5. Basic Algebra

5.1Algebraic Formulae

(i)
$$x^{n} + y^{n} = (x + y)(x^{n-1} - x^{n-2}.y + x^{n-3}.y^{2} - ... + y^{n-1})$$
 when n is odd. When n is odd, $x^{n} + y^{n}$ is divisible by $x + y$

(ii)
$$x^n - y^n = (x + y)(x^{n-1} - x^{n-2}.y + ... y^{n-1})$$

¹) when n is even. When n is even, $x^n - y^n$ is divisible by x + y.

(iii)
$$x^n - y^n = (x - y)(x^{n-1} + x^{n-2}.y + + y^{n-1})$$
 for both odd and even n.
Therefore, $x^n - y^n$ is divisible by x-y.

(iv)
$$(a + b)^2 = a^2 + b^2 + 2ab$$
.

(v)
$$(a - b)^2 = a^2 + b^2 - 2ab.$$

(vi) $(a^2 - b^2) = (a + b) (a - b).$
(vii) $(a + b)^2 - (a - b)^2 = 4ab.$
(viii) $(a + b)^2 + (a - b)^2 = 2(a^2 + b^2).$
(ix) $(a + b)^3 = a^3 + b^3 + 3ab(a + b).$
(x) $(a - b)^3 = a^3 - b^3 - 3ab(a - b).$
(xi) $(a^3 + b^3) = (a + b)(a^2 + b^2 - ab).$

(xii)
$$(a^3 - b^3) = (a - b) (a^2 + b^2 + ab).$$

(xiii)
$$(a + b + c)^2 = [a^2 + b^2 + c^2 + 2(ab + bc + ca)].$$

(xiv)
$$(a^3 + b^3 + c^3 - 3abc) = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca).$$
If $a + b + c = 0 \Rightarrow a^3 + b^3 + c^3 = 3abc.$
(xv) $(x + a)(x + b) = x^2 + (a + b)x + ab.$

5.2 Linear Equations:

Consider two linear equations:-

$$A_1 x + B_1 y = C_1$$

 $A_2 x + B_2 y = C_2$.

- (i) This pair of linear equations has:- A unique solution if, $\frac{A_1}{A_2} \neq \frac{B_1}{B_2}$.
- (ii) Infinite solutions if, $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$.

(iii) No solution if,
$$\frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2}$$
.

- **5.3 Quadratic Equations:**
 - (i) General form of a quadratic equation is $ax^2 + bx + c = 0$, $a \neq 0$

(ii) The discriminant of a quadratic equation is D = b² - 4ac

(iii) The roots of the above quadratic
equation are
$$\frac{-b+\sqrt{D}}{2a}$$
 and $\frac{-b-\sqrt{D}}{2a}$

- (iv) Let α and β be the roots of the above quadratic equation. If D > 0, then the roots are real and unequal. The sum of the roots $\alpha + \beta = \frac{-b}{a}$ and the product $\alpha \beta = \frac{c}{a}$
- (v) If D is a perfect square, then the roots are rational and unequal.
- (vi) If D = 0, then the roots are real and equal and is equal to $\frac{-b}{2a}$
- (vii) If D < 0, then the roots are complex and unequal. If a, b and c of the quadratic equation are rational, then

the roots are conjugates of each other. Ex. if α = p + qi, then β = p - qi

(viii) If $D \ge 0$, then, $ax^2 + bx + c = a(x - \alpha)(x - \beta)$.

- (ix) If c = a, then the roots are reciprocal.
- (x) If b = 0, then the roots are equal in magnitude but opposite in sign. If one of the roots of a quadratic equation with rational coefficients is irrational, then the other roots must be irrational conjugate. If $\alpha = p + \sqrt{q}$, then $\beta = p - \sqrt{q}$.
- (xi) If α , β are the roots of a quadratic equation, then the equation is $x^2 - (\alpha + \beta)x + \alpha \beta = 0$.

5.4 Inequalities

(i)	Inequalities, Interval Notations and
	Graphs

Inequality	Interval Nota tion	Graph
a ≤ x ≤ b	[a, b]	a b x
a < x ≤ b	(a, b]	a b x
a ≤ x < b	[a, b)	a b x
a < x < b	(a, b)	a b x

$$-\infty < x \le b, \quad (-\infty, b]$$

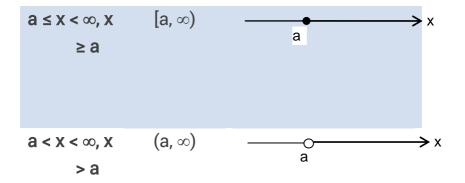
$$x \le b$$

$$-\infty < x < b, \quad (-\infty, b)$$

$$x < b$$

$$b$$

$$x < b$$



- (ii) If a > b, then b < a.
- (iii) If a > b, then a b > 0 or b a < 0.
- (iv) If a > b, then a + c > b + c.
- (v) If a > b, then a c > b c.
- (vi) If a > b and c > d, then a + c > b + d.
- (vii) If a > b and c > d, then a d > b c.
- (viii) If a > b and m > 0, then ma > mb.
- (ix) If a > b and m > 0, then $\frac{a}{m} > \frac{b}{m}$.
- (x) If a > b and m > 0, then ma > mb.
- (xi) If a > b and m < 0, then $\frac{a}{m} < \frac{b}{m}$.
- (xii) If 0 < a < b and n > 0, then an < bn.
- (xiii) If 0 < a < b and n < 0, then an > bn.

(xiv) If 0 < a < b, then $\sqrt[\eta]{a} < \sqrt[\eta]{b}$.

(xv)
$$\sqrt{ab} \le \frac{a+b}{2}$$
, where a > 0, b > 0; an

equality is valid only if a = b.

(xvi) $a + \frac{1}{a} \ge 2$, where a > 0; an equality

takes place only at a = 1.

(xvii)
$$\sqrt[n]{a_1a_2...,a_n} \le \frac{a_1 + a_2 + ... + a_n}{n}$$
, where a_1, a_2, a_3

(xviii) If ax + b > 0 and a > 0, then $x > -\frac{b}{a}$.

(xix) If ax + b > 0 and a > 0, then $x < -\frac{b}{a}$.

$$(xx)$$
 $|a + b| \le |a| + |b|$.

- (xxi) If |x| < a, then a < x < a, where a > 0.
- (xxii) If |x| > a, then x < -a and x > a, where a > 0. (xxiii) If $x^2 < a$, then $|x| < \sqrt{a}$, where a > 0. (xxiv) If $x^2 > a$, then $|x| > \sqrt{a}$, where a > 0.

5.5 Arithmetic & Geometric Progression

Arithmetic Progression:

 An arithmetic progression is a sequence of numbers in which each term is derived from the preceding term by adding or subtracting a fixed number called the common difference e.g. The sequence 9,6,3,0,-3,.... is an arithmetic progression with -3 as the common difference. The progression -3, 0, 3, 6, 9 is an Arithmetic Progression (AP) with 3 as the common difference. The general form of an Arithmetic Progression is a, a + d, a + 2d, a + 3d and so on. Thus nth term of an AP series is $T_n = a + (n - 1) d$. Where $T_n = n^{th}$ term and a = first term. Here $d = common difference = T_n - T_{n-1}$.

- Sometimes the last term is given and either 'd' is asked or 'a' is asked.
 Then formula becomes /= a + (n - 1) d
- There is another formula, applied to find the sum of first n terms of an AP:
 S_n = n/2[2a+(n-1)d]

- The sum of n terms is also equal to the formula S_n = n/2(a + l) where is the last term.
- When three quantities are in AP, the middle one is called as the arithmetic mean of the other two. If a, b and c are three terms in AP then b = (a + c)/2.

Geometric Progression:

A geometric progression is a sequence in which each term is derived by multiplying or dividing the preceding term by a fixed number called the common ratio. The sequence 4, -2, 1, – $\frac{1}{2}$,.. is a Geometric Progression (GP) for which – $\frac{1}{2}$ is the common ratio.

- The general form of a GP is a, ar, ar², ar³ and so on.
- Thus nth term of a GP series is T_n = arⁿ⁻¹, where a = first term and r = common ratio = T_m/T_{m-1}.
- The formula applied to calculate sum of first n terms of a GP: $S_n = a(r^n-1)/r-1$ where $\rightarrow |r| > 1$ and $S_n = a(1-r^n)/1$ -r where $\Rightarrow |r| < 1$.
- When three quantities are in GP, the middle one is called as the geometric mean of the other two. If a, b and c are three quantities in GP and b is the geometric mean of a and c i.e. b =√ac
- The sum of infinite terms of a GP series $S_{\infty} = a/1 \text{-r}$