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Models and Theories
of Nuclear Physics

Nuclei are held together by the strong nuclear force between nucleons, so we start

this chapter by looking at the form of this, which is more complicated than that

generated by simple one-particle exchange. Much of the phenomenological evi-

dence comes from low-energy nucleon–nucleon scattering experiments which we

will simply quote, but we will interpret the results in terms of the fundamental strong

interaction between quarks. The rest of the chapter is devoted to various models and

theories that are constructed to explain nuclear data in particular domains.

7.1 The Nucleon -- Nucleon Potential

The existence of stable nuclei implies that overall the net nucleon–nucleon force

must be attractive and much stronger than the Coulomb force, although it cannot

be attractive for all separations, or otherwise nuclei would collapse in on

themselves. So at very short ranges there must be a repulsive core. However,

the repulsive core can be ignored in low-energy nuclear structure problems

because low-energy particles cannot probe the short-distance behaviour of the

potential. In lowest order, the potential may be represented dominantly by a central

term (i.e. one that is a function only of the radial separation of the particles),

although there is also a smaller non-central part. We know from proton–proton

scattering experiments1 that the nucleon–nucleon force is short-range, of the same

order as the size of the nucleus, and thus does not correspond to the exchange of

gluons, as in the fundamental strong interaction. A schematic diagram of the

resulting potential is shown in Figure 7.1. In practice of course this strong

1For reviews see, for example, Chapter 7 of Je90 and Chapter 14 of Ho97.
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interaction potential must be combined with the Coulomb potential in the case in

the case of protons.

A comparison of nn and pp scattering data (after allowing for the Coulomb

interaction) shows that the nuclear force is charge-symmetric (pp ¼ nn) and

almost charge-independent ðpp ¼ nn ¼ pnÞ.2 We have commented in Chapter 3

that there is also evidence for this from nuclear physics. Charge-symmetry is seen in

comparisons of the energy levels of mirror nuclei (see, for example, Figure 3.9) and

evidence for charge-independence comes from the energy levels of triplets of

related nuclei with the same A values. Nucleon–nucleon forces are, however,

spin-dependent. The force between a proton and neutron in an overall spin-1 state

(i.e. with spins parallel) is strong enough to support a weakly bound state (the

deuteron), whereas the potential corresponding to the spin-0 state (i.e. spins

antiparallel) has no bound states. Finally, nuclear forces saturate. This describes

that fact that a nucleon in a typical nucleus experiences attractive interactions only

with a limited number of the many other nucleons and is a consequence of the short-

range nature of the force. The evidence for this is the form of the nuclear binding

energy curve and was discussed in Chapter 2.

Ideally one would like to be able to interpret the nucleon–nucleon potential in

terms of the fundamental strong quark–quark interactions. It is not yet possible to

give a complete explanation along these lines, but it is possible to go some way in

this direction. If we draw an analogy with atomic and molecular structure, with

2For a discussion of these data see, for example, the references in Footnote 1.

Figure 7.1 Idealized square well representation of the strong interaction nucleon--nucleon
potential. The distance R is the range of the nuclear force and � � R is the distance at which the
short-range repulsion becomes important. The depth V0 is approximately 40 MeV
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quarks playing the role of electrons, then possibilities are: an ionic-type bond, a van

der Waals type of force, or a covalent bond.3 The first can be ruled out because the

confining forces are too strong to permit a quark to be ‘lent’ from one nucleon to

another and the second can also be ruled out because the resulting two-gluon

exchange is too weak. This leaves a covalent bond due to the sharing of single quarks

between the nucleons analogous to the covalent bond that binds the hydrogen

molecule. However, nucleons have to remain ‘colourless’ during this process and so

the shared quark from one nucleon has to have the same colour as the shared quark

from the other nucleon. The effect of this is to reduce the effective force (because

there are three possible colour states) and by itself it is unable to explain the depth

of the observed potential. In addition to the three (valence) quarks within the nucleon

there are also present quark–antiquark pairs due to vacuum fluctuations.4 Such pairs

can be colourless and so can also be shared between the nucleons. These quarks

actually play a greater role in generating the nuclear strong interaction than single

quarks. The lightest such diquarks will be pions and this exchange gives the largest

contribution to the attractive part of the nucleon–nucleon force (see, for example, the

Feynman diagram Figure 1.4).

In principle, the short-range repulsion could be due to the exchange of heavier

diquarks (i.e. mesons), possibly also in different overall spin states. Experiment

provides many suitable meson candidates, in agreement with the predictions of the

quark model, and each exchange would give rise to a specific contribution to the

overall nucleon–nucleon potential, by analogy with the Yukawa potential resulting

from the exchange of a spin-0 meson, as discussed in Chapter 1. It is indeed possible

to obtain excellent fits to nucleon–nucleon scattering data in a model with several

such exchanges.5 Thus this approach can yield a satisfactory potential model, but is

semi-phenomenological only, as it requires the couplings of each of the exchanged

particles to be found by fitting nucleon–nucleon scattering data. (The couplings that

result broadly agree with values found from other sources.) Boson-exchange models

therefore cannot give a fundamental explanation of the repulsion. The reason for

the repulsion at small separations in the quark model lies in the spin dependence

of the quark–quark strong interaction, which like the phenomenological nucleon–

nucleon interaction, is strongly spin-dependent. We have discussed this in the

context of calculating hadron masses in Section 3.3.3. When the two nucleons are

very close, the wavefunction is effectively that for a 6-quark system with zero

angular momentum between the quarks, i.e. a symmetric spatial wave function.

Since the colour wave function is antisymmetric, (recall the discussion of

Chapter 5), it follows that the spin wavefunction is symmetric. However, the

3Recall from chemistry that in ionic bonding, electrons are permanently transferred between constituents to
form positive and negative ions that then bind by electrostatic attraction; in covalent bonding the constituents
share electrons; and the van der Waals force is generated by the attraction between temporary charges
induced on the constituents by virtue of slight movements of the electrons.
4These are the ‘sea’ quarks mentioned in connection with the quark model in Chapter 3 and which are probed
in deep inelastic lepton scattering that was discussed in Chapter 6.
5This approach is discussed in, for example, Chapter 3 of Co01 and also in the references given in Footnote1.
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potential energy increases if all the quarks remain in the L ¼ 0 state with

spins aligned.6 The two-nucleon system will try to minimize its ‘chromomagnetic’

energy, but this will compete with the need to have a symmetric spin wavefunction.

The optimum configuration at small separations is when one pair of quarks is in

an L ¼ 1 state, although the excitation energy is comparable to the decrease in

chromomagnetic energy, so there will still be a net increase in energy at small

separations.

Some tantalizing clues exist about the role of the quark–gluon interaction in

nuclear interactions, such as the small nuclear effects in deep inelastic lepton

scattering mentioned in Chapter 5. There is also a considerable experimental

programme in existence (for example at CEBAF, the superconducting accelerator

facility at the Jefferson Laboratory, Virginia, USA, mentioned in Chapter 4) to learn

more about the nature of the strong nucleon–nucleon force in terms of the

fundamental quark–gluon strong interaction and further progress in this area may

well result in the next few years. Meanwhile, in the absence of a fundamental theory

to describe the nuclear force, specific models and theories are used to interpret the

phenomena in different areas of nuclear physics. In the remainder of this chapter we

will discuss a number of such approaches.

7.2 Fermi Gas Model

In this model, the protons and neutrons that make up the nucleus are assumed to

comprise two independent systems of nucleons, each freely moving inside the

nuclear volume subject to the constraints of the Pauli principle. The potential felt by

every nucleon is the superposition of the potentials due to all the other nucleons. In

the case of neutrons this is assumed to be a finite-depth square well; for protons, the

Coulomb potential modifies this. A sketch of the potential wells in both cases is

shown in Figure 7.2.

For a given ground state nucleus, the energy levels will fill up from the bottom of

the well. The energy of the highest level that is completely filled is called the

Fermi level of energy EF and has a momentum pF ¼ ð2MEFÞ1=2
, where M is the

mass of the nucleon. Within the volume V, the number of states with a momentum

between p and p þ dp is given by the density of states factor

nðpÞdp ¼ dn ¼ 4�V

ð2��hÞ3
p2dp; ð7:1Þ

6Compare the mass of the �(1232) resonance, where all three quarks spins are aligned, to that of the lighter
nucleon, where one pair of quarks spins is anti-aligned to give a total spin of zero. This is discussed in detail
in Section 3.3.3.
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which is derived in Appendix A. Since every state can contain two fermions of the

same species, we can have (using n ¼ 2
Ð pF

0
dnÞ

N ¼ Vðpn
FÞ

3

3�2�h3
and Z ¼ Vðpp

FÞ
3

3�2�h3
ð7:2Þ

neutrons and protons, respectively, with a nuclear volume

V ¼ 4

3
�R3 ¼ 4

3
�R3

0A; ð7:3Þ

where experimentally R0 ¼ 1:21 fm, as we have seen from electron and hadron

scattering experiments discussed in Chapter 2. Assuming for the moment that the

depths of the neutron and proton wells are the same, we find for a nucleus with

Z ¼ N ¼ A=2, the Fermi momentum

pF ¼ pn
F ¼ p

p
F ¼ �h

R0

9�

8

� �1=3

� 250 MeV=c: ð7:4Þ

Thus the nucleons move freely within the nucleus with quite large momenta.

The Fermi energy is

EF ¼ p2
F

2M
� 33 MeV: ð7:5Þ

The difference between the top of the well and the Fermi level is constant

for most heavy nuclei and is just the average binding energy per nucleon

Figure 7.2 Proton and neutron potentials and states in the Fermi gas model
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~BB � B=A ¼ 7–8 MeV. The depth of the potential and the Fermi energy are to a

good approximation independent of the mass number A:

V0 ¼ EF þ ~BB � 40 MeV: ð7:6Þ

Heavy nuclei generally have a surplus of neutrons. Since the Fermi levels of the

protons and neutrons in a stable nucleus have to be equal (otherwise the nucleus

can become more stable by �-decay) this implies that the depth of the potential

well for the neutron gas has to be deeper than for the proton gas, as shown in

Figure 7.2. Protons are therefore on average less tightly bound in nuclei than are

neutrons.

We can use the Fermi gas model to give a theoretical expression for some of the

dependence of the binding energy on the surplus of neutrons, as follows. First, we

define the average kinetic energy per nucleon as

hEkini �
ðpF

0

Ekinp2dp

� � ðpF

0

p2dp

� �
1

: ð7:7Þ

Evaluating the integrals gives

hEkini ¼
3

5

p2
F

2M
� 20 MeV: ð7:8Þ

The total kinetic energy of the nucleus is then

EkinðN;ZÞ ¼ NhEni þ ZhEpi ¼
3

10 M
½Nðpn

FÞ
2 þ Zðpp

FÞ
2�; ð7:9Þ

which may be re-expressed as

EkinðN;ZÞ ¼
3

10 M

�h2

R2
0

9�

4

� �2=3
N5=3 þ Z5=3

A2=3

� �
; ð7:10Þ

where again we have taken the radii of the proton and neutron wells to be equal.

This expression is for fixed A but varying N and has a minimum at N ¼ Z. Hence

the binding energy gets smaller for N 6¼ Z. If we set N ¼ ðA þ�Þ=2,

Z ¼ ðA 
�Þ=2, where � � N 
 Z, and expand Equation (7.10) as a power series

in �=A, we obtain

EkinðN;ZÞ ¼
3

10 M

�h2

R2
0

9�

8

� �2=3

A þ 5

9

ðN 
 ZÞ2

A
þ . . . :

" #
; ð7:11Þ

which gives the dependence on the neutron excess. The first term contributes to the

volume term in the semi-empirical mass formula (SEMF), while the second
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describes the correction that results from having N 6¼ Z. This is a contribution to the

asymmetry term we have met before in the SEMF and grows as the square of the

neutron excess. Evaluating this term from Equation (7.11) shows that its contribu-

tion to the asymmetry coefficient defined in Equation (2.51) is about 44 MeV=c2,

compared with the empirical value of about 93 MeV=c2 given in Equation (2.54). In

practice, to reproduce the actual term in the SEMF accurately we would have to take

into account the change in the potential energy for N 6¼ Z.

7.3 Shell Model

The nuclear shell model is based on the analogous model for the orbital structure

of atomic electrons in atoms. In some areas it gives more detailed predictions than

the Fermi gas model and it can also address questions that the latter model cannot.

Firstly, we recap the main features of the atomic case.

7.3.1 Shell structure of atoms

The binding energy of electrons in atoms is due primarily to the central Coulomb

potential. This is a complicated problem to solve in general because in a multi-

electron atom we have to take account of not only the Coulomb field of the nucleus,

but also the fields of all the other electrons. Analytic solutions are not usually

possible. However, many of the general features of the simplest case of hydrogen

carry over to more complicated cases, so it is worth recalling the former.

Atomic energy levels are characterized by a quantum number n = 1, 2, 3, 4, . . . :
called the principal quantum number. This is defined so that it determines the energy

of the system.7 For any n there are energy-degenerate levels with orbital angular

momentum quantum numbers given by

‘ ¼ 0; 1; 2; 3; . . . ; ðn 
 1Þ ð7:12Þ

(this restriction follows from the form of the Coulomb potential) and for any value

of ‘ there are ð2‘þ 1Þ sub-states with different values of the projection of orbital

angular momentum along any chosen axis (the magnetic quantum number):

m‘ ¼ 
‘;
‘þ 1; . . . ; 0; 1; . . . ; ‘
 1; ‘: ð7:13Þ

Due to the rotational symmetry of the Coulomb potential, all such sub-states are

degenerate in energy. Furthermore, since electrons have spin-1
2
, each of the above

7In nuclear physics we are not dealing with the same simple Coulomb potential, so it would be better to call n
the radial node quantum number, as it still determines the form of the radial part of the wavefunction.
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states can be occupied by an electron with spin ‘up’ or ‘down’, corresponding to

the spin-projection quantum number

ms ¼ �1=2: ð7:14Þ

Again, both these states will have the same energy. So finally, any energy eigenstate

in the hydrogen atom is labelled by the quantum numbers ðn; ‘;m‘;msÞ and for any n,

there will be nd degenerate energy states, where

nd ¼ 2
Xn
1

‘¼0

ð2‘þ 1Þ ¼ 2n2: ð7:15Þ

The high degree of degeneracy can be broken if there is a preferred direction in

space, such as that supplied by a magnetic field, in which case the energy levels

could depend on m‘ and ms. One such interaction is the spin–orbit coupling, which is

the interaction between the magnetic moment of the electron (due to its spin) and the

magnetic field due to the motion of the nucleus (in the electron rest frame). This

leads to corrections to the energy levels called fine structure, the size of which are

determined by the electromagnetic fine structure constant �.

In atomic physics the fine-structure corrections are small and so, if we ignore them

for the moment, in hydrogen we would have a system with electron orbits

corresponding to shells of a given n, with each shell having degenerate sub-shells

specified by the orbital angular momentum ‘. Going beyond hydrogen, we can

introduce the electron–electron Coulomb interaction. This leads to a splitting in any

energy level n according to the ‘value. The degeneracies in ml and ms are unchanged.

It is straightforward to see that if a shell or sub-shell is filled, then we have

X
ms ¼ 0 and

X
m‘ ¼ 0; ð7:16Þ

i.e. there is a strong pairing effect for closed shells. In these cases it can be shown

that the Pauli principle implies

L ¼ S ¼ 0 and J ¼ L þ S ¼ 0: ð7:17Þ

For any atom with a closed shell or a closed sub-shell structure, the electrons are

paired off and thus no valence electrons are available. Such atoms are therefore

chemically inert. It is straightforward to work out the atomic numbers at which this

occurs. These are

Z ¼ 2; 10; 18; 36; 54: ð7:18Þ

For example, the inert gas argon ArðZ ¼ 18Þ has closed shells corresponding to

n ¼ 1, 2 and closed sub-shells corresponding to n ¼ 3; ‘ ¼ 0; 1. These values of Z

are called the atomic magic numbers.
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7.3.2 Nuclear magic numbers

In nuclear physics, there is also evidence for magic numbers, i.e. values of Z and N at

which the nuclear binding is particularly strong. This can been seen from the B=A

curves of Figure 2.10 where at certain values of N and Z the data lie above the SEMF

curve. This is also shown in Figure 7.3, where the inset shows the low-A region

magnified. (The figure only shows results for even values of the mass number A.)

The nuclear magic numbers are found from experiment to be

N ¼ 2; 8; 20; 28; 50; 82; 126

Z ¼ 2; 8; 20; 28; 50; 82
ð7:19Þ

and correspond to one or more closed shells, plus eight nucleons filling the s and p

sub-shells of a nucleus with a particular value of n. Nuclei with both N and Z having

one of these values are called doubly magic, and have even greater stability. An

example is the helium nucleus, the �-particle.

Shell structure is also suggested by a number of other phenomena. For example:

‘magic’ nuclei have many more stable isotopes than other nuclei; they have very

Figure 7.3 Binding energy per nucleon for even values of A: the solid curve is the SEMF (from
Bo69)
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small electric dipole moments, which means they are almost spherical, the most

tightly bound shape; and neutron capture cross-sections show sharp drops compared

with neighbouring nuclei. However, to proceed further we need to know something

about the effective potential.

A simple Coulomb potential is clearly not appropriate and we need some form that

describes the effective potential of all the other nucleons. Since the strong nuclear

force is short-ranged we would expect the potential to follow the form of the density

distribution of nucleons in the nucleus. For medium and heavy nuclei, we have seen

in Chapter 2 that the Fermi distribution fits the data and the corresponding potential

is called the Woods–Saxon form

VcentralðrÞ ¼

V0

1 þ eðr
RÞ=a
: ð7:20Þ

However, although these potentials can be shown to offer an explanation for the

lowest magic numbers, they do not work for the higher ones. This is true of all purely

central potentials.

The crucial step in understanding the origin of the magic numbers was taken in

1949 by Mayer and Jensen who suggested that by analogy with atomic physics there

should also be a spin–orbit part, so that the total potential is

Vtotal ¼ VcentralðrÞ þ V‘sðrÞL � S; ð7:21Þ

where L and S are the orbital and spin angular momentum operators for a single

nucleon and V‘sðrÞ is an arbitrary function of the radial coordinate.8 This form for the

total potential is the same as that used in atomic physics except for the presence of

the function V‘sðrÞ. Once we have coupling between L and S then m‘ and ms are no

longer ‘good’ quantum numbers and we have to work with eigenstates of the total

angular momentum vector J, defined by J ¼ L þ S. Squaring this, we have

J2 ¼ L2 þ S2 þ 2L � S; ð7:22Þ

i.e.

L � S ¼ 1

2
ðJ2 
 L2 
 S2Þ ð7:23Þ

and hence the expectation value of L � S, which we write as h‘si, is

h‘si ¼ �h2

2
½ jð j þ 1Þ 
 ‘ð‘þ 1Þ 
 sðs þ 1Þ� ¼ ‘=2 for j ¼ ‘þ 1

2


ð‘þ 1Þ=2 for j ¼ ‘
 1
2



:

ð7:24Þ

8For their work on the shell structure of nuclei. Maria Goeppert-Mayer and J. Hans Jensen were awarded a
half share of the 1963 Nobel Prize in Physics. (They shared the prize with Wigner, mentioned in Chapter 1
for his development of the concept of parity.)
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(We are always dealing with a single nucleon, so that s ¼ 1
2
.) The splitting between

the two levels is thus

�Els ¼
2‘þ 1

2
�h2hV‘si: ð7:25Þ

Experimentally, it is found that V‘sðrÞ is negative, which means that the state with

j ¼ ‘þ 1
2

has a lower energy than the state with j ¼ ‘
 1
2
. This is the opposite of the

situation in atoms. Also, the splittings are substantial and increase linearly with ‘.
Hence for higher ‘, crossings between levels can occur. Namely, for large ‘, the

splitting of any two neighbouring degenerate levels can shift the j ¼ ‘
 1
2

state of the

initial lower level to lie above the j ¼ ‘þ 1
2

level of the previously higher level.

An example of the resulting splittings up to the 1G state is shown in Figure 7.4,

where the usual atomic spectroscopic notation has been used, i.e. levels are written

n‘j with S, P, D, F, G, . . . : used for ‘ ¼ 0, 1, 2, 3, 4, . . .. Magic numbers occur when

there are particularly large gaps between groups of levels. Note that there is no

restriction on the values of ‘ for a given n because, unlike in the atomic case, the

strong nuclear potential is not Coulomb-like.

The configuration of a real nuclide (which of course has both neutrons and

protons) describes the filling of its energy levels (sub-shells), for protons and for

neutrons, in order, with the notation ðn‘jÞk
for each sub-shell, where k is the

occupancy of the given sub-shell. Sometimes, for brevity, the completely filled

Figure 7.4 Low-lying energy levels in a single-particle shell model using a Woods--Saxon
potential plus spin--orbit term; circled integers correspond to nuclear magic numbers
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sub-shells are not listed, and if the highest sub-shell is nearly filled, k can be given as

a negative number, indicating how far from being filled that sub-shell is. Using the

ordering diagram above, and remembering that the maximum occupancy of each

sub-shell is 2j þ 1, we predict, for example, the configuration for 17
8O to be:

ð1s1
2
Þ2ð1p3

2
Þ4ð1p1

2
Þ2

for the protons ð7:26aÞ

and

ð1s1
2
Þ2ð1p3

2
Þ4ð1p1

2
Þ2ð1d5

2
Þ1

for the neutrons: ð7:26bÞ

Notice that all the proton sub-shells are filled, and that all the neutrons are in filled

sub-shells except for the last one, which is in a sub-shell on its own. Most of the

ground state properties of 17
8O can therefore be found from just stating the neutron

configuration as ð1d5
2
Þ1

.

7.3.3 Spins, parities and magnetic dipole moments

The nuclear shell model can be used to make predictions about the spins of ground

states. A filled sub-shell must have zero total angular momentum, because j is always

an integer-plus-a-half, so the occupancy of the sub-shell, 2j þ 1, is always an even

number. This means that in a filled sub-shell, for each nucleon of a given mjð¼ jzÞ
there is another having the opposite mj. Thus the pair have a combined mj of zero and

so the complete sub-shell will also have zero mj. Since this is true whatever axis we

choose for z, the total angular momentum must also be zero. Since magic number

nuclides have closed sub-shells, such nuclides are predicted to have zero contribu-

tion to the nuclear spin from the neutrons or protons or both, whichever are magic

numbers. Hence magic-Z/magic-N nuclei are predicted to have zero nuclear spin.

This is indeed found to be the case experimentally.

In fact it is found that all even-Z/even-N nuclei have zero nuclear spin. We can

therefore make the hypothesis that for ground state nuclei, pairs of neutrons and

pairs of protons in a given sub-shell always couple to give a combined angular

momentum of zero, even when the sub-shell is not filled. This is called the pairing

hypothesis. We can now see why it is the last proton and/or last neutron that

determines the net nuclear spin, because these are the only ones that may not be

paired up. In odd-A nuclides there is only one unpaired nucleon, so we can predict

precisely what the nuclear spin will be by referring to the filling diagram. For even-

A/odd-Z/odd-N nuclides, however, we will have both an unpaired proton and an

unpaired neutron. We cannot then make a precise prediction about the net spin

because of the vectorial way that angular momenta combine; all we can say is that

the nuclear spin will lie in the range jjp 
 jnj to ðjp þ jnÞ.
Predictions can also be made about nuclear parities. First, recall the following

properties of parity: (1) parity is the transformation r ! 
r; (2) the wavefunction
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of a single-particle quantum state will contain an angular part proportional to the

spherical harmonic Yl
mð	, 
Þ, and under the parity transformation

PYl
mð	; 
Þ ¼ ð
Þ‘Yl

mð	; 
Þ; ð7:27Þ

(3) a single-particle state will also have an intrinsic parity, which for nucleons is

defined to be positive. Thus the parity of a single-particle nucleon state depends

exclusively on the orbital angular momentum quantum number with P ¼ ð
1Þ‘.
The total parity of a multiparticle state is the product of the parities of the individual

particles. A pair of nucleons with the same ‘will therefore always have a combined

parity of þ1. The pairing hypothesis then tells us that the total parity of a nucleus is

found from the product of the parities of the last proton and the last neutron. So we

can predict the parity of any nuclide, including the odd/odd ones, and these

predictions are in agreement with experiment.

Unless the nuclear spin is zero, we expect nuclei to have magnetic (dipole)

moments, since both the proton and the neutron have intrinsic magnetic moments,

and the proton is electrically charged, so it can produce a magnetic moment when it

has orbital motion. The shell model can make predictions about these moments.

Using a notation similar to that used in atomic physics, we can write the nuclear

magnetic moment as

� ¼ gj j�N; ð7:28Þ

where �N is the nuclear magneton that was used in the discussion of hadron

magnetic moments in Section 3.3.3, gj is the Landé g-factor and j is the nuclear spin

quantum number. For brevity we can write simply � ¼ gj j nuclear magnetons.

We will find that the shell model does not give very accurate predictions for

magnetic moments, even for the even–odd nuclei where there is only a single

unpaired nucleon in the ground state. We will therefore not consider at all the much

more problematic case of the odd–odd nuclei having an unpaired proton and an

unpaired neutron.

For the even–odd nuclei, we would expect all the paired nucleons to contribute

zero net magnetic moment, for the same reason that they do not contribute to the

nuclear spin. Predicting the nuclear magnetic moment is then a matter of finding

the correct way to combine the orbital and intrinsic components of magnetic moment

of the single unpaired nucleon. We need to combine the spin component of the

moment, gss, with the orbital component, g‘‘ (where gs and g‘ are the g-factors for

spin and orbital angular momentum.) to give the total moment gj j. The general

formula for doing this is9

gj ¼
jðj þ 1Þ þ ‘ð‘þ 1Þ 
 sðs þ 1Þ

2jðj þ 1Þ g‘ þ
jðj þ 1Þ 
 ‘ð‘þ 1Þ þ sðs þ 1Þ

2jðj þ 1Þ gs; ð7:29Þ

9See, for example, Section 6.6 of En66.

SHELL MODEL 229



which simplifies considerably because we always have j ¼ ‘� 1
2
. Thus

jgj ¼ g‘‘þ gs=2 for j ¼ ‘þ 1
2

ð7:30aÞ

and

jgj ¼ g‘j 1 þ 1

2‘þ 1

� �

 gsj

1

2‘þ 1

� �
for j ¼ ‘
 1

2
: ð7:30bÞ

Since g‘ ¼ 1 for a proton and 0 for a neutron, and gs is approximately þ5.6 for the

proton and 
3.8 for the neutron, Equations (7.30) yield the results (where

gprotonðneutronÞ is the g-factor for nuclei with an odd proton(neutron))

jgproton ¼ ‘þ 1

2
� 5:6 ¼ j þ 2:3 for j ¼ ‘þ 1

2

jgproton ¼ j 1 þ 1

2‘þ 1

� �

 5:6 � j

1

2‘þ 1

� �
¼ j 
 2:3j

j þ 1
for j ¼ ‘
 1

2

jgneutron ¼ 
1

2
� 3:8 ¼ 
1:9 for j ¼ j ¼ ‘þ 1

2

jgneutron ¼ 3:8 � j
1

2‘þ 1

� �
¼ 1:9j

j þ 1
for j ¼ ‘
 1

2
:

ð7:31Þ

Accurate values of magnetic dipole moments are available for a wide range of

nuclei and plots of a sample of measured values for a range of odd-Z and odd-N

nuclei across the whole periodic table are shown in Figure 7.5. It is seen that for a

given j, the measured moments usually lie somewhere between the j ¼ ‘
 1
2

and the

j ¼ ‘þ 1
2

values (the so-called Schmidt lines), but beyond that the model does not

predict the moments accurately. The only exceptions are a few low-A nuclei where

the numbers of nucleons are close to magic values.

Why should the shell model work so well when predicting nuclear spins and

parities, but be poor for magnetic moments? There are several likely problem areas,

including the possibility that protons and neutrons inside nuclei may have effective

intrinsic magnetic moments that are different to their free-particle values, because of

their very close proximity to one another.

7.3.4 Excited states

In principle, the shell model’s energy level structure can be used to predict nuclear

excited states. This works quite well for the first one or two excited states when there

is only one possible configuration of the nucleus. However, for higher states the

230 CH7 MODELS AND THEORIES OF NUCLEAR PHYSICS



spectrum becomes very complicated because several nucleons can be excited

simultaneously into a superposition of many different configurations to produce a

given nuclear spin and parity. When trying to predict the first one or two excited

states using a filling diagram like Figure 7.4, we are looking for the configuration

that is nearest to the ground state configuration. This will normally involve either

Figure 7.5 Magnetic moments for odd-N, even-Z nuclei (upper diagram) and odd-Z, even-N
(lower diagram) as functions of nuclear spin compared with the predictions of the single-particle
shell model (the Schmidt lines)
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moving an unpaired nucleon to the next highest level, or moving a nucleon from the

sub-shell below the unpaired nucleon up one level to pair with it. Thus it is necessary

to consider levels just above and below the last nucleons (protons and neutrons).

As an example, consider the case of 17
8O. Its ground-state configuration is given in

Equations (7.26). All the proton sub-shells are filled, and all the neutrons are in filled

sub-shells except for the last one, which is in a sub-shell on its own. There are three

possibilities to consider for the first excited state:

1. promote one of the 1p1
2

protons to 1d5
2
, giving a configuration of ð1p1

2
Þ
1ð1d5

2
Þ1

,

where the superscript 
1 means that the shell is one particle short of being

filled;

2. promote one of the 1p1
2

neutrons to 1d5
2
, giving a configuration of ð1p1

2
Þ
1ð1d5

2
Þ2

;

3. promote the 1d5
2

neutron to the next level, which is probably 2s1
2

(or the nearby

1d3
2
), giving a configuration of ð1s1

2
Þ1

or ð1d3
2
Þ1

.

Following the diagram of Figure 7.4, the third of these possibilities would

correspond to the smallest energy shift, so it should be favoured over the others.

The next excited state might involve moving the last neutron up a further level to 1d3
2
,

or putting it back where it was and adopting configurations (1) or (2). Option (2) is

favoured over (1) because it keeps the excited neutron paired with another, which

should have a slightly lower energy than creating two unpaired protons. When

comparing these predictions with the observed excited levels it is found that the

expected excited states do exist, but not necessarily in precisely the order predicted.

The shell model has many limitations, most of which can be traced to its

fundamental assumption that the nucleons move independently of one another in

a spherically symmetric potential. The latter, for example, is only true for nuclei that

are close to having doubly-filled magnetic shells and predicts zero electric quadruple

moments, whereas in practice many nuclei are deformed and quadruple moments are

often substantial. We discuss this important observation in the next section.

7.4 Non-Spherical Nuclei

So far we have discussed only spherical nuclei, but with non-sphericity new

phenomena are allowed, including additional modes of excitation and the possibility

of an electric quadrupole moment.

7.4.1 Electric quadrupole moments

The charge distribution in a nucleus is described in terms of electric multipole

moments and follows from the ideas of classical electrostatics. If we have a localized
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classical charge distribution with charge density �ðxÞ within a volume 
 , then the

first moment that can be non-zero is the electric quadrupole Q, defined by

eQ �
ð
�ðxÞð3z2 
 r2Þd3x; ð7:32Þ

where we have taken the axis of symmetry to be the z-axis. The analogous definition

in quantum theory is

Q ¼ 1

e

X
i

ð
 �qið3z2

i 
 r2Þ d3x; ð7:33Þ

where  is the nuclear wavefunction and the sum is over all relevant nucleons,

each with charge qi.
10 The quadrupole moment is zero if j j2 is spherically

symmetric and so a non-zero value of Q would be indicative of a non-spherical

nuclear charge distribution.

If we consider a spheroidal distribution with semi-axes defined as in Figure 2.14,

then evaluation of Equation (7.32) leads to the result

Qintrinsic ¼
2

5
Zeða2 
 b2Þ; ð7:34Þ

where Qintrinsic is the value of the quadrupole moment for a spheroid at rest and Ze

is its total charge. For small deformations,

Qintrinsic �
6

5
ZeR2"; ð7:35Þ

where " is defined in Equation (2.70) and R is the nuclear radius. Thus, for a

prolate distribution ða > bÞ, Q > 0 and for an oblate distribution ða < bÞ, Q < 0,

as illustrated in Figure 7.6. The same results hold in the quantum case.

If the nucleus has a spin J and magnetic quantum number M, then Q will depend

on M because it depends on the shape and hence the orientation of the charge

distribution. The quadrupole moment is then defined as the value of Q for which M

has its maximum value projected along the z-axis. This may be evaluated from

Equation (7.33) in the single-particle shell model and without proof we state the

resulting prediction that for odd-A, odd-Z nuclei with a single proton having a total

angular moment j outside closed sub-shells, the value of Q is given by

Q � 
R2 ð2j 
 1Þ
2ðj þ 1Þ : ð7:36Þ

10The electric dipole moment dz ¼ 1
e

P
i

Ð
 �qizi d
 vanishes because it will contain a sum of terms of the

form h ijzij ii, all of which are zero by parity conservation.
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Thus, Q ¼ 0 for j ¼ 1
2
. For odd-A, odd-N nuclei with a single neutron outside

closed sub-shells Q is predicted to be zero because the neutron has zero electric

charge, as will all even-Z, odd-N nuclei because of the pairing effect.

Unlike magnetic dipole moments, electric quadrupole moments are not always well

measured and the quoted experimental errors are often far larger than the differences

between the values obtained in different experiments. Significant (and difficult to

apply) corrections also need to be made to the data to extract the quadrupole moment

and this is not always done. The compilation of electric dipole moment data shown in

Figure 7.7 is therefore representative. The solid lines are simply to guide the eye and

Figure 7.6 Shapes of nuclei leading to (a) Q > 0 (prolate), and (b) Q < 0 (oblate)

Figure 7.7 Some measured electric quadrupole moments for odd-A nuclei, normalized by dividing
by R2, the squared nuclear radius: grey circles denote odd-N nuclei and black circles odd-Z nuclei;
the solid lines have no theoretical significance and the arrows denote the position of closed shells
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have no theoretical significance. The arrows indicate the positions of major closed

shells. A change of sign of Q at these points is expected because a nucleus with one

proton less than a closed shell behaves like a closed-shell nucleus with a negatively

charged proton (a proton hole) and there is some evidence for this in the data.

Two features emerge from this diagram. Firstly, while odd-A, odd-Z nuclei with

only a few nucleons outside a closed shell do have moments of order 
R2, in general

the measured moments are larger by factors of two to three and for some nuclei the

discrepancy can be as large as a factor of 10. Secondly, odd-A, odd-N nuclei also

have non-zero moments, contrary to expectations and, moreover, there is little

difference between these and the moments for odd-A, odd-Z nuclei, except that

the former tend to be somewhat smaller. These results strongly suggest that for some

nuclei it is not a good approximation to assume spherical symmetry and that these

nuclei must be considered to have non-spherical mass distributions.

The first attempt to explain the measured electric quadrupole moments in terms

of non-spherical nuclei was due to Rainwater. His approach can be understood

using the model we discussed in Chapter 2 when considering fission and used

above to derive the results of Equations (7.34) and (7.35). There the sphere was

deformed into an ellipsoid (see Figure 2.14) with axes parameterized in terms of a

small parameter " via Equation (2.70). The resulting change in the binding energy

�EB was found to be

�EB ¼ 
�"2; ð7:37Þ

where

� ¼ 1

5
ð2asA

2
3 
 acZ2A
1

3Þ ð7:38Þ

and the coefficients as and ac are those of the SEMF with numerical values given

in Equation (2.54). Rainwater assumed that this expression only held for closed-

shell nuclei, but not for nuclei with nucleons in unfilled shells. In the latter cases he

showed that distortion gives rise to an additional term in �EB that is linear in ", so

that the total change in binding energy is

�EB ¼ 
�"2 
 �"; ð7:39Þ

where � is a parameter that could be calculated from the Fermi energy of the

nucleus. This form has a minimum value �2=4� where " ¼ 
�=2�. The ground

state would therefore be deformed and not spherical.

Finally, once the spin of the nucleus is taken into account in quantum theory, the

measured electric quadrupole moment for ground states is predicted to be

Q ¼ jð2 j 
 1Þ
ð j þ 1Þð2 j þ 1ÞQintrinsic: ð7:40Þ
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This model gives values for Q that are of the correct sign, but overestimates them by

typically a factor of two. Refined variants of the model are capable of bringing the

predictions into agreement with the data by making better estimates of the parameter�.

7.4.2 Collective model

The Rainwater model is equivalent to assuming an aspherical liquid drop and Aage

Bohr (the son of Neils Bohr) and Mottelson showed that many properties of heavy

nuclei could be ascribed to the surface motion of such a drop. However, the single-

particle shell model cannot be abandoned because it explains many general features

of nuclear structure. The problem was therefore to reconcile the shell model with the

liquid-drop model. The outcome is the collective model.11

This model views the nucleus as having a hard core of nucleons in filled shells, as

in the shell model, with outer valence nucleons that behave like the surface

molecules of a liquid drop. The motions of the latter introduce non-sphericity in

the core that in turn causes the quantum states of the valence nucleons to change

from the unperturbed states of the shell model. Such a nucleus can both rotate and

vibrate and these new degrees of freedom give rise to rotational and vibrational

energy levels. For example, the rotational levels are given by EJ ¼ JðJ þ 1Þ�h2=2I,

where I is the moment of inertia and J is the spin of the nucleus. The predictions of

this simple model are quite good for small J, but overestimate the energies for larger

J. Vibrational modes are due predominantly to shape oscillations, where the nucleus

oscillates between prolate and oblate ellipsoids. Radial oscillations are much rarer

because nuclear matter is relatively incompressible. The energy levels are well

approximated by a simple harmonic oscillator potential with spacing �E ¼ �h!,

where ! is the oscillator frequency.

In practice, the energy levels of deformed nuclei are very complicated, because

there is often coupling between the various modes of excitation, but nevertheless

many predictions of the collective model are confirmed experimentally.12

7.5 Summary of Nuclear Structure Models

The shell model is based upon the idea that the constituent parts of a nucleus move

independently. The liquid-drop model implies just the opposite, since in a drop of

incompressible liquid, the motion of any constituent part is correlated with the

motion of all the neighbouring pairs. This emphasizes that models in physics have a

limited domain of applicability and may be unsuitable if applied to a different set of

phenomena. As knowledge evolves, it is natural to try and incorporate more

11For their development of the collective model, Aage Bohr, Ben Mottelson and Leo Rainwater shared the
1975 Nobel Prize in Physics.
12The details are discussed, for example, in Section 2.3 of Je90 and Chapter 17 or Ho97.
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phenomena by modifying the model to become more general, until (hopefully) we

have a model with firm theoretical underpinning which describes a very wide range

of phenomena, i.e. a theory. The collective model, which uses the ideas of both the

shell and liquid drop models, is a step in this direction. We will conclude this section

with a brief summary of the assumptions of each of the nuclear models we have

discussed and what each can tell us about nuclear structure.

Liquid-drop model

This model assumes that all nuclei have similar mass densities, with binding

energies approximately proportional to their masses, just as in a classical

charged liquid drop. The model leads to the SEMF, which gives a good description

of the average masses and binding energies. It is largely classical, with some

quantum mechanical terms (the asymmetry and pairing terms) inserted in an

ad hoc way. Input from experiment is needed to determine the coefficients of the

SEMF.

Fermi gas model

The assumption here is that nucleons move independently in a net nuclear

potential. The model uses quantum statistics of a Fermi gas to predict the depth

of the potential and the asymmetry term of the SEMF.

Shell model

This is a fully quantum mechanical model that solves the Schrödinger equation with

a specific spherical nuclear potential. It makes the same assumptions as the Fermi

gas model about the potential, but with the addition of a strong spin–orbit term. It is

able to successfully predict nuclear magic numbers, spins and parities of ground-

state nuclei and the pairing term of the SEMF. It is less successful in predicting

magnetic moments.

Collective model

This is also a fully quantum mechanical model, but in this case the potential is

allowed to undergo deformations from the strictly spherical form used in the shell

model. The result is that the model can predict magnetic dipole and electric

quadrupole magnetic moments with some success. Additional modes of excitation,

both vibrational and rotational, are possible and are generally confirmed by

experiment.
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It is clear from the above that there is at present no universal nuclear model. What

we currently have is a number of models and theories that have limited domains of

applicability and even within which they are not always able to explain all the

observations. For example, the shell model, while able to give a convincing account

of the spins and parities of the ground states of nuclei, is unable to predict the spins of

excited states with any real confidence. And of course the shell model has absolutely

nothing to say about whole areas of nuclear physics phenomena. Some attempt has

been made to combine features of different models, such as is done in the collec-

tive model, with some success. A more fundamental theory will require the full

apparatus of many-body theory applied to interacting nucleons and some progress

has been made in this direction for light nuclei, as we will mention in Chapter 9.

A theory based on interacting quarks is a more distant goal.

7.6 a-Decay

To discuss �-decays, we could return to the semiempirical mass formula of Chapter

2 and by taking partial derivatives with respect to A and Z find the limits of �-

stability, but the result is not very illuminating. To get a very rough idea of the

stability criteria, we can write the SEMF in terms of the binding energy B. Then

�-decay is energetically allowed if

Bð2; 4Þ > BðZ;AÞ 
 BðZ 
 2;A 
 4Þ: ð7:41Þ

If we now make the approximation that the line of stability is Z ¼ N (the actual

line of stability deviates from this, see Figure 2.7), then there is only one independent

variable. If we take this to be A, then

Bð2; 4Þ > BðZ;AÞ 
 BðZ 
 2;A 
 4Þ � 4
dB

dA
; ð7:42Þ

and we can write

4
dB

dA
¼ 4 A

dðB=AÞ
dA

þ B

A

� �
: ð7:43Þ

From the plot of B=A (Figure 2.2), we have dðB=AÞ=dA � 
7:7 � 10
3 MeV for

A � 120 and we also know that Bð2; 4Þ ¼ 28:3 MeV, so we have

28:3 � 4½B=A 
 7:7 � 10
3 A�; ð7:44Þ

which is a straight line on the B=A versus A plot which cuts the plot at A � 151.

Above this value of A, Equation (7.41) is satisfied by most nuclei and �-decay

becomes energetically possible.
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Lifetimes of �-emitters span an enormous range, and examples are known from

10 ns to 1017 years. The origin of this large spread lies in the quantum mechanical

phenomenon of tunelling. Individual protons and neutrons have binding energies in

nuclei of about 8 MeV, even in heavy nuclei (see Figure 2.2), and so cannot in

general escape. However, a bound group of nucleons can sometimes escape because

its binding energy increases the total energy available for the process. In practice,

the most significant decay process of this type is the emission of an �-particle,

because unlike systems of two and three nucleons it is very strongly bound by

7 MeV/ nucleon. Figure 7.8 shows the potential energy of an�-particle as a function

of r, its distance from the centre of the nucleus.

Beyond the range of the nuclear force, r > R, the �-particle feels only the

Coulomb potential

VCðrÞ ¼
2Z��hc

r
; ð7:45Þ

where we now use Z to be the atomic number of the daughter nucleus. Within the

range of the nuclear force, r < R, the strong nuclear potential prevails, with its

strength characterized by the depth of the well. Since the �-particle can escape from

the nuclear potential, E� > 0. It is this energy that is released in the decay. Unless E�
is larger than the Coulomb barrier (in which case the decay would be so fast as to be

unobservable) the only way the �-particle can escape is by quantum mechanical

tunelling through the barrier.

The probability T for transmission through a barrier of height V and thickness

�r by a particle of mass m with energy E� is given approximately by

T � e
2��r; ð7:46Þ

Figure 7.8 Schematic diagram of the potential energy of an �-particle as a function of its
distance r from the centre of the nucleus
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where �h� ¼ ½2mjVC 
 E�j�1=2
. Using this result, we can model the Coulomb

barrier as a succession of thin barriers of varying height. The overall transmission

probability is then

T ¼ e
G; ð7:47Þ

where the Gamow factor G is

G ¼ 2

�h

ðrC

R

2mjVCðrÞ 
 E�j½ �1=2
dr; ð7:48Þ

with � ¼ v=c and v is the velocity of the emitted particle.13 This assumes that

the orbital angular momentum of the �-particle is zero, i.e. we ignore

possible centrifugal barrier corrections.14 Since rC is the value of r where

E� ¼ VCðrCÞ,

rC ¼ 2Ze2=4�"0E� ð7:49Þ

and hence

VCðrÞ ¼ 2Ze2=4�"0r ¼ rCE�=r: ð7:50Þ

So, substituting into Equation (7.48) gives

G ¼ 2ð2mE�Þ1=2

�h

ðrC

R

rC

r

 1

h i1=2

dr; ð7:51Þ

where m is the reduced mass of the �-particle and the daughter nucleus, i.e.

m ¼ m�mD=ðm� þ mDÞ � m�. Evaluating the integral in Equation (7.51) gives

G ¼ 4Z�
2mc2

E�

� �1=2

cos
1

ffiffiffiffiffi
R

rC

r



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

rC

1 
 R

rC

� �s" #
: ð7:52Þ

Finally, since E� is typically 5 MeV and the height of the barrier is typically

40 MeV, rC � R and from (7.52), G � 4��Z=�, where � ¼ v�=c and v� is the

velocity of the alpha particle within the nucleus.

The probability per unit time � of the �-particle escaping from the nucleus

is proportional to the product of: (a) the probability wð�Þ of finding the �-particle in

the nucleus; (b) the frequency of collisions of the �-particle with the barrier (this

13These formulae are derived in Appendix A.
14The existence of an angular momentum barrier will suppress the decay rate (i.e. increase the lifetime)
compared with a similar nucleus without such a barrier. Numerical estimates of the suppression factors,
which increase rapidly with angular momentum, have been calculated by Blatt and Weisskopf and are given
in their book B152.

240 CH7 MODELS AND THEORIES OF NUCLEAR PHYSICS



is v�=2R); and (c) the transition probability. Thus, combining these factors, � is

given by

� ¼ wð�Þ v�

2R
e
G ð7:53Þ

and since

G / Z

�
/ Zffiffiffiffiffiffi

E�
p ; ð7:54Þ

small differences in E� have strong effects on the lifetime.

To examine this further we can take logarithms of Equation (7.53) to give

log10 t1
2
¼ a þ bZE


1
2

� ; ð7:55Þ

where t1
2

is the half-life. The quantity a depends on the probability wð�Þ and so is a

function of the nucleus, whereas b is a constant that may be estimated from the above

equations to be about 1.7. Equation (7.55) is a form of a relation that was found

empirically by Geiger and Nuttall in 1911 long before its theoretical derivation in

1928. It is therefore called the Geiger-Nuttall relation. It predicts that for fixed Z,

the log of the half-life of �-emitters varies linearly with E

1

2
� .

Figure 7.9 shows lifetime data for the isotopes of four nuclei. The very strong

variation with �-particle energy is evident; changing E� by a factor of about 2.5

changes the lifetime by 20 orders of magnitude. In all cases the agreement with the

Geiger–Nuttall relation is very reasonable and the slopes are compatible with the

Figure 7.9 Comparison of the Geiger--Nuttall relation with experimental data for some
�-emitters
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estimate for b above. Thus the simple barrier penetration model is capable of

explaining the very wide range of lifetimes of nuclei decaying by �-emission.

7.7 b-Decay

In Chapter 2 we discussed in some detail the phenomenology of �-decay using the

SEMF. In this section we return to these decays and examine their theoretical

interpretation.

7.7.1 Fermi theory

The first successful theory of nuclear �-decay was proposed in the 1930s by Fermi,

long before the W and Z bosons were known and the quark model formulated. He

therefore had to construct a theory based on very general principles, working by

analogy with the quantum theory of electromagnetic processes (QED), the only

successful theory known at the time for quantum particles.

The general equation for electron �-decay is

A
ZX ! A

Zþ1 Y þ e
 þ ���e: ð7:56Þ

In Chapter 2, we interpreted this reaction as the decay of a bound neutron, i.e.

n ! p þ e
 þ ���e, and in Chapter 3 we gave the quark interpretation of this decay. In

general, it is possible for the internal state of the nucleus to change in other ways

during the transition, but we will simplify matters by considering just the basic

neutron decay process.

We have also met the Second Golden Rule, which enables transition rates to be

calculated provided the interaction is relatively weak. We will write the Golden

Rule as

! ¼ 2�

�h
jMfij2nðEÞ; ð7:57Þ

where ! is the transition rate (probability per unit time), Mfi is the transition

amplitude (also called the matrix element because it is one element of a matrix

whose elements are all the possible transitions from the initial state i to different final

states f of the system) and nðEÞ is the density of states, i.e. the number of quantum

states available to the final system per unit interval of total energy. The density-

of-states factor can be calculated from purely kinematical factors, such as energies,

momenta, masses and spins where appropriate.15 The dynamics of the process is

contained in the matrix element.

15This is done explicitly in Appendix A.
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The matrix element can in general be written in terms of five basic Lorentz

invariant interaction operators, ÔO:

Mfi ¼
ð
��

f ðgÔOÞ�i d3x; ð7:58Þ

where �f and �i are total wavefunctions for the final and initial states, respectively,

g is a dimensionless coupling constant, and the integral is over three-dimensional

space The five categories are called scalar (S), pseudo-scalar (P), vector (V), axial-

vector (A), and tensor (T ); the names having their origin in the mathematical

transformation properties of the operators. (We have met the V and A forms

previously in Chapter 6 on the electroweak interaction.) The main difference

between them is the effect on the spin states of the parent and daughter nuclei.

When there are no spins involved, and at low energies, ðgÔOÞ is simply the interaction

potential, i.e. that part of the potential that is responsible for the change of state of the

system.

Fermi guessed that ÔO would be of the vector type, since electromagnetism is a

vector interaction, i.e. it is transmitted by a spin-1 particle – the photon. (Decays of

the vector type are called Fermi transitions.) We have seen from the work of

Chapter 6 that we now know that the weak interaction violates parity conservation

and is correctly written as a mixture of both vector and axial-vector interactions (the

latter are called Gamow–Teller transitions in nuclear physics), but as long as we are

not concerned with the spins of the nuclei, this does not make much difference, and

we can think of the matrix element in terms of a classical weak interaction potential,

like the Yukawa potential. Applying a bit of modern insight, we can assume the

potential is of extremely short range (because of the large mass of the W boson), in

which case we have seen that we can approximate the interaction by a point-like

form and the matrix element then becomes simply a constant, which we write as

Mfi ¼
GF

V
; ð7:59Þ

where GF is the Fermi coupling constant we met in Chapter 6. It has dimensions

[energy][length]3 and is related to the charged current weak interaction coupling

�W by

GF ¼ 4�ð�hcÞ3�W

ðMWc2Þ2
: ð7:60Þ

In Equation (7.59) it is convenient to factor out an arbitrary volume V, which is used

to normalize the wavefunctions. (It will eventually cancel out with a factor in the

density-of-states term.)

In nuclear theory, the Fermi coupling constant GF is taken to be a universal

constant and with appropriate corrections for changes of the nuclear state this
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assumption is also used in �-decay. Experimental results are consistent with the

theory under this assumption. However, the theory goes beyond nuclear �-decay,

and can be applied to any process mediated by the W boson, provided the energy is

not too great. In Chapter 6, for example, we used the same ideas to discuss

neutrino scattering. The best process to determine the value of GF is one not

complicated by hadronic (nuclear) effects and muon decay is usually used. The

lifetime of the muon 
� is given to a very good approximation by (ignoring the

Cabbibo correction)

1


�
¼ ðm�c2Þ5

192�3�hð�hcÞ6
G2

F; ð7:61Þ

from which we can deduce that the value of GF is about 90 eV fm3. It is usually

quoted in the form GF=ð�hcÞ3 ¼ 1:166 � 10
5 GeV
2.

7.7.2 Electron momentum distribution

We see from Equation (7.58) that the transition rate (i.e. �-decay lifetime) depends

essentially on kinematical factors arising through the density-of-states factor, nðEÞ.
To simplify the evaluation of this factor, we consider the neutron and proton to be

‘heavy’, so that they have negligible kinetic energy, and all the energy released in the

decay process goes into creating the electron and neutrino and in giving them kinetic

energy. Thus we write

E ¼ Ee þ E�; ð7:62Þ

where Ee is the total (relativistic) energy of the electron, E� is the total energy

of the neutrino, and E is the total energy released. (This equals ð�mÞc2, if �m is

the neutron–proton mass difference, or the change in mass of the decaying

nucleus.)

The transition rate ! can be measured as a function of the electron momentum, so

we need to obtain an expression for the spectrum of �-decay electrons. Thus we will

fix Ee and find the differential transition rate for decays where the electron has

energy in the range Ee to Ee þ dEe. From the Golden Rule, this is

d! ¼ 2�

�h
jMj2n�ðE 
 EeÞneðEeÞdEe; ð7:63Þ

where ne and n� are the density of states factors for the electron and neutrino,

respectively. These may be obtained from our previous result:

nðpeÞdpe ¼
V

ð2��hÞ3
4�p2

edpe; ð7:64Þ

244 CH7 MODELS AND THEORIES OF NUCLEAR PHYSICS



with a similar expression for n�, by changing variables using

dp

dE
¼ E

pc2
; ð7:65Þ

so that

nðEeÞdEe ¼
4�V

ð2��hÞ3
c2

peEedEe; ð7:66Þ

with a similar expression for nðE�Þ. Using these in Equation (7.57) and setting

M ¼ GF=V , gives

d!

dEe

¼ G2
F

2�3�h7c4
peEep�E� ð7:67Þ

where in general

p�c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
� 
 m2

�c
4

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE 
 EeÞ2 
 m2

�c
4

q
: ð7:68Þ

Finally, it is useful to change the variable to pe by writing

d!

dpe

¼ dEe

dpe

d!

dEe

¼ G2
F

2�3�h7c2
p2

ep�E�: ð7:69Þ

If we take the antineutrino to be precisely massless, then p� ¼ E�=c and Equation

(7.69) reduces to

d!

dpe

¼ G2
Fp2

ep2
�

2�3�h7c
¼ G2

Fp2
eE2

�

2�3�h7c3
¼ G2

Fp2
eðE 
 EeÞ2

2�3�h7c3
: ð7:70Þ

This expression gives rise to a bell-shaped electron momentum distribution,

which rises from zero at zero momentum, reaches a peak and falls to zero again at an

electron energy equal to E, as illustrated in the curve labelled Z ¼ 0 in Figure 7.10.

Studying the precise shape of the distribution near its upper end-point is one way in

principle of finding a value for the antineutrino mass. If the neutrino has zero mass,

then the gradient of the curve approaches zero at the end-point, whereas any non-

zero value results in an end-point that falls to zero with an asymptotically infinite

gradient. We will return to this later.

There are several factors that we have ignored or over-simplified in deriving this

momentum distribution. The principal ones are to do with the possible changes

of nuclear spin of the decaying nucleus, and the electric force acting between

the �-particle (electron or positron) and the nucleus. In the first case, when the

electron–antineutrino carry away a combined angular momentum of 0 or 1, the
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above treatment is essentially correct: these are the so-called ‘allowed transitions’.

However, the nucleus may change its spin by more than 1 unit, and then the

simplified short-range potential approach to the matrix element is inadequate. The

decay rate in these cases is generally suppressed, although not completely

forbidden, despite these being traditionally known as the ‘forbidden transitions’.16

In the second case, the electric potential between the positive nucleus and a

positive �-particle will cause a shift of the low end of its momentum spectrum to

the right, since it is propelled away by electrostatic repulsion. Conversely, the low

end of the negative �-spectrum is shifted to the left (see Figure 7.10). The precise

form of these effects is difficult to calculate, and requires quantum mechanics, but

the results are published in tables of a factor FðZ;EeÞ, called the Fermi screening

factor, to be applied to the basic �-spectrum.

7.7.3 Kurie plots and the neutrino mass

The usual way of experimentally testing the form of the electron momentum

spectrum given by the Fermi theory is by means of a Kurie plot. From

Equation (7.70), with the Fermi screening factor included, we have

d!

dpe

¼ FðZ;EeÞG2
Fp2

eðE 
 EeÞ2

2�3�h7c3
; ð7:71Þ

which can be written as

HðEeÞ �
d!

dpe

� �
1

p2
eKðZ; peÞ

� �1
2

¼ E 
 Ee; ð7:72Þ

16For a discussion of forbidden transitions see, for example, Co01.

Figure 7.10 Predicted electron spectra: Z ¼ 0, without Fermi screening factor; ��, with Fermi
screening factor
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where KðZ; peÞ includes FðZ;EeÞ and all the fixed constants in Equation (7.71). A

plot of the left-hand side of this equation – using the measured d!=dpe and pe,

together with the calculated value of KðZ; peÞ – against the electron energy Ee should

then give a straight line with an intercept of E. An example is shown in Figure 7.11.

If the neutrino mass is not exactly zero then it is straightforward to repeat the above

derivation and to show that the left-hand side of the Kurie plot is proportional to

fðE 
 EeÞ½ðE 
 EeÞ2 
 m2
�c

4�
1
2g

1
2: ð7:73Þ

This will produce a very small deviation from linearity extremely close to the end-

point of the spectrum and the straight line will curve near the end point and cut the

axis vertically at E
0
0 ¼ E0 
 m�c

2. In order to have the best conditions for measuring

the neutrino mass, it is necessary to use a nucleus where a non-zero mass would have

a maximum effect, i.e. the maximum energy release E ¼ E0 should only be a few

keV. Also at such low energies atomic effects have to be taken into account, so the

initial and final atomic states must be very well understood. The most suitable case is

the decay of tritium,

3H ! 3He þ e
 þ ���e; ð7:74Þ

where E0 ¼ 18:6 keV. The predicted Kurie plot very close to the end-point is

shown in Figure 7.12.

Since the counting rate near E0 is vanishingly small, the experiment is extremely

difficult. In practice, the above formula is fitted to data close to the end-point of the

spectrum and extrapolated to E0. The best experiments are consistent with a zero

Figure 7.11 Kurie plot for the �-decay of 36Cl (the y-axis is proportional to the function HðEeÞ
above)
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neutrino mass, but when experimental and theoretical uncertainties are taken into

account, an upper limit of about 2–3 eV/c2 results.

7.8 c-Emission and Internal Conversion

In Chapter 2 we mentioned that excited states of nuclei frequently decay to lower

states (often the ground state) by the emission of photons in the energy range

appropriate to �-rays and that in addition it is possible for the nucleus to de-excite by

ejecting an electron from a low-lying atomic orbit. We shall discuss this only briefly

because a proper treatment requires using a quantized electromagnetic radiation

field and is beyond the scope of this book. Instead, we will outline the results,

without proof.

7.8.1 Selection rules

Gamma emission is a form of electromagnetic radiation and like all such radiation is

caused by a changing electric field inducing a magnetic field. There are two

possibilities, called electric (E) radiation and magnetic (M) radiation. These

names derive from the semiclassical theory of radiation, in which the radiation

field arises because of the time variation of charge and current distributions. The

classification of the resulting radiation is based on the fact that total angular

momentum and parity are conserved in the overall reaction, the latter because it is

an electromagnetic process.

Figure 7.12 Expected Kurie plot for tritium decay very close to the end-point of the electron
energy spectrum for two cases: m� ¼ 0 and m� ¼ 5 eV=c2
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The photon carries away a total angular momentum, given by a quantum number

L17, which must include the fact that the photon is a spin-1 vector meson. The

minimum value is L ¼ 1. This is because a real photon has two possible polarization

states corresponding, for example, to Lz ¼ �1. Thus in the transition, there must be a

change of Lz for the emitting nucleus of �1 and this cannot happen if L ¼ 0. Hence,

if the spins of the initial and final nuclei states are denoted by Ji and Jf respectively,

the transition Ji ¼ 0 ! Jf ¼ 0 is strictly forbidden. In general, the photons are said

to have a multipolarity L and we talk about multipole radiation; transitions are called

dipole ðL ¼ 1Þ, quadrupole ðL ¼ 2Þ, octupole ðL ¼ 3Þ etc.. Thus, for example, M2

stands for magnetic quadrupole radiation. The allowed values of L are restricted by

the conservation equation relating the photon total angular momentum L and the

spins of the initial and final nuclei states, i.e.

Ji ¼ Jf þ L: ð7:75Þ

Thus, L may lie in the range

Ji þ Jf � L � jJi 
 Jf j: ð7:76Þ

It is also necessary to take account of parity. In classical physics, an electric dipole

qr is formed by having two equal and opposite charges q separated by a distance r. It

therefore has negative parity under r ! 
r. Similarly, a magnetic dipole is

equivalent to a charge circulating with velocity v to form a current loop of radius

r. The magnetic dipole is then of the form qr � v, which does not change sign under a

parity inversion and thus has positive parity. The general result, which we state

without proof, is that electric multipole radiation has parity ð
1ÞL
, whereas magnetic

multipole radiation has parity ð
1ÞLþ1
. We thus are led to the selection rules for �

emission shown in Table 7.1. Using this table we can determine which radiation

types are allowed for any specific transition. Some examples are shown in Table 7.2.

Although transitions Ji ¼ 0 ! Jf ¼ 0 are forbidden because the photon is a real

particle, such transitions could occur if a virtual photon is involved, provided parity

does not change. The reason for this is that a virtual photon does not have the

17As this is the total angular momentum, logically it would be better to employ the symbol J. However, as L
is invariably used in the literature, it will be used in what follows.

Table 7.1 Selection rules for � emission

Multipolarity Dipole Quadrupole Octupole

Type of radiation E1 M1 E2 M2 E3 M3

L 1 1 2 2 3 3

�P Yes No No Yes Yes No
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restriction on its states of polarization that a real photon does. In practice, the energy

of the virtual photon can be transferred to an orbital atomic electron that can thereby

be ejected. This is the process of internal conversion. There is another possibility

whereby the virtual photon can create an internal eþe
 pair. This is referred to as

internal pair production.

7.8.2 Transition rates

In semi-classical radiation theory, the transition probability per unit time, i.e. the

emission rate, is given by18

T
E;M
fi ðLÞ ¼ 1

4�"0

8�ðL þ 1Þ
L½ð2L þ 1Þ!!�2

1

�h

E�

�hc

� �2Lþ1

B
E;M
fi ðLÞ; ð7:77Þ

where E� is the photon energy, E and M refer to electric and magnetic radiation,

and for odd-n, n!! � nðn 
 2Þðn 
 4Þ . . . 3:1. The function B
E;M
fi ðLÞ is the so-called

reduced transition probability and contains all the nuclear information. It is

essentially the square of the matrix element of the appropriate operator causing

the transition producing photons with multipolarity L, taken between the initial and

final nuclear state wave functions. For electric transitions, B is measured in units of

e2 fm2L and for magnetic transitions in units of ð�N=cÞ2
fm2L
2 where �N is the

nuclear magneton.

To go further requires knowledge of the nuclear wave functions. An approxima-

tion due to Weisskopf is based on the single-particle shell model. This approach

assumes that the radiation results from the transition of a single proton from an initial

orbital state of the shell model to a final state of zero angular momentum. In this

model the general formulas reduce to

BEðLÞ ¼ e2

4�

3RL

L þ 3

� �2

ð7:78aÞ

18See, for example, Chapter 16 of Ja75.

Table 7.2 Examples of nuclear electromagnetic transitions

jPi

i J
Pf

f �P L Allowed transitions

0þ 0þ No – None
1
2

þ 1
2



Yes 1 E1

1þ 0þ No 1 M1

2þ 0þ No 2 E2
3
2


 1
2

þ
Yes 1, 2 E1, M2

2þ 1þ No 1, 2, 3 M1, E2, M3
3
2


 5
2

þ
Yes 1, 2, 3, 4 E1, M2, E3, M4
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for electric radiation and

BMðLÞ ¼ 10
�h

mpcR

� �2

BEðLÞ ð7:78bÞ

for magnetic radiation, where R is the nuclear radius and mp is the mass of the

proton. Finally, from the work in Chapter 2 on nuclear sizes, we can substitute

R ¼ R0A1=3, with R0 ¼ 1:21 fm, to give the final results:

BEðLÞ ¼ e2

4�

3

L þ 3

� �2

ðR0Þ2L
A2L=3 ð7:79aÞ

and

BMðLÞ ¼ 10

�

e�h

2mpc

� �2
3

L þ 3

� �2

ðR0Þ2L
2
Að2L
2Þ=3: ð7:79bÞ

Figure 7.13 shows an example of the transition rates TE;M calculated from

Equation (7.77) using the approximations of Equations (7.79). Although these are

only approximate predictions, they do confirm what is observed experimentally: for

a given transition there is a very substantial decrease in decay rates with increasing

L, and electric transitions have decay rates about two orders of magnitude higher

than the corresponding magnetic transitions.

Finally, it is often useful to have simple formulas for radiative widths 	� . These

follow from Equations (7.77), (7.78) and (7.79) and for the lowest multipole

transitions may be written

	�ðE1Þ ¼ 0:068E3
�A2=3; 	�ðM1Þ ¼ 0:021E3

�; 	�ðE2Þ ¼ ð4:9 � 10
8ÞE5
�A4=3;

ð7:80Þ

Figure 7.13 Transition rates using single-particle shell model formulas of Weisskopf as a
function of photon energy for a nucleus of mass number A ¼ 60
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where	� is measured in eV, the transition energy E� is measured in MeVand A is the

mass number of the nucleus. These formulae are based on the single-particle

approximation and in practice collective effects often give values that are much

greater than those predicted by Equations (7.80).

Problems

7.1 Assume that in the shell model the nucleon energy levels are ordered as shown in

Figure 7.4. Write down the shell-model configuration of the nucleus 7
3Li and hence

find its spin, parity and magnetic moment (in nuclear magnetons). Give the two most

likely configurations for the first excited state, assuming that only protons are

excited.

7.2 A certain odd-parity shell-model state can hold up to a maximum of 16 nucleons;

what are its values of j and ‘?

7.3 The ground state of the radioisotope 17
9F has spin-parity jP ¼ 5

2

þ
and the first excited

state has jP ¼ 1
2



. By reference to Figure 7.4, suggest two possible configurations for

the latter state.

7.4 What are the configurations of the ground states of the nuclei 93
41Nb and 33

16S and what

values are predicted in the single-particle shell model for their spins, parities and

magnetic dipole moments?

7.5 Show explicitly that a uniformly charged ellipsoid at rest with total charge Ze and

semi-axes defined in Figure 2.14, has a quadrupole moment Q ¼ 2
5
Zeða2 
 b2Þ.

7.6 The ground state of the nucleus 165
67Ho has an electric quadrupole moment Q � 3:5 b.

If this is due the fact that the nucleus is a deformed ellipsoid, use the result of

Question 7.5 to estimate the sizes of its semi-major and semi-minor axes.

7.7 The decay 244
98Cfð0þÞ ! 240

96Cmð0þÞ þ � has a Q-value of 7.329 MeVand a half-life of

19.4 mins. If the frequency and probability of forming �-particles (see Equation

(7.53)) for this decay are the same as those for the decay 228
90Thð0þÞ ! 224

88Rð0þÞ þ �,

estimate the half-life for the �-decay of 228
90Th, given that its Q-value is 5.520 MeV.

7.8 The hadrons 
0 and �0 can both decay via photon emission:


0ð1193Þ ! �ð1116Þ þ � (branching ratio � 100 per cent); �0ð1232Þ ! n þ �
(branching ratio 0.56 per cent). If the lifetime of the �0 is 0:6 � 10
23 s, estimate

the lifetime of the 
0.

7.9 The reaction 34Sðp, nÞ34Cl has a threshold proton laboratory energy of 6.45 MeV.

Calculate non-relativistically the upper limit of the positron energy in the �-decay of
34Cl, given that the mass difference between the neutron and the hydrogen atom is

0.78 MeV.
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7.10 To determine the mass of the electron neutrino from the �-decay of tritium requires

measurements of the electron energy spectrum very close to the end-point where

there is a paucity of events (see Figure 7.12.). To see the nature of the problem,

estimate the fraction of electrons with energies within 10 eV of the end-point.

7.11 The electron energy spectra of �-decays with very low-energy end-points E0 may be

approximated by d!=dE ¼ E1=2ðE0 
 EÞ2
. Show that in this case the mean energy is

1
3
E0.

7.12 The ground state of 35
73Br has JP ¼ 1

2



and the first two excited states have

JP ¼ 5
2


ð26:92 keVÞ and JP ¼ 3
2


ð178:1 keVÞ. List the possible �-transitions

between these levels and estimate the lifetime of the 3
2



state.

7.13 Use the Weisskopf formulas of Equations (7.79) to calculate the radiative width

	�ðE3Þ expressed in a form analogous to Equations (7.80).
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