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Chapter 8

OSCILLATORY MOTION AND
SMALL OSCILLATIONS

114. In the previous chapters we have had several examples of os-
cillatory motion. We have seen that wherever the equation of motion

2x, or g = —n29, the motion is sim-

can be reduced to the form x = n
T
ple harmonic with a period of oscillation equal to —. We shall give

n
in this chapter a few examples of a more difficult character.

115. Small oscillations. The general method of finding the small os-
cillations about a position of equilibrium is to write down the general
equations of motion of the body. If there is only one variable, x say,
find the value of x which makes x,x- - - etc. zero, i.e. which gives the
position of equilibrium. Let this value be a.

In the equation of motion put x = a + &, where & is small. For a
small oscillation £ will be small so that we may neglect its square.

The equation of motion then generally reduces to the form & = —A¢,
in which case the time of a small oscillation is —.

VA

For example, suppose the general equation of motion is

d*x

I (%)2 — Flx).

197



198 Chapter 8: Oscillatory Motion and Small Oscillations

For the position of equilibrium we have F(x) = 0, giving x = a.
Put x = a+ & and neglect &2.
The equation becomes

d2
d—t;g =F(a+&)=F(a)+&F'(a)+---, by Taylor’s theorem.
Since F(a) = 0 this gives

d*§ /

If F'(a) be negative, we have a small oscillation and the position
of equilibrium given by x = a is stable.
If F'(a) be positive, the corresponding motion is not oscillatory

and the position of equilibrium is unstable.

116. EX. 1. A uniform rod, of length 2a, is supported in a horizontal
position by two strings attached to its ends whose other extremi-
ties are tied to a fixed point; if the unstretched length of each string
be | and the modulus of elasticity be n times the weight of the rod,

show that in the position of equilibrium the strings are inclined to

the vertical at an angle o such that acot o0 —Ilcosa = o and that

n
the time of a small oscillation about the position of equilibrium is
a cot
21wy [ — .
\/ gl+2ncos’a
When the rod is at depth x below the fixed point, let 8 be the incli-

nation of each string to the vertical,

a
, 0 nmg a—1 sin@
so that x = acot 6 and the tension = nmg > Y _ e ,
[ [ sin 6
. —1sin6
The equation of motionisthen m@ =mg—2. s 4 cos 0,

[ sin 6
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, a é+2acose 2 ng a—lsinGCOS
le. — — 0 =g—-22 — ,
sin% 0 sin’ 0 8 [ sin 0
. : 2
ie. §—2cot00>=-12 sin29—i—ilgsin900s O(a—1sinB) ...(1).
a a

In the position of equilibrium when 6 = «, we have § = 0 and
6 =0, and

l
to—1 o= — .(2).
aco cos - (2)

For a small oscillation put 6 = o + ¥, where ¥ is small, and
sin@ =sinax +Y¥cosa, and cos@ =cosa — ¥sina.

In this case 9 is the square of a small quantity and is negligible,
and (1) gives

. 2
y = —g(sina +W¥cosa)? + ng(sinoc +Wcosa)x
a a

(coso —Wsina)[a—I(sino+ ¥ cos )]

— —g(sin2 a+2¥sinacos @)
a

2
+ 78 [sin ot cos o + ¥(cos?

. 2
o — (04
- sin” )]

[
(2— tanox — [W cos OC) by equation (2)
n

-yl [2nsin o cos® o + tan o]

a
_ 8 3
=—¥.2tana (1l +2ncos’ «).
a
a coto

H th ired time = 274 / — :
ence the required time \/ ¢ T+ 2ncos’ o
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Making use of the principle of the last article, if the right-hand side

of (1) be f(0), the equation for small oscillations is

y=Y.f(a),
/ 2g . 2ng 5 .2 :
and f(oc):——51noccosoc+—l(cos o —sin“a)(a—Isin)
a a
2
~ 8 Ginacos? o
a

— etc., as before.

EX. 2. A heavy particle is placed at the centre of a smooth circular
table; n strings are attached to it and, after passing over small pul-
leys symmetrically arranged at the circumference of the table, each
is attached to a mass equal to that of the particle on the table. If the
particle be slightly displaced, show that the time of an oscillation is
21y / ? (1 + %> :
g n

Let O be the centre of the board, Aj,A,,...,A, the pulleys, and

let the particle be displaced along a line OA lying between OA,, and

OA1. When its distance OP = x, let PA, =y, and POA, = «,. Also,
let a be the radius of the table and / the length of a siring.

Then y,=+/a?2+x2—2axcosa, =a (1 _Xcos ar> ,
a

since x is very small.
Let 7, be the tension of the string PA,.
d2
Then mg—T,= mﬁ(l — Yy) = mMXCOS &

. T,=m(g—Xxcosa,).



LONEY’S DYNAMICS OF A PARTICLE WITH SOLUTION MANUAL (Kindle edition) 201

. acos o — X
Also T,cosAPA, =m(g—xcos ;). !
Vr
. acos o —x X
=m(g—Xcos Q). (H——cosar)
a a

2

(g —Xcos a).[a® cos o — ax + axcos” ot,].

m
a2
Now if POA| = «, then

21
Zcosar:cosowrcos (OC+—> +---tonterms =0,
n

1 4r
Zcoszarzi [1—|—COSZOC—|—1—|-COS <2a—|——> —|—] :g, and
n

1
20033 o = 12[3 cos o, +cos3a,] = 0.

Therefore the equation of motion of P is

mx = Z T,cosAPA, = % [—agx.n +gaxg — azjég]

k(l +E> S

2 2a
. ng
X=——"—
a2+ n)x7
2
and the time of a complete oscillation = 27 M.
ng

It can easily be shown that the sum of the resolved parts of the

tensions perpendicular to OP vanishes if squares of x be neglected.

EX. 3. Two particles, of masses m and m’, are connected by an elas-
tic string of natural length a and modulus of elasticity A; m is on a
smooth table and describes a circle of radius c with uniform angular

velocity; the string passes through a hole in the table at the centre of
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the circle and m' hangs at rest at a distance ¢’ below the table. Show
2n

that, if m be slightly disturbed, the periods — of small oscillations
about this state of steady motion are given by the equation

a’cmm’ p* — {mc + (4c+ 3¢’ —3a)m'}aAp* +3(c+ ' —a)A* =0.

At any time during the motion let x and y be the distances of m and

m’ from the hole and T the tension, so that the equations of motion

are

m(x—x0%) =T = _Ax+z—a (1),

1 d, 5.
o E(Xze) =0 (2),
and m’j}:m’g—T:m'g—l# ...(3).

(2) gives x>0 =const. = h,

, . h* A

so that (1) gives x:F—nTa(x—l—y—a) ..(4).

When x = ¢, y = ¢’ we have equilibrium, so that X =y = 0 then, and
hence from (3) and (4)
) W Alc+c —a)

=m— = .-(5).
mlg =y = 2 5

Hence (4) and (3) give, on putting
x=c+¢& and y = ¢’ +n where £ and 1 are small,

&:h—z (1—£) —i(c—l—c’—a—l—é-H?)

c3 c ma

am

o A [4c+3c’—3a
c

c§+n],
*eam).

am’

andﬁ:—
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To solve these equations, put & =Acos(pt+ f3) and n = Bcos(pt +
B).

On substituting we have

A 4c+3c" -3 A
2 c+3c a]+

Al—p B=0, and

am c am

A A
A—+B [—pz + —,] =0.
am am
: A : :
Equating the two values of B thus obtained, we have, on reduction,

a*cmm’ p* — {me +m/(4c+ 3¢ —3a) YaAp* +3(c+c —a)A* =0.

This equation gives two values, p% and p%, for p?, both values be-
ing positive.

The solution is thus of the form

& =Ajcos(pit+ i) +Azcos(pat + o)

with a similar expression for 7).

Hence the oscillations are compounded of two simple harmonic

: : 27 27
motions whose periods are — and —.

P1 P2

EXAMPLES

1. Two equal centres of repulsive force are at a distance 2a, and the
law of force 1s % + %; find the time of the small oscillation of a
particle on the line joining the centres.

If the centres be attractive, instead of repulsive, find the corre-
sponding time for a small oscillation on a straight line perpendic-

ular to it.
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2. A heavy particle is attached by two equal light extensible strings
to two fixed points in the same horizontal line distant 2a apart; the
length of each string when unstretched was b and the modulus of
elasticity is A. The particle is at rest when the strings are inclined at
an angle « to the vertical, and is then slightly displaced in a vertical
direction; show that the time of a complete small oscillation is

acoty a—bsina
21 : ——.
g a—bsin"o

3. Two heavy particles are fastened to the ends of a weightless rod,
of length 2¢, and oscillate in a vertical plane in a smooth sphere of

radius a; show that the time of the (z)scillation 18 the same as that of

a simple pendulum of length ﬁ

4. A heavy rectangular board is symmetrically suspended in a hori-
zontal position by four light elastic strings attached to the corners
of the board and to a fixed point vertically above its centre. Show
that the period of the small vertical oscillations is

g 4 ~1/2
2 (E + M )
where c is the equilibrium-distance of the board below the fixed
point, a is the length of a semi-diagonal, k = v/a? + c2 and A is the

modulus.

5. A rod of mass m hangs in a horizontal position supported by two
equal vertical elastic strings, each of modulus A and natural length
a. Show that, if the rod receives a small displacement parallel to

itself, the period of a horizontal oscillation is
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1 m

6. A light string has one end attached to a fixed point A, and, after

passing over a smooth peg B at the same height as A and distant
2a from A, carries a mass M at the other end. A ring, of mass M,
can slide on the portion of the string between A and B. Show that
the time of its small oscillation about its position of equilibrium is
47 [aMP(M+P) = g(4P?> — M?)3/ 2} 1/2, assuming that 2P > M.
7. A particle, of mass m, is attached to a fixed point on a smooth hori-
zontal table by a fine elastic string, of natural length a and modulus
of elasticity A, and revolves uniformly on the table, the string be-

ing stretched to a length b; show that the time of a small oscillation

mab
A(4b—3a)
8. Two particles, of masses m; and my, are connected by a string, of

for a small additional extension of the string is 2717\/

length aj 4 a», passing through a smooth ring on a horizontal table,
and the particles are describing circles of radii a; and ap, with
angular velocities @; and @, respectively. Show that mlalwlz =

m2a2w22, and that the small oscillation about this state takes place

mip +my
3(m10)12 + m2(1)22) .
9. A particle, of mass m, on a smooth horizontal table is attached

in the time 27

by a fine string through a hole in the table to a particle of mass
m’ which hangs freely. Find the condition that the particle m may

describe a circle uniformly, and show that, if m be slightly dis-
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10.

1.

12.

13.

14.

turbed in a vertical direction, the period of the resulting oscillation

(m+m')a
3m'g

On a wire in the form of a parabola, whose latus-rectum is 4a and

1S 27 , Where a 1s the radius of the circle.

whose axis 1s vertical and vertex downwards, 1s a bead attached to
: : a
the focus by an elastic string of natural length X whose modulus

is equal to the weight of the bead. Show that the time of a small

. . . a
oscillation is 27, / —.
8

At the corners of a square whose diagonal is 2a, are the centres

of four equal attractive forces equal to any function m.f(x) of the
distance x of the attracted particle m; the particle is placed in one

of the diagonals very near the centre; show that the time of a small

—1/2
oscillation is n\/i{éf(a) —|—f’(a)} / :
Three particles, of equal mass m, are connected by equal elastic
strings and repel one another with a force n times the distance. In
equilibrium each string is double its natural length; show that if
the particles are symmetrically displaced (so that the three strings

always form an equilateral triangle) they will oscillate in period
m

2r ﬁ

Every point of a fine uniform circular ring repels a particle with
a force which varies inversely as the square of the distance; show
that the time of a small oscillation of the particle about its position
of equilibrium at the centre of the ring varies as the radius of the
ring.

A uniform straight rod, of length 2a, moves in a smooth fixed tube

under the attraction of a fixed particle, of mass m, which is at a
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15.

16.

17.

distance ¢ from the tube. Show that the time of a small oscillation
(a®+c?)3

vm?
A uniform straight rod is perpendicular to the plane of a fixed uni-

is 27 ¢

form circular ring and passes through its centre; every particle of
the ring attracts every particle of the rod with a force varying in-
versely as the square of the distance; find the time of a small oscil-
lation about the position of equilibrium, the motion being perpen-
dicular to the plane of the ring.

A particle, of mass M, hangs at the end of a vertical string, of
length /, from a fixed point O, and attached to it is a second string
which passes over a small pulley, in the same horizontal plane as
and distant / from O, and is attached at its other end to a mass
m, which is small compared with M. When m is allowed to drop,

show that the system oscillates about a mean position with a pe-

riod 27 |1+ 8%/[(2 + \/E)} \/g approximately, and find the mean
position.

A heavy particle hangs in equilibrium suspended by an elastic
string whose modulus of elasticity is three times the weight of the
particle. It is then slightly displaced; show that its path is a small
arc of a parabola. If the displacement be in a direction making an
angle cot~ !4 with the horizon, show that the arc is the portion of

a parabola cut off by the latus-rectum.

117. A particle of mass m moves in a straight line under a force

mn?(distance) towards a fixed point in the straight line and under

a small resistance to its motion equal to m.lU(velocity); to find the

motion.
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The equation of motion is
d*x > dx | d*>x  dx
m—y = —mn X—mu—, iLe. —=
[This is clearly the equation of motion if the particle is moving so
that x 1s increasing.
If as in the second figure the particle is moving so that x decreases,

i.e. towards the left, the frictional resistance is towards the right, and

o ds . : :
equals m.uv. But in this case I is negative, so that the value of v is

d d
—d—);; the frictional resistance is thus mu (—d—f> — . The equation

of motion is then

d*x 204 dx
Mm——s = —mn"x+mp | ——
dr? F\7ar )

which again becomes (1). Hence (1) gives the motion for all posi-
tions of P to the right of O, irrespective of the direction in which P
1S moving.

MUV +——
| |

0 X P

0 P

Similarly it can be shown to be the equation of motion for positions

m—U L)

of P to the left of O, whatever be the direction in which P is moving. ]

To solve (1), put x = Le”" and we have
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2 PR N
p°+up+n =0 giving p——aiz =

2 2
_HK \/n2—B ) A 2K
x—e 2t[L€ n 4lt—|—L€ n 4117

2
ie. x=Ae 7 cos [\ In?— %t +B

where A and B are arbitrary constants.

- (2),

If u be small, then Ae s a slowly varying quantity, so that (2)
approximately represents a simple harmonic motion of period
. p?
2T+ \/n? — T
whose amplitude, Ae~ ! ,1s a slowly decreasing quantity. Such a mo-
tion is called a damped oscillation and ¢ measures the damping.

This period depends on the square of u, so that, to the first order
of approximation, this small frictional resistance has no effect on
the period of the motion. Its effect is chiefly seen in the decreasing
amplitude of the motion, which = A (1 — %t) when squares of U
are neglected, and therefore depends on the first power of u.

Such a vibration as the above is called a free vibration. It is the
vibration of a particle which moves under the action of no external
periodic force.

If 1 be not small compared with n, the motion cannot be so simply
represented, but for all values of u, < 2n, the equation (2) gives the
motion.

From (2) we have, on differentiating, that x = 0 when
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tan nz—u—zt—l—B =— i = tan (¢ (say) ..(3),
4 4n? — u?
giving solutions of the form
12
n2—7t+B: o,T+o2x+a,... .
Hence x is zero, that is the velocity vanishes, at the ends of periods

of time differing by 7+ 4/ n? — ‘u—2

The times of oscillation thus still remain constant, though they are
greater than when there is no frictional resistance.

If the successive values of ¢ obtained from (3) are #1,1,,13, ... then

the corresponding values of (2) are
iy e B
Ae 2''cosa, —Ae 22 cosa,Ae” 2B cosq, ...

so that the amplitudes of the oscillations form a decreasing G.P.

. N _ux / 2
whose common ratio = e~ 2(2711) — =7 = nz—%.

If 4 > 2n, the form of the solution changes; for now

2 2
:_‘u_:]: u__nZ7
2 4

and the general solution is

) )
x=e 2 |Le +Le

e u?
—e¢ 2A;cosh I—nz 1+ By

In this case the motion is no longer oscillatory.

If 4 = n, we have by the rules of Differential Equations
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x=Le "+ linéMe_(”ﬂ’)t =Le "+ liI%Me_’”(l — Yt + squares )
Y= Y=

=Lie "+ Mite ™ = e_’”(Ll +M1t>.
EX. The time of oscillation of a particle when there is no frictional

resistance is 15 secs.; if there be a frictional resistance equal to

1
1 X mx velocity, find the consequent alteration in the period and

the factor which gives the ratio of successive maximum amplitudes.

118. The motion of the last article may be represented graphically;
let time ¢ be represented by distances measured along the horizontal
axis and the displacement x of the particle by the vertical ordinates.
Then any displacement such as that of the last article will be repre-

sented as in the figure.

The dotted curve on which all the ends of the maximum ordinates

lie is x = +Ae~ 2" cos o. The times A 1A2,A2A3,A3A,, . .., of succes-
sive periods are equal, whilst the corresponding maximum ordinates
A1B1, AyBy,A3B3, ..., form a decreasing geometrical progression
whose ratio "
__Acos oe 704 _ kg
 Acos oe—2-0M = ’
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where 7 1s the time of an oscillation.

If we have a particle moving with a damped vibration of this char-
acter, and we make it automatically draw its own displacement curve
as in the above figure, we can from the curve determine the forces
acting on it.

For measuring the successive distances C1Cr,C>C3, ..., etc, and

taking their mean, we have the periodic time T which we found in
2 47’ 2

the last article to be 27 <+ {/n? — %, so that = 2B

Again, measuring the maximum ordinates A B,A;B,,A3B3, ... find-

ArB; A3Bj3

A1By ,AQBZ’

the value of the quantity e=77, 5o that —%’L’ = log, A.

ing the values of ..., and taking their mean, A, we have

We thus have the values of n? and u, giving the restorative force

and the frictional resistance of the motion.

119. A point is moving in a straight line with an acceleration Ux
towards a fixed centre in the straight line and with an additional

acceleration Lcos pt, to find the motion.

The equation of motion is d_tx = —ux+ Lcospt.
The solution of this is x = Acos (\/ﬁt +B) +LD2 n cos pt
1
= Acos (\/ﬁtJrB) + L 5 COS pt ..(1)

If the particle starts from rest at a distance a at zero time, we have

L
B=0and A =a— 5
u—p
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L L
Lox=|a— cos /Ut + cos pt ..(2).
[ M- p2] VL
The motion of the point is thus compounded of two simple harmonic
2 2
motions whose periods are and

VE p
From the right-hand side of (2) it follows that, if p be nearly equal

to \/_ , the coefficient

the effect of the disturbing acceleration L cos pt becomes very impor-

5 becomes very great; in other words,

tant. It follows that the ultimate effect of a periodic disturbing force
depends not only on its magnitude L, but also on its period, and that,
if the period be nearly that of the free motion, its effect may be very
large even though its absolute magnitude L be comparatively small.

If p = /U, the terms in (2) become infinite. In this case the solu-
tion no longer holds, and the second term in (1)

1 1
—LD2 cos [\/ut] = L%}E%DZ ucos(\/ﬁ+}/)t

= Llim COS + v\t
bV

=—L

something infinite —#sin+/uz|.
5/ Vi

Hence, by the ordinary theory of Differential Equations, the solution

18

x =Ajcos|\/ut+Bi] + 2\/_t sin/Ht.

If, as before, x = a and x = 0 when ¢ = 0, this gives

L i
tsin+/ut,
2/ VH

X =acos/ut+
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( 5_ a\/_>sm\/_t—|— —tcos+/lt.

It follows that the amplitude of the motion, and also the velocity,

and hence x=

become very great as ¢ gets large.

120. If, instead of a linear motion of the character of the previous

article, we have an angular motion, as in the case of a simple pen-
. .. d*6

dulum, the equation of motion is e —%9 + Lcos pt, and the

solution is similar to that of the last article.

In this case, if L be large compared with % or if p be very nearly

equal to %, the free time of vibration, 6 is no longer small through-

out the motion and the equation of motion must be replaced by the
more accurate equation cfg = —% sin 6 4 Lcos pt.

121. As an example of the accumulative effect of a periodic force
whose period coincides with the free period of the system, consider
the case of a person in a swing to whom a small impulse is applied
when he is at the highest point of his swing. This impulse is of the
nature of a periodic force whose period is just equal to that of the
swing and the effect of such an impulse is to make the swing to
move through a continually increasing angle.

If however the period of the impulse is not the same as that of the
swing, its effect is sometimes to help, and sometimes to oppose, the
motion.

If its period is very nearly, but not quite, that of the swing its ef-
fect is for many successive applications to increase the motion, and

then for many further applications to decrease the motion. In this
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case a great amplitude of motion is at first produced, which is then

gradually destroyed, and then produced again, and so on.

122. A particle, of mass m, is moving in a straight line under a force
mn? (distance) towards a fixed point in the straight line, and under
a frictional resistance equal to m (velocity) and a periodic force
mlL cos pt; to find the motion.

The equation of motion is

d*x 5 dx , d*x dx
= —n"x— ,LLE + Lcospt, 1.e., —5 +/,LE +n"x = Lcos pt.

dr? dr?
.. 0 ,Ll2
The complementary function is Ae™ 2’ cos | {/n% — It +B| ...(1),
assuming U < 2n, and the particular integral
1
— T “DLcospt
B L(n2 — p?)cos pt + W psin pt
- (n2 _pz)z ‘|‘.U2P2
Lsineg
= cos(pt —€) ..(2),
Hp
where tan€ = %
n-—p

The motion is thus compounded of two oscillations; the first is
called the free vibration and the second the forced vibration.

Tt
Farticular case. Let the period — of the disturbing force be equal
p

2r
to —, the free period.
n

The solution is then, for the forced vibration, x = .U_ sinnt.
n
If, as is usually the case, u is also small, this gives a vibration

whose maximum amplitude is very large. Hence we see that a small
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periodic force may, if its period is nearly equal to that of the free
motion of the body, produce effects out of all proportion to its mag-
nitude.

Hence we see why there may be danger to bridges from the ac-
cumulative effect of soldiers marching over them in step, why ships
roll so heavily when the waves are of the proper period, and why
a railway-carriage may oscillate considerably in a vertical direction
when it is travelling at such a rate that the time it takes to go the
length of a rail is equal to a period of vibration of the springs on
which it rests.

Many other phenomena, of a more complicated character, are ex-

plainable on similar principles to those of the above simple case.

123. There is a very important difference between the free vibration
given by (1) and the forced vibration given by (2).

Suppose for instance that the particle was initially at rest at a given
finite distance from the origin. The arbitrary constants A and B are
then easily determined and are found to be finite. The factor e #//2
in (1), which gradually diminishes as time goes on, causes the ex-
pression (1) to continually decrease and ultimately to vanish. Hence
the free vibration gradually dies out.

The forced vibration (2) has no such diminishing factor but is a
continually repeating periodic function. Hence finally it is the only

motion of any importance.

124. Small oscillations of a simple pendulum under gravity, where

the resistance = [ (velocity)? and W is small.

The equation of motionis 1§ = —g6 + ui* o> (1),
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[If the pendulum start from rest at an inclination o to the vertical,
the same equation is found to hold until it comes to rest on the other
side of the vertical.]

For a first approximation, neglect the small term p/% 0%, and we

have 6 = Acos [\/gt—i—B] )

For a second approximation, put this value of 6 in the small terms
on the right-hand side of (1), and it becomes

. A2
6+§6:ul.§Azsin2 §t+B _2HE 1 —cos|(?2 gt—|—ZB .
[ [ [ 2 [
g APul  A’ul g
. B =Acos 7t+B + 5 + ¢ o8 2 7t—i—2B ..(2),

APul  A%ul
where o = AcosB + 2“ + 6‘u cos2B, and
A2
0= —AsinB— s sin2B.

2
S.B=0,and A = — gocz wl, squares of U being neglected.
Hence (2) gives

2, g a’ul  oul g
pr— _— —_ 2 J—
0 (oc 305 ul) cos ( lt) + > + 6 CoS lt

03),

and hence

. 2 2ul
0 =— % (a— gaz,ul> sin ( %t) — a;t + \/gsin (2 %t)
. . /8 : [
.. @ 1s zero when sin 7t =0, i.e. whent=m,/—.
8
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The time of a swing from rest to rest is therefore unaltered by
the resistance, provided the square of u be neglected. Again, when

[
[=Ty/—.
8

0= <a——oc ul) ¢ ul+a6ul (a——a ,ul)

3 2 3

4
Hence the amplitude of the swing is diminished by gocz ul.
Let the pendulum be passing through the lowest point of its path

l /1
at time 4 [ — (5 + T) , where T 1s small.
8

Then (3) gives
2 ul ol
0= ((x—a ,ul) (—sinT) + OCZIJ — Oc6,u cos 2T,
2 2 2
o ul o ul  acul
_ _ — d
T (OC (04 ‘UZ> > 6 3 an
oc aul l
.. T
3
[ ol
Hence the time of swinging to the lowest point = \/j (g + T“) ,
8

and of swinging up to rest again

B [ [ (m opl\ |l (7 oaul
ﬂ\/; \ﬁ(ZJr 3)_ g<2 3)'

EXAMPLES

1. Investigate the rectilinear motion given by the equation

4 2

d*x d°x
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and show that it is compounded of two harmonic oscillations if the
equation Ay? + By + C = 0 has real negative roots.
2. A particle is executing simple harmonic oscillations of amplitude
3
Ux

: : : VX :
a, under an attraction —. If a small disturbing force —- be intro-
a

a
duced (the amplitude being unchanged) show that the period is, to

. : . 3v
a first approximation, decreased in the ratio 1 — —: 1.

3. Two heavy particles, of masses m and m’, are ﬁféﬁl to two points,
A and B, of an elastic string OAB. The end is attached to a fixed
point and the system hangs freely. A small vertical disturbance
being given to it, find the times of the resultant oscillations.

4. A particle hangs at rest at the end of an elastic string whose un-

stretched length is a. In the position of equilibrium the length of

the string is b, and — 1s the time of an oscillation about this po-
n

sition. At time zero, when the particle is in equilibrium, the point

of suspension begins to move so that its downward displacement

at time ¢ is sin pt. Show that the length of the string at time 7 is

cnp . :
b— rpz sinnt + R sin pt.
If p = n, show that the length of the string at time ¢ is

b Cinnt nct ,
— —sinnt — ——cosnt.
2 2

5. A helical spring supports a weight of 20 kg.f. attached to its lower
end; the natural length of the spring is 30 cm and the load causes
it to extend to a length of 4 cm. The upper end of the spring is
then given a vertical simple harmonic motion, the full extent of the
displacement being 5 cm and 100 complete vibrations occurring in
one minute. Neglecting air resistance and the inertia of the spring,
investigate the motion of the suspended mass after the motion has
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become steady, and show that the amplitude of the motion set up
is about 9 cm.

6. If a pendulum oscillates in a medium the resistance of which varies
as the velocity, show that the oscillations are isochronous.

7. The time of a complete oscillation of pendulum making small os-
cillations in vacuo is 2 seconds; if the angular retardation due to the
air1s .04 x (angular velocity of the pendulum and the initial ampli-
tude is 1, find the inclination of the pendulum to the vertical at any
subsequent time, and show that the amplitude will in 10 complete
oscillation be reduced to 40" approximately. [log;ye = 0.4343.]

8. The point of suspension of a simple pendulum of length / has a
horizontal motion given by x = acosmt. Find the effect on the
motion of the particle.

Consider in particular the motion when m?

is equal, or nearly
equal, to % In the latter case if the pendulum be passing through
its vertical position with angular velocity w at zero time, show

that, so long as it is small, the inclination to the vertical at time ¢

[ ag ) g
=/ |1 —t} =t.
1+ s 5

[If O’ be the position of the point of suspension at time ¢ its accel-
eration is x. Hence the accelerations of P, the bob of the pendulum,
are [ @ perpendicular to O'P, [ §* along PO, and X parallel to OO’
Hence resolving perpendicular to O'P,

| 9+xcos® = —gsinh = —gb,
L. g, am? . . .
i.e. 9 = —79 — TCOS mt, since 0 1s small. Now solve as in Art.
119.]
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9.

10.

I1.

12.

The point of support of a simple pendulum, of weight w and length
[, 1s attached to a massless spring which moves backwards and

forwards in a horizontal line; show that the time of vibration =

[
27y | — (1 + %) , where W is the weight required to stretch the

8
spring a distance /.

Two simple pendulums, each of length a, are hung from two points

in the same horizontal plane at a distance b apart; the bob of each
2

where A is small

is of mass m and the mutual attraction is — 55
(dist)

compared with g; show that, if the pendulums be started so that

they are always moving in opposite directions, the time of oscilla-

22

tion of each is 27 \/E (1 + b3ma) nearly, about a mean position
8 8

. Am :

inclined at ) radians nearly to the vertical.

A pendulum is suspended in a ship so that it can swing in a plane

at right angles to the length of the ship, its excursions being read
off on a scale fixed to the ship. The free period of oscillation of the
pendulum is one second and its point of suspension is 10 metres
above the centre of gravity of the ship. Show that when the ship
is rolling through a small angle on each side of the vertical with a
period of 8 secs., the apparent angular movement of the pendulum
will be approximately 64%. greater than that of the ship.

The point of suspension of a simple pendulum of length [ moves
in a horizontal circle of radius a with constant angular velocity ;
when the motion has become steady, show that the inclination o to
the vertical of the thread of the pendulum is given by the equation
w*(a+1 sina) — gtana = 0.
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13. A pendulum consists of a light elastic string with a particle at one
end and fastened at the other. In the position of equilibrium the
string is stretched to 4 of its natural length [. If the particle is
slightly displaced from the position of equilibrium and is then let

go, trace its subsequent path and find the times of its component

oscillations.

ANSWERS WITH HINTS

Art. 116 EXAMPLES

3
1 7=
u
/
9. (m—l—m’)ié:—3mgx
a
. YMm
15. Mx= (a2—|—b2)3/2x

Art. 117 Ex. ?
32

Art. 124 EXAMPLES

2 2
3. i and 7

P1 j20)
7. 40'13" 4]
13. A =3myg. For a small oscillation, in which r = — + R where R is

. 4] : A/3+R 3
small,wehaveR—(g%—R) Gzzgcose— /l+ :—TgR,and

. . 4] .
——(r*@) = —gsin6, ie., 2RO+ (? —l—R) 0 = —g0. Neglecting

rdt

. . 3
squares of small quantities, we have R = —TgR and @ = —4—‘?9, etc.
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