## Long Answer Type Questions

## [5 Marks]

Que 1. Two chords AB and CD of length 5 cm and 11 cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between AB and CD is 6 cm, find the radius of the circle.

Sol.



Let, r be the radius of given circle and its centre be O. Draw OM  $\perp$  AB and ON  $\perp$  CD Since, OM  $\perp$  AB, ON  $\perp$  CD and AB || CD

Therefore, points M, O and N are collinear. So, MN = 6 cm

Let, OM = x cm. Then, ON = (6 - x) cm.

Join OA and OC. Then OA = OC = r.

As the perpendicular from the centre to a chord of the circle bisects the chord.

:. 
$$AM = BM = \frac{1}{2}AB = \frac{1}{2} \times 5 = 2.5 \ cm.$$

$$CN = DN = \frac{1}{2}CD = \frac{1}{2} \times 11 = 5.5 cm.$$

In right triangles OAM and OCN, we have

 $OA^2 = OM^2 + AM^2$  and  $OC^2 = ON^2 + CN^2$ 

$$r^{2} = x^{2} + \left(\frac{5}{2}\right)^{2} \qquad \dots \dots (i)$$
  
$$r^{2} = (6 - x)^{2} + \left(\frac{11}{2}\right)^{2} \qquad \dots \dots (ii)$$

From (i) and (ii), we have

$$X^{2} + \left(\frac{5}{5}\right)^{2} = (6 - x)^{2} + \left(\frac{11}{2}\right)^{2}$$

$$X^{2} + \frac{25}{4} = 36 + x^{2} - 12x + \frac{121}{4}$$

$$\Rightarrow 4x^{2} + 25 = 144 + 4x^{2} - 48x + 121$$

$$\Rightarrow 48x = 240$$

$$\Rightarrow x = \frac{240}{48} \Rightarrow x = 5$$
Detting the relation of wine constant (i) and not

Putting the value of x in equation (i), we get

$$r^{2} = 5^{2} + \left(\frac{5}{2}\right)^{2} \Rightarrow r^{2} = 25 + \frac{25}{4}$$

 $r^2 = \frac{125}{4} \Rightarrow r = \frac{5\sqrt{5}}{2}cm$ 

⇒

Que 2. Three girls Reshma, Salma and Mandeep are playing a game by standing on a circle of radius 5 cm drawn in a park. Reshma throws a ball to Salma, Salma to Mandeep to Reshma. If the distance between Reshma and Salma and between Salma and Mandeep is 6 cm each, what is the distance between Reshma and Mandeep?

Sol.



Let R, S and M represent the position of Reshma, Salma and Mandeep respectively. Clearly  $\Delta$ RSM is an isosceles triangle as

```
RS = SM = 6 m
Join OS which intersects RM at A.
In \triangle ROS and \triangle MOS
              OR = OM
                                    (Radii of the same circle)
              OS = OS
                                    (Common)
              RS = SM
                                    (Each 6 cm)
             \Delta ROS \cong \Delta MOS
                                           (By SSS congruence criterion)
:.
             ∠RSO = ∠MSO
÷
                                           (CPCT)
In \triangleRAS and \triangleMAS
              AS = AS
                                    (Common)
```

 $\angle RSA = \angle MSA$ (∵∠RSO = ∠MSO) :. RS = MS(Given)  $\Delta RAS \cong \Delta MAS$ (By SAS congruence criterion) :.  $\angle RAS = \angle MAS$ (CPCT) :.  $\angle RAS + \angle MAS = 180^{\circ}$  (Linear pair) :.  $\angle RAS = \angle MAS = 90^{\circ}$ ⇒  $OA = x m \implies AS = (5 - x) m$ Let In right triangle RAS,  $RS^2 = RA^2 + AS^2$  $6^2 = RA^2 + (5 - x)^2$ ⇒ .....(i)  $RA^2 = 6^2 - (5 - x)^2$ ⇒ In right triangle RAO,  $RO^2 = RA^2 + OA^2$  $5^2 = RA^2 + x^2$  $\Rightarrow$  $RA^2 = 5^2 - x^2$ .....(ii) ⇒ From equation (i) and (ii), we get  $6^2 - (5 - x)^2 = 5^2 - x^2$  $6^2 - 5^2 = (5 - x)^2$  $36 - 25 = 25 + x^2 - 10x - x^2$  $11 = 25 - 10x \implies 10x = 14$ ⇒ = 1.4 m From equation (ii), we have  $RA^2 = 5^2 - (1.4)^2 = 25 - 1.96$  $RA = \sqrt{23.04}$  $RA^2 = 23.04$ ⇒ As the Perpendicular from the centre of a bisects the chord. :. RM = 2RA $RM = 2 \times 4.8 = 9.6 m$ Hence, distance between Reshma and Mandeep is 9.6 m.

Que 3. The length of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at a distance of 4 cm from the centre, what is the distance of other chord from the centre?

Sol.



Let, AB and CD be two parallel chords of a circle with centre O such that AB = 6 cm and CD = 8 cm. Draw OM  $\perp$  AB and ON  $\perp$  CD.

As AB || CD and OM  $\perp$  AB, ON  $\perp$  CD. Therefore, Points O, N and M are collinear. As the perpendicular from the centre of a circle to the chord bisects the chord. Therefore,

$$AM = \frac{1}{2}AB = \frac{1}{2} \times 6 = 3 cm$$
$$CN = \frac{1}{2}CD = \frac{1}{2} \times 8 = 4 cm$$

In right triangle OAM, we have

 $OA^{2} = OM^{2} + AM^{2}$   $OA^{2} = 4^{2} + 3^{2} \implies OA^{2} = 25 \implies OA = 5cm$ Also, OA = OC(Radii of the same circle)

 $\begin{array}{l} \Rightarrow \qquad \text{OC} = 5 \text{ cm} \\ \text{In right triangle OCN, we have} \\ \text{OC}^2 = \text{ON}^2 + \text{CN}^2 \\ \Rightarrow \qquad 5^2 = \text{ON}^2 + 4^2 \quad \Rightarrow \text{ON}^2 = 5^2 - 4^2 \\ \Rightarrow \qquad \text{ON}^2 = 9 \quad \Rightarrow \text{ON} = 3 \text{ cm} \end{array}$ 

Que 4. AC and BD are chords of a circle that bisect each other. Prove that AC and BD are diameter and ABCD is a rectangle.



**Sol.** Let AC and BD bisect each other at point O. Then, OA = OC and OB = OD....(i) In triangles AOB and COD, we have OA = OCOB = OD∠AOB = ∠COD (Vertically opposite angles) and :.  $\triangle AOB \cong \triangle COD$ (SAS congruence criterion) AB = CD(CPCT) ⇒  $AB \cong CD$ .....(ii)  $\Rightarrow$ 

Similarly BC = DA  $\Rightarrow BC \cong DA$  .....(iii) From (ii) and (ii), we have  $AB + BC \cong CD + DA$   $\Rightarrow ABC = CDA$   $\Rightarrow ABC = CDA$   $\Rightarrow AC$  divides the circle into two equal parts.  $\Rightarrow AC$  is the diameter of the circle. Similarly, we can prove that BD is also a diameter of the circle. Since AC and BD are diameter of the circle.

 $\therefore \quad \angle ABC = 90^{\circ} = \angle ADC$ Also,  $\angle BAD = 90^{\circ} = \angle BCD$ Also, AB = CD and BC = DA (Proved above) Hence, ABCD is a rectangle.

## Que 5. If two intersecting chords of a circle make equal angles with the diameter passing through their point of intersection, prove that the chords are equal.

Sol.



**Given:** AB and CD are two chords of a circle with centre O, intersecting at point E. PQ is a diameter through E, such that  $\angle AEQ = \angle DEQ$ .

To prove: AB = CD **Construction:** Draw OL  $\perp$  AB and OM  $\perp$  CD **Proof:**  $\angle LOE + \angle LEO + \angle OLE = 180^{\circ}$ (Angle sum property of a triangle) ∠LOE + ∠LEO + 90° 180°  $\Rightarrow$  $\angle LOE + \angle LEO = 90^{\circ}$ .....(i) Similarly  $\angle$ MOE +  $\angle$ MEO +  $\angle$ OME = 180°  $\angle MOE + \angle MEO + 90^\circ = 180^\circ$ ⇒  $\angle MOE + \angle MEO = 90^{\circ}$ .....(ii) From (i) and (ii) we get  $\angle LOE + \angle LEO = \angle MOE + \angle MEO$ .....(iii)  $\angle LEO = \angle MEO$ ....(iv) Also. (Given)

| From (iii) and | (iv) we get                   |                            |
|----------------|-------------------------------|----------------------------|
|                | ∠LOE = ∠MOE                   |                            |
| Now in triang  | le OLE and OME                |                            |
|                | ∠LEO = ∠MEO                   | (Given)                    |
| <b>.</b>       | ∠LOE = ∠MOE                   | (Proved above)             |
|                | EO = EO                       | (Common)                   |
| <b>.</b>       | $\Delta OLE \cong \Delta OME$ | (ASA congruence criterion) |
| <b>.</b>       | OL = OM                       | (CPCT)                     |
|                |                               |                            |

Thus, chords AB and CD are equidistance from the centre are equal.  $\therefore$  AB = CD







**Given:** A trapezium ABCD in which AB || CD and AD = BC To prove: ABCD is a cyclin trapezium. **Construction:** Draw DE  $\perp$  AB and CF  $\perp$  AB In right triangle AED and BFC, We have AD = BC(Given)  $\angle DEA = \angle CFB$ (Each equal to 90° DE = CF(Distance between two parallel lines) and,  $\Delta DEA \cong \Delta CFB$ (RHS congruence criterion)  $\Rightarrow$  $\angle A = \angle B$ (CPCT) .....(i) ⇒ .....(ii)  $\angle ADE = \angle BCF$ (CPCT)  $\angle C = \angle BCF + 90^{\circ} = \angle ADE + 90^{\circ} = \angle ADC$ .....(iii)  $\Rightarrow$ ∠C = ∠D ⇒ Now, in quadrilateral ABCD, we have  $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ (By Angle sum property)  $2 \angle A + 2 \angle C = 360^{\circ}$ (From (i) and (iii) ⇒  $\angle A + \angle C = 180^{\circ}$ ⇒ Hence, quadrilateral ACBD is cyclin.

Que 7. Prove that quadrilateral formed by angle bisectors of a cyclin quadrilateral is also cyclin.

Sol.



**Given:** A cyclin quadrilateral ABCD in which the angle bisectors AR, CP and DP of internal angles A, B, C and D respectively form a quadrilateral PQRS.

To prove: PQRS is a cyclin quadrilateral. **Proof:** In  $\triangle$ ARB, we have

 $\frac{1}{2} \angle A + \frac{1}{2} \angle B + \angle R = 180^{\circ}$  ....(i) (: AR, BR are bisectors of  $\angle A \angle B$ )

In ΔDPC, We have

 $\frac{1}{2} \angle D + \frac{1}{2} \angle C + \angle P = 180^{\circ}$  ...(ii)

(: DP, CP are bisectors of  $\angle D$  and  $\angle C$  respectively)

Adding (i) and (ii), we get

$$\frac{1}{2} \angle A + \frac{1}{2} \angle B + \angle R + \frac{1}{2} \angle D + \frac{1}{2} \angle C + \angle P = 180^{\circ} + 180^{\circ}$$
$$\angle P + \angle R = 360^{\circ} - \frac{1}{2} (\angle A + \angle B + \angle C + \angle D)$$
$$\angle P + \angle R = 360^{\circ} - \frac{1}{2} \times 360^{\circ} = 360^{\circ} - 180^{\circ}$$
$$\Rightarrow \qquad \angle P + \angle R = 180^{\circ}$$

As the sum of a pair of opposite angles of quadrilateral PQRS is 180°. Therefore, quadrilateral PQRS is cyclin.

Que 8. If two circles intersects at two points, prove that their centres lie on the perpendicular bisector of the common chord.

Sol.



**Given:** Two circles, with centres O and O' intersect at two points A and B. AB is the common chord of the two circles and OO' is the line segment joining the centres of the two circles. Let OO' intersect AB at P.

**To prove:** OO' is the perpendicular bisector of AB. **Construction:** Join OA, OB, O' A and O' B

| <b>Proof:</b> In triangles OAO' and OBO', we have |                                                     |                               |  |  |
|---------------------------------------------------|-----------------------------------------------------|-------------------------------|--|--|
|                                                   | OO' = OO'                                           | (Common)                      |  |  |
|                                                   | OA = OB                                             | (Radii of the same circle)    |  |  |
|                                                   | O'A = O' B                                          | (Radii of the same circle)    |  |  |
| ⇒                                                 | $\Delta OAO' \cong \Delta OBO'$                     | (SSS congruence criterion)    |  |  |
| $\Rightarrow$                                     | ∠AOO' = ∠BOO'                                       | (CPCT)                        |  |  |
| l.e.,                                             | ∠AOP = ∠BOP                                         |                               |  |  |
| In triangle AOP and BOP, we have                  |                                                     |                               |  |  |
|                                                   | OP = OP                                             | (Common)                      |  |  |
|                                                   | ∠AOP = ∠BOP                                         | (Proved above)                |  |  |
|                                                   | OA = OB                                             | (Radio of the same circle)    |  |  |
| <b>.</b>                                          | $\Delta AOR \cong \Delta BOP$                       | (By SAS congruence criterion) |  |  |
| ⇒                                                 | AP = BP                                             | (CPCT)                        |  |  |
| And                                               | ∠APO = ∠BPO                                         | (CPCT)                        |  |  |
| But                                               | ∠APO + ∠BPO = 180°                                  | (Linear)                      |  |  |
| <b>.</b> .                                        | $\angle APO + \angle APO = 180^{\circ} \Rightarrow$ | 2∠APO = 180°                  |  |  |
| ⇒                                                 | ∠APO = 90°                                          |                               |  |  |
| Thus,                                             | AP = BP and $\angle APO = \angle BPO = 90^{\circ}$  |                               |  |  |
| Hence, OO' is the perpendicular bisectors of AB.  |                                                     |                               |  |  |