CBSE Test Paper 01

CH-11 Conic Sections

- 1. The equation of the tangent to the conic $x^2-y^2-8x+2y+11=0$ at (2, 1) is
 - a. 2x + 1 = 0
 - b. x-2=0
 - c. x + 2 = 0
 - d. x + y + 1 = 0
- 2. The equation $(x^2+y^2)+5x-7y-2=0$ represents
 - a. a circle
 - b. an empty set
 - c. a degenerate circle
 - d. a pair of straight lines
- 3. Three normals to the parabola $y^2=x$ are drawn through a point (c, 0) then
 - a. none of these
 - b. $c > \frac{1}{2}$
 - c. $c = \frac{1}{2}$
 - d. $c = \frac{1}{4}$
- 4. The graph of the function f(x) = $\frac{1}{x}i.e.$ the curve $y=\frac{1}{x}$ is
 - a. a hyperbola
 - b. a parabola
 - c. an ellipse

- d. a circle
- 5. The ellipse = $rac{x^2}{a^2}+rac{y^2}{b^2}=1, b^2=a^2$ is a
 - a. a hyperbola
 - b. none of these.
 - c. horizontal ellipse
 - d. vertical ellipse
- 6. Fill in the blanks:

The equation of the circle having centre at (3, -4) and touching the line 5x + 12y - 12 = 0 is _____.

7. Fill in the blanks:

_____ of the hyperbola is the ratio of the distance of any one focus from the centre and the distance of any one vertex from the centre.

- 8. Find the equation of parabola when the vertex is at (0, 0) and focus is at (0, 4).
- 9. What is the condition that the equation, on comparing with general equation of circle, $ax^2 + by^2 + 6x + 3y + hxy + 3 = 0$ is the equation of circle?
- 10. Find the equation of hyperbola having Foci $(0, \pm 13)$ and the conjugate axis is of length 24.
- 11. Determine whether $x^2 + y^2 + 2x + 10y + 26 = 0$ represent a circle or point.
- 12. Find the equation of ellipse having Major axis on the x-axis and passes through the points (4, 3) and (6, 2)
- 13. Find the equation of ellipse having Length of minor axis 16, foci $(0,\pm 6)$
- 14. Find the centre and radius of the circle. $x^2 + y^2 8x 10y 12 = 0$
- 15. Find the equation of the hyperbola whose foci are (4, 2) and (8,2) and eccentricity is 2.

CBSE Test Paper 01

CH-11 Conic Sections

Solution

1. (b) x - 2 = 0

Explanation: Differentiating the given equation w.r.t x, we get, $2x - 2y \frac{dy}{dx} - 8 + 2 \frac{dy}{dx} = 0$ $\frac{dy}{dx}$ (1-y) = x - 4 Therefore $\frac{dy}{dx} = \frac{x-4}{1-y}$ Therefore $\frac{dy}{dx}$ (2,1) is not defined. The equation of the tangent at (x_1, y_1) is y-y₁ = m(x - x1). Therefore the equation of the tangent is x-2 = 0.

2. (a) a circle

Explanation: The general equation of the circle is $x^2+y^2-2gh-2fy+c=0$. Sice the given equations satisfies the general equation, it represents the equation of the circle.

- 3. (b) $c>\frac{1}{2}$ **Explanation:** The equation of the normal to a parabola $y^2=4ax$ is $y=mx-2am-am^3$ Hence the equation of the normal to the given parabola $y^2=x$ is $mx-\frac{m}{2}-\frac{m^3}{4}$ Since it passes throught (c,0) $mc-\frac{m}{2}-\frac{m^3}{4}=0$ on solving we get m=0 or $m^2=4(c-1/2)$ If m=0 then the equation of the normal is y=0 If $m^2\geq 0$, then $4(c-1/2)\geq 0$ Hence $c-1/2\geq 0$ or c>1/2
- 4. (a) a hyperbola

Explanation: it is called rectangular hyperbola.

5. (b) none of these.

Explanation: If $a^2 = b^2$, then the equation becomes $x^2 + y^2 = a^2$ which represents the equation of a circle.

6.
$$(x-3)^2 + (y+4)^2 = \left(\frac{45}{13}\right)^2$$

- 7. Eccentricity
- 8. Since, the vertex is at (0, 0) and focus is at (0, 4) which lies on Y-axis. The Y-axis is the axis of the parabola.

 \therefore Equation of parabola is of the form

$$x^2 = -4ay \Rightarrow x^2 = -4(4)y$$
 [:: a = 4]
 $\Rightarrow x^2 = -16y$

9. Given, equation will represent a circle, if Coefficient of x^2 = Coefficient of y^2

i.e., a = b and coefficient of xy should be zero.

i.e.,
$$h = 0$$
.

10. Here foci are $(0, \pm 13)$ which lie on y-axis.

So the equation of hyperbola in standard form is $rac{y^2}{a^2}-rac{x^2}{b^2}=1$

$$(13)^2 = a^2 + (12)^2 \Rightarrow a^2 = 169 - 144 = 25$$

Thus required equation of hyperbola is

$$\frac{y^2}{25} - \frac{x^2}{(12)^2} = 1 \Rightarrow \frac{y^2}{25} - \frac{x^2}{144} = 1$$

11. We have, $x^2 + y^2 + 2x + 10y + 26 = 0$

On adding 1 and 25 both sides to make perfect squares, we get

$$(x^2 + 2x + 1) + (y^2 + 10y + 25) = -26 + 1 + 25$$

$$\Rightarrow$$
 (x + 1)² + (y + 5)² =

$$\Rightarrow$$
 [x - (-1)]² + [y - (-5)]² = 0²

Hence, it represents a point circle, because it has zero radius.

12. Since the major axis is along x-axis.

So the equation of ellipse in standard form is $rac{x^2}{a^2}+rac{y^2}{h^2}=1$

Since the ellipse passes through point (4, 3)

$$\therefore \frac{16}{a^2} + \frac{9}{b^2} = 1...$$
 (i)

Also the ellipse passes through point (6, 2)

$$\therefore \frac{36}{a^2} + \frac{4}{b^2} = 1$$
...(ii)

Solving (i) and (ii), we have

$$a^2 = 52$$
 and $b^2 = 13$

Thus equation of required ellipse is

$$\frac{x^2}{52} + \frac{y^2}{13} = 1$$

13. The foci $(0,\pm 6)$ lie on y-axis.

So the equation of ellipse in standard form is $rac{x^2}{b^2}+rac{y^2}{a^2}=1]$

Now length of minor axis 2b = 16 \Rightarrow b = 8

foci (0, ±c) is (0,± 6)
$$\Rightarrow$$
 c = 6

We know that
$$c^2=a^2-b^2$$

$$(6)^2 = a^2 - (8)^2 \Rightarrow a^2 = 36 + 64 = 100$$

Thus equation of required ellipse is

$$\frac{x^2}{64} + \frac{y^2}{100} = 1$$

14. The given equation of circle is

$$x^2 + y^2 - 8x - 10y - 12 = 0$$

$$(x^2 - 8x) + (y^2 + 10y) = 12$$

Completing the square

$$\Rightarrow$$
 [x² - 8x + (4)²] + [y² + 10y + (5)²]

$$= 12 + (4)^2 + (5)^2$$

$$\Rightarrow$$
 (x - 4)² + (y + 5)² = 12 + 16 + 25

$$\Rightarrow$$
 (x - 4)² + (y + 5)² = 53

$$\Rightarrow$$
 (x - 4)² + (y + 5)² = $(\sqrt{53})^2$

Comparing it with $(x - h)^2 + (y - k)^2 = r^2$, we have

h = 4, k = -5 and r =
$$\sqrt{53}$$

Thus coordinates of the centre is (4, -5) and radius is $\sqrt{53}$.

15. The centre of the hyperbola is the mid-point of the line joining the two foci.

So, the coordinates of the centre are
$$\left(\frac{4+8}{2}, \frac{2+2}{2}\right)$$
 i.e., (6, 2).

Let 2a and 2b be the length of transverse and conjugate axes and let e be the eccentricity.

Then, the equation of the hyperbola is

$$\frac{(x-6)^2}{a^2} - \frac{(y-2)^2}{b^2} = 1$$
 ...(i)

Now, the distance between two foci = 2ae

$$\Rightarrow \sqrt{(8-4)^2+(2-2)^2}$$
 = 2ae [: foci = (4, 2) and (8, 2)]

$$\Rightarrow \sqrt{(4)^2}$$
 = 2ae

$$\Rightarrow$$
 2ae = 4

$$\Rightarrow$$
 2 × a × 2 = 4 [: e = 2]

$$\Rightarrow$$
 a = $\frac{4}{4}$ = 1

$$\Rightarrow$$
 a² = 1

Now,

$$b^2 = a^2 (e^2 - 1)$$

$$\Rightarrow$$
 b² = 1 (2² - 1) [:: e = 2]

$$\Rightarrow$$
 b² = 4 - 1

$$\Rightarrow$$
 b² = 3

Putting $a^2 = 1$ and $b^2 = 3$ in equation (i), we get

$$\frac{(x-6)^2}{1} - \frac{(y-2)^2}{3} = 1$$

$$\Rightarrow \frac{3(x-6)^2 - (y-2)^2}{3} = 1$$

$$\Rightarrow$$
 3 (x - 6)² - (y - 2)² = 3

$$\Rightarrow$$
 3[x² + 36 - 12x] - [y² + 4 - 4y] = 3

$$\Rightarrow$$
 3x² + 108 - 36x - y² - 4 + 4y = 3

$$\Rightarrow$$
 3x² - y² - 36x + 4y + 101 = 0

This is the equation of the required hyperbola.