From (1) and (2),
$$RS = PQ = \frac{1}{2}BD$$

40. (a) : Perimeter of quadrilateral PQRS= PQ + QR + RS + SP

41. (d) : All the conditions given in options (a), (b) and (c) are necessary for *ABCD* to be a quadrilateral.

42. (c) : In a parallelogram, diagonal can't bisect each other.

43. (a) :
$$\angle A = \angle C \Rightarrow \frac{1}{2} \angle A = \frac{1}{2} \angle C$$

 $\Rightarrow \angle YAX = \angle YCX$
Also, $\angle AYC + \angle YCX = 180^{\circ}$
 $\therefore \angle AYC + \angle YAX = 180^{\circ}$
[$\therefore CX \parallel AY$]

 \therefore ZAYC + ZYAX = 180° So, AX || CY (\therefore Interior angles on the same side of the

transversal are supplementary)44. (b) : As *ABCD* is a parallelogram.

 $\therefore \quad \angle A = \angle C = 63^{\circ}$

(Opposite angles of a parallelogram are equal) Also, *AEFG* is a parallelogram.

∴ $\angle A + \angle G = 180^\circ$ (Adjacent angles are supplementary) ∴ $\angle G = 180^\circ - 63^\circ = 117^\circ$

45. (c) : Let the angles be 3*x*, 5*x*, 5*x* and 7*x*.

Now, $3x + 5x + 5x + 7x = 360^{\circ}$ $\Rightarrow 20x = 360^{\circ} \Rightarrow x = 18^{\circ}$

 $\therefore \text{ All angles are 54°, 90°, 90°, 126°}$

46. (b) : In $\triangle ADE$ and $\triangle CFE$, we have AE = CE (Given) DE = FE (Given) $\angle AED = \angle CEF$ (Vertically opposite angles)

 $\therefore \quad \Delta ADE \cong \Delta CFE \qquad (By SAS congruency criterion)$

- **47.** (b) : $\angle EFC = \angle EDA$ (By CPCT)
- **48.** (a) : $\angle ECF = \angle EAD$ (By CPCT)
- **49.** (d) : CF = AD (By CPCT)
- **50.** (c) : $CF \parallel BD$ (:: $\angle ECF = \angle EAD$)

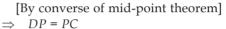
51. (c) : In quadrilateral *ABXC*, we have

AD = DX [Given] BD = DC [Since AD is median] So, diagonals AX and BC bisect each other but not at right angles.

Therefore, *ABXC* is a parallelogram.

52. (a) : Clearly, statement-II is true. Now, in $\triangle ADC$, *Q* is the mid-point of *AC* such that *PQ* || *AD*.

 \therefore *P* is the mid-point of *DC*.



53. (a) : Since, opposite angles of a parallelogram are equal. Therefore, $3x - 2 = 50 - x \Rightarrow x = 13$.

So, angles are $(3 \times 13 - 2)^{\circ} = 37^{\circ}$ and $(50 - 13)^{\circ} = 37^{\circ}$.

54. (a): Since, diagonals of a square bisect each other at right angles.

 $\therefore \ \angle AOB = 90^{\circ}$

55. (b): In $\triangle ABC$, *E* and *F* are midpoint of the sides *AC* and *AB* respectively.

∴ *FE* || *BC* [By mid-point theorem Now, in $\triangle ABP$, *F* is mid-point of *AB* and *FQ* || *BP* \Rightarrow *Q* is mid-point of *AP*

 $\Rightarrow AQ = QP.$

SUBJECTIVE TYPE QUESTIONS

1. We know that consecutive interior angles of a parallelogram are supplementary.

 \therefore $(x + 60^{\circ}) + (2x + 30^{\circ}) = 180^{\circ}$

 $\therefore \quad 3x + 90^\circ = 180^\circ \implies 3x = 90^\circ \implies x = 30^\circ$

Thus, two consecutive angles are $(30^\circ + 60^\circ)$, $(2 \times 30^\circ + 30^\circ)$ *i.e.*, 90° and 90°.

Hence, the special name of the given parallelogram is rectangle.

2. $\angle PQR = \angle PSR = 125^{\circ}$

(: Opposite angles of a parallelogram are equal) Now, $\angle PQR + \angle RQT = 180^{\circ}$ (Linear pair) $\Rightarrow 125^{\circ} + \angle RQT = 180^{\circ} \Rightarrow \angle RQT = 55^{\circ}$

- 3. No.
- :: Sum of the angles = $110^\circ + 80^\circ + 70^\circ + 95^\circ$

Thus, the given angles cannot be the angles of a quadrilateral.

4. Yes, QL = LRAs, opposite sides of a parallelogram are equal. ∴ In parallelogram QLMN, QL = NM ...(i) In parallelogram NLRM, NM = LR ...(ii) From (i) and (ii), QL = LR5. Since, $\angle A + \angle B = 180^{\circ}$ D C[Co-interior angles] $\Rightarrow \angle B = 180^{\circ} - 78^{\circ} = 102^{\circ}$ Now, $\angle B = \angle D = 102^{\circ}$ A Band, $\angle A = \angle C = 78^{\circ}$

[: opposite angles of a parallelogram are equal] 6. We have, $\angle A + \angle B = 180^{\circ}$ [Co-interior angles] $\Rightarrow 60^{\circ} + \angle ABD + 55^{\circ} = 180^{\circ} \Rightarrow \angle ABD = 65^{\circ}$ Also, $\angle ABD = \angle CDB$

[Alternate interior angles are equal] $\therefore \ \angle CDB = \angle ABD = 65^{\circ}$

We have, $\angle ADB = \angle DBC$

[Alternate interior angles are equal] $\Rightarrow \angle ADB = 55^{\circ}$

7. We have, $AB = AC \implies \angle BCA = \angle B$

Now, $\angle CAD = \angle B + \angle BCA$ [Exterior angle property] $\Rightarrow 2\angle CAP = 2\angle BCA$ [$\therefore AP$ is the bisector of $\angle CAD$] $\Rightarrow \angle CAP = \angle BCA \Rightarrow AP \parallel BC$ Also, $AB \parallel CP$ [Given]

Hence, *ABCP* is a parallelogram.

8. If one angle of a rhombus is a right angle, then it is necessarily a square.

9. Since a rhombus is a parallelogram.

$$\therefore \text{ Its opposite angles are equal.} \qquad D$$

$$\Rightarrow \angle A = \angle C$$

$$\therefore \angle C = 60^{\circ} [\because \angle A = 60^{\circ} \text{ (Given)}]$$
Now, required sum = $\angle A + \angle C$

$$= 60^{\circ} + 60^{\circ} = 120^{\circ}$$
10. We have given, a trapezium
ABCD, whose parallel sides are *AB*
and *DC*

and *DC*. Since, *AB* || *CD* and *AD* is a transversal.

 $\Rightarrow \angle COD = \frac{1}{2}(\angle A + \angle B)$

 $\therefore \quad \angle A + \angle D = 180^{\circ} \text{ [Angles on same side of transversal]} \\ \Rightarrow \quad \angle D = 180^{\circ} - \angle A = 180^{\circ} - 45^{\circ} = 135^{\circ} \\ \text{Similarly, } \angle C = 135^{\circ} \\ \end{aligned}$

11. In $\triangle COD$, we have $\angle COD + \angle 1 + \angle 2 = 180^{\circ}$ $\Rightarrow \angle COD = 180^{\circ} - (\angle 1 + \angle 2)$ $\Rightarrow \angle COD = 180^{\circ} - \left(\frac{1}{2}\angle C + \frac{1}{2}\angle D\right)$ $\Rightarrow \angle COD = 180^{\circ} - \frac{1}{2}(\angle C + \angle D)$ $\Rightarrow \angle COD = 180^{\circ} - \frac{1}{2}[\angle C + \angle D]$ $\Rightarrow \angle COD = 180^{\circ} - \frac{1}{2}[360^{\circ} - (\angle A + \angle B)]$ $[\because \angle A + \angle B + \angle C + \angle D = 360^{\circ}]$ **12.** In $\triangle BCD$, we have

 $\angle BDC + \angle DCB + \angle CBD = 180^{\circ}$

[Angle sum property of a triangle]

 $\Rightarrow 5a + 9a + 4a = 180^{\circ}$

 $\Rightarrow 18a = 180^{\circ} \Rightarrow a = 10^{\circ}$

 $\therefore \quad \angle C = 9 \times 10^{\circ} = 90^{\circ}$

Since, opposite angles of a parallelogram are equal Therefore, $\angle A = \angle C \Rightarrow \angle A = 90^{\circ}$

13. True. Given, *ABCD* is a quadrilateral whose diagonals bisect each other. Then, it should be a parallelogram.

Also, $\angle A$ and $\angle B$ are adjacent angles of parallelogram *ABCD*. So, their sum should be 180°.

Now, $\angle A + \angle B = 45^{\circ} + 135^{\circ} = 180^{\circ}$

14. Since, *D* and *E* are the mid-point of sides *AB* and *AC* respectively. A = A = A

$$\therefore AD = \frac{1}{2}AB \text{ and } AE = \frac{1}{2}AC$$

By mid-point theorem, $DE = \frac{1}{2}BC$

$$\therefore \quad AD + AE + DE = \frac{1}{2}(AB + AC + BC)$$

Perimeter of
$$\triangle ADE = \frac{1}{2} \times \text{perimeter of } \triangle ABC$$

 $=\frac{1}{2} \times 35 \text{ cm} = 17.5 \text{ cm}$

Hence, the perimeter of $\triangle ADE$ is 17.5 cm.

15. In $\triangle ABC$, $DE \parallel AB$ and AD is the median. So, D is the mid-point of BC. By converse of mid-point theorem, E is the mid-point of AC. Hence, BE is median.

16. We have,

45

$$MN = \frac{1}{2}BC, MP = \frac{1}{2}AC \text{ and } NP = \frac{1}{2}AB$$
[By midpoint theorem]

 $\Rightarrow BC = 6 \text{ cm}, AC = 5 \text{ cm}$ and AB = 7 cm. The value of (BC + AC) - AB

= (6 + 5) - 7 = 4 cm.

17. *ABC* is an isosceles triangle with AB = AC and D, E and F as the mid-points of sides *BC*, *CA* and *AB* respectively. *AD* intersects *FE* at *O*. Join *DE* and *DF*.

Since, *D*, *E* and *F* are mid-points of sides *BC*, *AC* and *AB* respectively.

 \therefore DE || AB and DE = $\frac{1}{2}$ AB [By mid-point theorem]

Also,
$$DF \parallel AC$$
 and $DF = \frac{1}{2}AC$
But, $AB = AC$

$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}AC$$

$$\Rightarrow DE = DF \qquad \dots (i)$$

Now,
$$DE = \frac{1}{2}AB \Rightarrow DE = AF$$
 ...(ii)

and,
$$DF = \frac{1}{2}AC \Rightarrow DF = AE$$
 ...(iii)

From (i), (ii) and (iii), we have

 $DE = AE = AF = DF \Rightarrow DEAF$ is a rhombus.

Since, diagonals of a rhombus bisect each other at right angles.

 $\therefore AD \perp FE \text{ and } AD \text{ is bisected by } FE.$ **18.** Here, $\angle ABE + \angle EBF = 90^{\circ}$ $\Rightarrow 30^{\circ} + \angle EBF = 90^{\circ}$ $\Rightarrow \angle EBF = 60^{\circ} \qquad \dots(i)$ and $\angle BFE + \angle CFE = 180^{\circ} \qquad [\text{Linear pair}]$ $\Rightarrow \angle BFE + 144^{\circ} = 180^{\circ}$ $\Rightarrow \angle BFE = 180^{\circ} - 144^{\circ} = 36^{\circ} \qquad \dots(i)$ Now, in $\triangle BEF$, $\angle FBE + \angle BFE = 180^{\circ} \qquad (\text{Angle sum property})$

$$\Rightarrow 60^{\circ} + 36^{\circ} + \angle BEF = 180^{\circ}$$

$$\Rightarrow \angle BEF = 180^{\circ} - 96^{\circ} = 84^{\circ}$$
(Angle sum property)
$$[Using (i) and (ii)]$$

19. Let *ABCD* be a parallelogram
$$D$$

with *AB* and *DC* as longer sides and *AD* and *BC* as shorter sides.
Now, *AB* = *DC* = 9.5 cm [Oppos
ite sides of a parallelogram A *B*
are equal and longer side = 9.5 cm (Given)]

are equal and longer side = 9.5 cm (Given)] Let AD = BC = x

Now, AB + BC + CD + DA = 30

[Perimeter = 30 cm (Given)]

D

- $\Rightarrow 9.5 + x + 9.5 + x = 30$
- $\Rightarrow 2x = 30 19 = 11 \Rightarrow x = 5.5 \text{ cm}$
- \therefore Length of shorter side = 5.5 cm
- **20.** Since, *ABCD* is a parallelogram.
- $\therefore \ \angle A = \angle C$

 $\Rightarrow (3x - 20)^\circ = (x + 40)^\circ$

 $\Rightarrow 3x - x = 40 + 20$

 $\Rightarrow 2x = 60 \Rightarrow x = 30$

- Also, $\angle A + \angle B = 180^{\circ}$
- $\Rightarrow (3x 20)^\circ + (y + 15)^\circ = 180^\circ$
- $\Rightarrow 3x + y = 185 \Rightarrow y = 185 90 = 95$

$$\therefore x + y = 30 + 95 = 125$$

21. $\angle SPQ = \angle QRS = 2x$

(: Opposite angles of a parallelogram are equal) In ΔPSQ , $\angle PSQ + \angle PQS + \angle SPQ = 180^{\circ}$ $\Rightarrow 4x + 4x + 2x = 180^{\circ}$

 $\Rightarrow 10x = 180^{\circ}$

 $\Rightarrow x = 18^{\circ}$

Now, $\angle PSR = \angle PQR$

(: Opposite angles of a parallelogram are equal) $\Rightarrow 4x + \angle QSR = 4x + \angle SQR$ $\Rightarrow \angle QSR = \angle SQR \qquad ...(i)$

$$\Rightarrow \quad \angle QSK - \angle SQK$$

In $\triangle SRQ$, $\angle SRQ + \angle RSQ + \angle SQR = 180^{\circ}$

- $\Rightarrow 2 \times 18^{\circ} + 2 \angle RSQ = 180^{\circ}$ [From (i)] $\Rightarrow 2 \angle RSQ = 180^{\circ} - 36^{\circ} = 144^{\circ} \Rightarrow \angle RSQ = 72^{\circ}$
- Hence, $\angle P = \angle R = 2 \times 18^\circ = 36^\circ$,
- $\angle Q = \angle S = 4x + 72^{\circ} = 4 \times 18^{\circ} + 72^{\circ} = 144^{\circ}$

22. We have, AB = BC and have to prove that DE = EF. Now, trapezium *ACFD* is divided into two triangles namely $\triangle ACF$ and $\triangle AFD$. In $\triangle ACF$, $AB = BC \Rightarrow B$ is mid-point of *AC* and *BG* || *CF* [:: $m \parallel n$]

So, *G* is the mid-point of *AF*.

[By converse of mid-point theorem] Now, in $\triangle AFD$, *G* is the mid-point of *AF*. and *GF* $\parallel AD$

$$\therefore$$
 E is the mid-point of FD.

[By converse of mid-point theorem] $\Rightarrow DE = EF$

 \therefore *l*, *m* and *n* cut off equal intercepts on *q* also.

23. Let *ABCD* be the rhombus and greater diagonal *AC* be *x* cm.

$$\therefore$$
 Smaller diagonal, $BD = \frac{1}{3}AC = \frac{x}{3}$ cm

Since diagonals of rhombus are perpendicular bisector of each other. D_{μ}

$$\therefore OA = \frac{x}{2} \text{ cm and } OB = \frac{x}{6} \text{ cm}$$
In $\triangle AOB$, we have
$$AB^2 = OA^2 + OB^2$$

$$\Rightarrow 10^2 = \left(\frac{x}{2}\right)^2 + \left(\frac{x}{6}\right)^2$$

$$\Rightarrow 100 = \frac{x^2}{4} + \frac{x^2}{36} \Rightarrow 100 = \frac{10}{36}x^2 \Rightarrow x = 6\sqrt{10} \text{ cm}$$

24. Let *D*, *E* and *F* be the mid-points of sides *BC*, *CA* and *AB* respectively. A

In $\triangle ABC$, *F* and *E* are mid-points of *AB* and *AC*.

$$\therefore \quad FE \parallel BC \text{ and } FE = \frac{1}{2}BC$$

 $\therefore \quad FE \parallel BD \text{ and } FE = BD$

 \therefore *FEDB* is a parallelogram.

Similarly, CDFE and AFDE are also parallelograms.

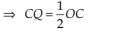
- $\therefore \quad \angle B = \angle DEF, \angle C = \angle DFE \text{ and } \angle FDE = \angle A$ $\Rightarrow \quad \angle DEF = 60^{\circ}, \angle DFE = 70^{\circ} \text{ and } \angle FDE = 50^{\circ}$
- $\Rightarrow \angle DEF = 60^\circ, \angle DFE = 70^\circ \text{ and } \angle FDE = 50^\circ$
- **25.** Suppose *AC* and *BD* intersect at *O*.

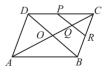
Then,
$$OC = \frac{1}{2}AC$$

Now $CO = \frac{1}{2}AC$

 Δ_B

ow,
$$CQ = \frac{1}{4}AC$$
 [Given]





In $\triangle COD$, *P* and *Q* are the midpoints of *DC* and *OC* respectively.

 $\therefore PQ \parallel DO \qquad [By mid-point theorem]$ $Also, in <math>\triangle COB$, *Q* is the midpoint of *OC* and *QR* $\parallel OB$ \therefore *R* is the midpoint of *BC*.

[By converse of mid-point theorem]

26. :: *ABCD* is parallelogram.

- $\Rightarrow AD = BC \text{ and } AD \parallel BC$
- $\Rightarrow \frac{1}{3}AD = \frac{1}{3}BC \text{ and } AD \parallel BC$ $\Rightarrow AP = CQ \text{ and } AP \parallel CQ$

Thus, APCQ is a quadrilateral such that one pair of opposite sides AP and CQ are parallel and equal. Hence, APCQ is a parallelogram.

27. $\angle P + \angle Q = 180^{\circ}$ (Adjacent angles of parallelogram) $\Rightarrow 60^{\circ} + \angle Q = 180^{\circ} \Rightarrow \angle Q = 120^{\circ}$

Since, *PA* and *QA* are bisectors of angles *P* and *Q*

$$\therefore \ \ \angle SPA = \angle APQ = \frac{1}{2} \angle P = \frac{1}{2} \times 60^\circ = 30^\circ$$

And $\angle ROA = \angle AOP = \frac{1}{2} \angle O = \frac{1}{2} \times 120^\circ = 60^\circ$

Now,
$$SR \parallel PQ$$
 and AP is transversal.
 $\therefore \ \angle SAP = \angle APQ = 30^{\circ}$ [Alternate interior angles]
In $\triangle ASP$, we have

 $\angle SAP = \angle APS = 30^{\circ}$

 $\Rightarrow SP = AS \qquad ...(i)$ (Sides opposite to equal angles are equal) Similarly, $QR = AR \qquad ...(ii)$ But, QR = SP [Opposite sides of parallelogram] $\qquad ...(iii)$ From (i), (ii) and (iii), we have AS = AR $\Rightarrow A$ is the mid-point of SR.

28. We have,
$$\angle SPK = \angle QPK$$
 ...(i)
Now, $PQ \parallel RS$ and PK is a transversal

$$\therefore \ \angle SKP = \angle QPK \text{ [Alternate angles]} \qquad \dots \text{(ii)}$$

From (i) and (ii), $\angle SPK = \angle SKP$

 $\Rightarrow PS = SK \qquad \dots (iii)$ (:: Sides opposite to equal angles are equal) But K is the mid-point of SR.

$$\therefore SK = KR \qquad \dots (iv)$$

From (iii) and (v), SK = PS = QRAlso, PQ = SR = SK + KR = 2SK [From (i)] = 2QR

29. Let the photo-frame be *ABC* such that *BC* = *a*, CA = b and AB = c and the mid-points of *AB*, *BC* and *CA* are *D*, *E* and *F* respectively. We have to determine the perimeter of ΔDEF .



In $\triangle ABC$, *DF* is the line-segment joining the mid-points of sides *AB* and *AC*.

By mid-point theorem,
$$DF \parallel BC$$
 and $DF = \frac{BC}{2} = \frac{a}{2}$

Similarly,
$$DE = \frac{AC}{2} = \frac{b}{2}$$
 and $EF = \frac{AB}{2} = \frac{c}{2}$

 $\therefore \quad \text{Perimeter of } \Delta DEF = DF + DE + EF$ $= \frac{a}{2} + \frac{b}{2} + \frac{c}{2} = \frac{a+b+c}{2}$

30. We have, AL and CM are medians of $\triangle ABC$, *i.e.*, L and M are the mid-points of BC and AB respectively.

$$\therefore LC = BL = \frac{1}{2} BC \text{ and } BM = AM = \frac{1}{2}AB \qquad \dots (i)$$

In $\triangle BMC$, *L* is the mid-point of *BC* and *LN* \parallel *CM*. So, by converse of mid-point theorem, *N* is mid-point of *BM*.

i.e.,
$$BN = NM = \frac{1}{2}BM$$
 ...(ii)

From (i) and (ii), we get

$$BN = \frac{1}{2} \left(\frac{1}{2} AB \right) \Rightarrow BN = \frac{1}{4} AB$$

31. It is given that $l \parallel m$ and transversal p intersects them at points A and C respectively.

The bisectors of $\angle PAC$ and $\angle ACQ$ intersect at *B* and bisectors of $\angle ACR$ and $\angle SAC$ intersect at *D*.

Now, $\angle PAC = \angle ACR$

[Alternate angles as $l \parallel m$ and p is a transversal]

So,
$$\frac{1}{2} \angle PAC = \frac{1}{2} \angle ACR$$

 $\Rightarrow \angle BAC = \angle ACD$

These form a pair of alternate angles for lines AB and DC with AC as transversal and they are equal also.

So, $AB \parallel DC$ Similarly, $BC \parallel AD$

Therefore, quadrilateral *ABCD* is a parallelogram.

Also,
$$\angle PAC + \angle CAS = 180^{\circ}$$
 [Linear pair]

So,
$$\frac{1}{2} \angle PAC + \frac{1}{2} \angle CAS = \frac{1}{2} \times 180^\circ = 90^\circ$$

$$\Rightarrow \angle BAC + \angle CAD = 90^{\circ} \Rightarrow \angle BAD = 90^{\circ}$$

So, *ABCD* is a parallelogram in which one angle is 90°. Therefore, *ABCD* is a rectangle.

32. Since a rhombus satisfies all the properties of a parallelogram. $\therefore \ \angle QPS = \angle QRS$

[Opposite angles of a parallelogram] $\Rightarrow \angle QRS = 50^{\circ}$

 $[\because \angle QPS = 50^{\circ} \text{ (Given)}]$

: Diagonals of a rhombus bisect the opposite angles.

$$\therefore \quad \angle ORQ = \frac{1}{2} \angle QRS \quad \Rightarrow \quad \angle ORQ = 25^{\circ}$$

Now, in $\triangle ORQ$, we have

$$\angle OQR + \angle ORQ + \angle ROQ = 180^{\circ}$$

$$\Rightarrow \angle OQR + 25^\circ + 90^\circ = 180^\circ$$

[:: Diagonals of a rhombus are perpendicular to each other $\Rightarrow \angle ROQ = 90^{\circ}$]

- $\Rightarrow \angle OQR = 180^\circ 115^\circ = 65^\circ$
- $\therefore \ \angle RQS = 65^{\circ}$
- **33.** Since, *ABCD* is a square.
- $\therefore AB = BC = CD = D\hat{A}$

Also, PA = AB = BQ

 $\therefore AB = BC = CD = DA = PA = BQ$ In $\triangle PDA$ and $\triangle OCB$, PA = BO (C

$$AD = BC$$
(Given)
(Given)
(Sides of a square)

Thus, ABCD is a parallelogram, because diagonals AC and BD bisect each other at O.

36. (i) As $EB \parallel DF \Rightarrow EB \parallel DL$ and $ED \parallel BL$. Therefore, *EBLD* is a parallelogram.

$$\therefore BL = ED = \frac{1}{2} AD = \frac{1}{2}BC = CL \qquad \dots(i)$$

[:: *ABCD* is a parallelogram :: AD = BC] Now, in $\triangle DCL$ and $\triangle FBL$, we have

$$CL = BL$$
 [from (i)]
$$\angle DLC = \angle FLB$$
 (Vertically opposite angles)

	$\angle DCL = \angle FBL$	(Alternate ang	iles)
<i>:</i> .	$\Delta DCL \cong \Delta FBL$	(By ASA cong	ruency criteria)
\Rightarrow	CD = BF and $DL =$	FL	(By C.P.C.T.)
No	w, $BF = DC = AB$		(ii)
\Rightarrow	$2AB = 2DC \Rightarrow AB$	+AB = 2DC	
\Rightarrow	AB + BF = 2DC		[Using (ii)]
\Rightarrow	AF = 2DC		

(ii) $\therefore DL = FL \Rightarrow DF = 2DL$

37. Here, in $\triangle ABC$, AB = 18 cm, BC = 19 cm,

AC = 16 cm.

In $\triangle AOB$, *X* and *Y* are the mid-points of *AO* and *BO*.

... By mid-point theorem, we have

$$XY = \frac{1}{2}AB = \frac{1}{2} \times 18 \text{ cm} = 9 \text{ cm}$$

In $\triangle BOC$, *Y* and *Z* are the mid-points of *BO* and *CO*. ... By mid-point theorem, we have

$$YZ = \frac{1}{2}BC = \frac{1}{2} \times 19 \text{ cm} = 9.5 \text{ cm}$$

And, in $\triangle COA$, Z and X are the mid-points of CO and AO.

... By mid-point theorem, we have

:.
$$ZX = \frac{1}{2}AC = \frac{1}{2} \times 16 \text{ cm} = 8 \text{ cm}$$

Hence, the perimeter of $\Delta XYZ = 9 + 9.5 + 8 = 26.5$ cm

38. Let, trapezium *ABCD* in which, *AB* \parallel *DC* and *P* and *Q* are the mid-points of its diagonals *AC* and *BD* respectively.

ъ

We have to prove (i) $PQ \parallel AB$ and $PQ \parallel DC$

(ii) In $\triangle DRB$, *P* and *Q* are the mid-points of side *DR* and *DB* respectively.

$$\therefore PQ = \frac{1}{2}RB \qquad (By mid-point theorem)$$

$$\Rightarrow PQ = \frac{1}{2}(AB - AR) \Rightarrow PQ = \frac{1}{2}(AB - DC)$$
[From part (i), $AR = DC$]

39. *CP* and *CQ* are joined. ABCD is a parallelogram. . . So, BC = AD, AB = DC[Opposite sides of parallelogram] and $\angle ABC = \angle ADC$ [Opposite angles of parallelogram] ... Their supplementary angles are equal So, $\angle PBC = \angle CDQ$ In $\triangle PBC$ and $\triangle CDO$, we have BC = DQ[BC = AD and AD = DQ (Given)]BP = DC[AB = DC and AB = BP (given)] $\angle PBC = \angle CDQ$ [Proved above] [By SAS congruency] $\therefore \quad \Delta PBC \cong \Delta CDQ$ $\Rightarrow \angle BPC = \angle DCQ$ and $\angle BCP = \angle DQC$ [By C.P.C.T.] Again, $\angle BCD = \angle PBC$ [since, $AP \parallel DC$] Now, $\angle BCP + \angle BCD + \angle DCQ$ = $\angle BCP$ + $\angle PBC$ + $\angle BPC$ = 2 right angles *i.e.*, $\angle PCQ$ is a straight angle. i.e., P, C, Q lie on a straight line. **40.** In guadrilateral *ABCD*, $AC \perp BD$ and AC = BD. In $\triangle ADC$, S and R are the midpoints of the sides AD and DC respectively. O

$$\therefore PQ \parallel AC \text{ and } PQ = \frac{1}{2}AC$$
 ...(ii)

From (i) and (ii), PQ || SR

and

$$PQ = SR = \frac{1}{2}AC \qquad \dots (iii)$$

Similarly, in
$$\triangle ABD$$
,

$$SP \parallel BD \text{ and } SP = \frac{1}{2}BD$$
 [By

$$\therefore SP = \frac{1}{2}AC \qquad [\because AC = BD] \dots (iv)$$

Now in $\triangle BCD$, $RQ \parallel BD$ and $RQ = \frac{1}{2}BD$

[By mid-point theorem]

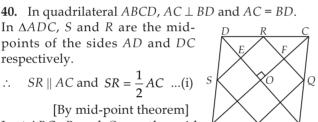
[By mid-point theorem]

$$\therefore RQ = \frac{1}{2}AC \qquad [\because BD = AC] \quad ...(v)$$

From (iv) and (v),
$$SP = RQ = \frac{1}{2}AC$$
 ...(vi)

From (iii) and (vi), PQ = SR = SP = RQ...(vii) \therefore All four sides are equal. Now, in quadrilateral OERF, OE || FR and OF || ER $\angle EOF = \angle ERF = 90^{\circ}$ [:: $AC \perp DB$] *.*.. $\angle QRS = 90^{\circ}$ ÷. ...(viii)

From (vii) and (viii), we get PQRS is a square.



Α

In $\triangle ABC$, *P* and *Q* are the midpoints of AB and BC respectively.

 \odot

R

mid-point theorem]