
Elements of Vector Calculus 
and Static Fields

Introduction
Vector analysis is a mathematical tool with which electro-
magnetic concepts are most conveniently expressed and 
best comprehended.

A quantity can either be scalar or vector. 
Vector: It is a quantity that is characterized by both mag-

nitude and direction such as electric and magnetic field. For 
example, force, velocity, electric field intensity, and electric 
flux density.

Scalar: It is a quantity that is characterized only by mag-
nitude. For example, time, mass, temperature, entropy, elec-
tric potential, and population of a country. 

Field: It is a function that specifies a particular quan-
tity everywhere in the region. If the quantity is scalar (or 
vector), the field is said to be a scalar (or vector) field. For 
example, scalar fields and vector fields.
Scalar fields:
 1. Temperature distribution in a building. 
 2. Electric potential in a region.
Vector fields:
Gravitational force on a body in space. 
Unit vector: A vector P has both magnitude and direc-
tion. Magnitude of P is a scalar written as |P|. Unit vector 
ap along P is defined as a vector whose magnitude is unity 
(i.e., 1) and its direction is along p 

i.e., ap = 
p

p

a
p

p
p = = 1

Thus, p can be written as 

p  = |P|ap

|P| = magnitude of vector p

ap – unit vector along p

A vector p  in Cartesian coordinated system can be rep-
resented as (px, py, pz) 

(or)

Pxax + Pyay + Pz azPx, Py, Pz are components of p  in the 
x, y, z directions, respectively. 

ax, ay, and az, are unit vectors along x, y, and z directions, 
respectively. 

|p| = p p px y z
2 2 2+ +

ap = 
p

p

p a p a p a

p p p

x x y y z z

x y z

=
+ +

+ +2 2 2
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Figure 1 Unit vectors ax, ay and az are shown.
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Figure 2 Components of p along the co-ordinate axis.

Unit vectors ax, ay, and az are shown in Figure 1 and the com-
ponents of p  along the coordinates axis are shown in Figure 2.

Vector Algebra
 1. Addition and subtraction:

Two vectors A  and B  can be added or subtracted 

together to give another vector C ,

i.e., C  = A B±
The abovementioned two operations on vectors are 
carried out component by components 

C A B a A B a A B ax x x y y y z zz
= ± + ± + ±( ) ( ) ( )

Graphically, vector addition and subtraction are 
obtained by either the parallelogram rule or head-to-
tail rule as follows:

BAC −=

BAC +=
A

A BA +CA −

C

B

B

−B

BAC −=

BAC +=
A

A BA +CA −

C

B

B

−B

Law Addition Multiplication

Commutative A B B A+ = + K A AK=

Associative ( ) ( )A B C A B C+ + = + +  ( ) ( )K A K A=� �

Distributive ( )k A B k A kB+ = +

where k and l are scalars. 
The three basic laws of algebra obeyed by any given vec-

tors A, B, and C.
 2. Vector multiplication:

When two vectors are multiplied, the resultant 
is either a scalar or a vector depending on their  
multiplication.

  1. Scalar (or dot) product: A.B
  2. Vector (or cross) product: A × B

 3. Dot product:
The dot product of two vectors A and B is defined as 
the product of magnitudes of two given vectors A and 
B and the cosine of the angle between them.

\ A B A B. cos= qAB

A

B

θAB

qAB – angle between A  and B  

if A = Ax ax + Ay ay + Az az

B = Bx ax + By ay + Bz az

Two vectors are said to be orthogonal with each other, if 
their scalar (or dot) product is zero.

Scalar (or dot) product obeys the following:

 1. Commutative: 

A B B A. .=
 2. Distribution: 

A B C A B AC. . .+( ) = +

A A A. = 2
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 3. ax . ax = ay . ay = az .az = 1
ax .ay = ay . az = az..ax = 0

Depending on the angle between two vectors A and B

 1. if A  and B  are parallel

A B A B. cos= qAB

⇒ qAB = 0

Therefore, A B A B. | || |=

A

B

 2. If A  and B  are perpendicular,

q p
AB AB= ∴2 cos  = 0

A B A B. cos= =qAB 0

A . B  = 0

A

B

 3. if A  and B  are opposite in direction:
q = p, cos q = -1

A B A B. cos= qAB = − A B

A

B

Geometrical Interpretation of Dot 
Product
The dot product of two vectors 

A  and aB given the length of projection of A along the 

direction of B .
where aB is the unit vector along B .

aB

A

θAB

B

A a AB. .cos= qAB

Vector Product or Cross Product
The cross product of two vectors A  and B  is written as A B× .  
It is a vector quantity whose magnitude is equal to the 
product of magnitude of two vectors and sine of the angle 
between them, 

A B A B× = sinqAB

The direction of A × B is perpendicular to the plane 
containing A Band  and is in the direction of advance of 
a right-handed screw as A  is turned into B .

B

A
θAB

Direction of A B×  can be determined using right-hand 
thumb rule.

Right-hand Thumb Rule

A B A B a× =
∧

sin .qAB n

The direction of an is taken as the direction of the right 
thumb when the fingers of right hand rotate from A  to B .

θAB

A × B

B

A

an

If A =  Ax ax + Ay ay + Az az

B  = Bx ax + By ay + Bz az

A B

a a a

A A A

B B B

x y z

x y z

x y z

× =

= (Ay Bz - Az By) ax + (Az Bx – AxBz) ay 

+ (Ax By – Ay Bx) az

Properties
 1. It is anti-commutative 

A B B A× ≠ ×

A B B A× = − ×
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 2. It is not associative 

A B C A B C× ×( ) ≠ ×( ) ×
 3. It is distributive:

A B C A B C× ×( ) = ×( ) ×
 4. A A× = 0

and 

ax × ay = az

ay × az = ax

az × ax = ay

right-handed coordinate system is in which right-hand 
thumb rule or right-hand screw rule is satisfied.

ax

ay

az

ay az

ax

Right-hand system: clockwise leads to positive results.

ax

ay

az

−ay −az

−ax

Anticlockwise leads to negative results.

ay × ax = -az

az × ay = – ax

ax × az = – ay

Geometrical Interpretation of Cross 
Product
The magnitude of vector product of two vectors is the area 
of the parallelepiped formed by A  and B .

A

BA ×

B

Coordinate System
The spatial variations of fields should be defined uniquely 
in space in a suitable manner. This needs the appropriate 
coordinate system. 

Orthogonal system is one in which the coordinates are 
mutually perpendicular. Non-orthogonal systems are hard 
do work but of little practical use.

The best three orthogonal coordinate systems are 

 1. Cartesian coordinate system
 2. Cylindrical coordinate system
 3. Spherical coordinate system 

These coordinate systems are orthogonal, orthonormal, 
and right-handed systems.

 1. Orthogonality means dot product of any two different 
unit vectors of same system is zero and dot product of 
any two same unit vectors is one.

 2. Orthonormality means cross products of any two 
different unit vectors is the third unit vector.

Right-handed system follows for orthonormality.
 (A) X Y Z

ax × ay = az

ay × az = ax

az × ax = ay

 (B) ρ φ Z

ar × af = az

af × az = ar

az × ar = af

 (C) r θ φ

ar × aq = af

aq × af = ar

af × ar = aq

Cartesian Coordinate System
Range of coordinate variables:

- ∞ < x < ∞ 

- ∞ < y < ∞ 

- ∞ < z < ∞ 

Vector A  can be written as 

A =  Ax ax + Ay ay + Az az

ax, ay, and az are unit vectors along x, y, and z directions.
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az
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ay
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Cylindrical Coordinate System
 1. A point P in cylindrical system is represented as (r, f, z)

Range of values

0 ≤ r < ∞ 

0 ≤ f < 2p 

- ∞ < z < ∞ 

where r is the radius of cylinder; f is the Azimuthal 
angle measured with respect to x-axis in xy plane; and 
z is same as in Cartesian coordinate system.

Vector A  in cylindrical coordinate system 

A =  Ar ar + Af af + Az az

A A A Az= + +r j
2 2 2

where ar is the unit vector along the direction of 
increasing ‘r’; af is the unit vector along the direction 
of increasing ‘f’; and az is the unit vector along 
positive z-direction.

z

z

x

y

aφ
aρP

az

ρ

φ
aφ

aρ

Relationships between Cartesian and cylindrical 
systems

x = r cos f
y = r sin f
z = z

and r = x y2 2+ , 0 ≤ r < ∞
f = tan-1 y/x, 0 ≤ f < 2p
z = z, 0 ≤ z < ∞

Dot products of ax, ay, and az with ar, af, and az are given by

ax.ar = cos f
ax.af = –sin f

ay.ar = sin f
ay.af = cos f
az.ar = 0

az.af = 0

z

z

x

y

ρ

z

Y = ρsinφ

x = ρcos φ
φ ρx

y

 Unit Vector Transformation

a

a

a

a

a

az

x

y

z

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
cos sin

sin cos

f f
f f

r

f

0

0

0 0 1
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

a

a

a

a

a

a

r

f

f f
f f

z

x

y

z

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= −
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
cos sin

sin cos

0

0

0 0 1
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

Vector Transformation

A

A

A

A

A

A

x

y

z z

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
cos sin

sin cos

f f
f f

r

f

0

0

0 0 1
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

A

A

A

A

A

A

r

f

f f
f f

z

x

y

z

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= −
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
cos sin

sin cos

0

0

0 0 1
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

The cylindrical coordinate system is convenient for problem 
having cylindrical symmetry. For example, line charges and 
current wires.
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Infinite small strip of cylinder is shown in figure. 
Differential length 

aφ

aP

dz

φ

ρdφ

y

dρ

az

z

x

ρ

dℓ = (dr)ar + r (df)af + (dz)az

Differential normal area:

dl dp ap d a dz az= + +( ) r f f

ds = (rdf)(dz)ar + (dr)(dz)af + (dr)(rdf) az

Differential volume: 

dv = (dr) (rdf)(dz)

dv = r(dr) (df)(dz)

Spherical Coordinate System
It is the most appropriate with problems having a degree of 
spherical symmetry. A point is obtained by the intersection 
of these surfaces, namely

a spherical surface, r = k (constant), meter.
a cone, q = a (constant), radian, and 
a plane, f = b (constant), radian

All these three surfaces are mutually perpendicular to 
each other.

These are said to be orthogonal

z

x

y

r

φ

θ

Figure 3 Spherical co-ordinates.

A point P can be represented as (r, q, f), where
r is the radius of sphere or length of line joining origin and P;  

q is the angle made by the position vector OP  with respect 
to positive z-axis;

and f is same as in cylindrical coordinate system.

0 ≤ r < ∞ 

0 ≤ q ≤ p 

-0 ≤ f ≤ 2p

A vector A  can be written as 

Arar + Aqaq + Afaf

ar, aq, and af are  unit vectors along r, q*, and f directions, 
respectively, and mutually orthogonal to each other and 
form R.H.S 

A A A A= + +r
2 2 2

q ϕ

ar × aq = af
aq × af = ar

af × ar = aq

ar

aθ
aφ

aθ

aφ

ar

ar.ar = 1 = aq.aq = af.af

ar.aq = aq.af = af.ar = 0

Relationship between space variables (x, y, z), (r, q, f) and 
(r, f, z)

The variables of Cartesian and spherical coordinates are 
related by

x = r sin q cos f, –∞ < x < ∞
y = r sin q sin f,  –∞ < y < ∞
z = r cos q, –∞ < z < ∞

and r = x y z2 2 2+ + , 0 ≤ r ≤ ∞

q = cos –1 
z

x y z2 2 2+ +
, 0 ≤ q ≤ p

f = tan –1 
y

x
, 0 ≤ f ≤ 2p

The relationship between the variables of cylindrical and 
spherical coordinates are given by

r = r sin q
f = f
z = r cos q

r = r2 2+ z

q = tan –1 
r
z

f = f
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z

Z = rcosq

x

y
r

r = rsinq

y = (rsinf)

f

q

P(x, y, z) = P(r, q, f)

= P(r, f, z)

x = rcosf

r

Relationship between unit victors and vectors of Cartesian 
and spherical coordinate system:

a

a

a

x

y

z

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

−sin cos cos cos sin

sin sin cos sin cos

q f q f f
q f q f f

ccos sinq q
q

f−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥0

a

a

a

r

a

a

a

r

q

f

q f q f q
q f q f q

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= −

sin cos sin sin cos

cos cos cos sin sin

−−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥sin cosf f 0

a

a

a

x

y

z

A

A

A

r

q

f

q f q f q
q f q f q

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= −

sin cos sin sin cos

cos cos cos sin sin

−−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥sin cosf f 0

A

A

A

x

y

z

A

A

A

x

y

z

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

−sin cos cos cos sin

sin sin cos sin cos

q f q f f
q f q f f

ccos sinq q
q

f−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥0

A

A

A

r

Cylindrical and spherical 

a

a

a

a

a

a

rr

q

f

f
q q

q qz

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

+ −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

sin cos

cos sin

0

0 0 1

0

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a

a

a

a

a

a

r

z

q

rq q
q q

ϕ

ϕ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= −
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
sin cos

cos sin

0

0

0 1 0
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

A

A

A

A

A

A

r

q

q q

q q
ϕ

ϕz

r⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

+ −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

sin cos

cos sin

0

0 0 1

0

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

A

A

A

A

A

A

r

z

q

rq q
q q

ϕ

ϕ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= −
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
sin cos

cos sin

0

0

0 1 0
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

z

r

−f (negative f )

q

az

ar

ap
q

aθ

−aθ

Differential displacement is

dl = (dr)ar + (rdq )aq + (rsinq df)af

ds = (r2 sinq dq df)ar+ (r sinq drdf)aq+ 

(r drdq )af

dv = r2 sinq drdqdf

Line, Surface and Volume 
Integrals
Line Integral

Ad
L

. �∫  is the integral of tangential component of A  along 

curve L

Ad A d
L a

b

. cos� �∫ ∫= q

b

c

a
a

dl f θ A

If the path of integration is closed, then it becomes a closed 

integral A dl
L

.�∫
Surface Integral or Flux

y = ∫ Ads
s

.�

ds ds an=
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ds

θ
s

Open surface 

An unit vector normal to surface s.
For a closed surface, surface integral becomes 

A ds
s

.�∫ . It is the net outward flux of A  from s.

1. closed path defines an open surface. 
2.  closed surface integral is same as volume integral of 

rv over volume V.

Closed  surface 

NOTE

Del operator:
Del operator written as ∇ and also called as vector deferen-
tial operator or gradient operator. When it operates on sca-
lar, it gives a vector.
Cartesian:

∇ =
∂
∂

+
∂
∂

+
∂
∂x

a
y

a
z

ax y z

Cylindrical:

∇ =
∂
∂

+
∂
∂

+
∂
∂

a a a
z

r r r fϕ
1

. .z

Spherical:

∇ =
∂
∂

+
∂
∂

+
∂
∂

a
r

a
r

a
r

r q q q f
1 1

ϕ
sin

∇ is useful in defining 
 1. Gradient of a scalar ∇V.
 2. Divergence of a vector ∇. A .
 3. Curl of a vector ∇ × A .
 4. Laplacian of a scalar ∇2 V .

Gradient of a Scalar (∇V)
The gradient of a scalar field V is a vector that has its magni-
tude and direction as those of the maximum rate of change 
of ‘V’.

If A = ∇V, V is said to be the scalar potential of A .

Cartesian:

∇ =
∂
∂

+
∂
∂

+
∂
∂

V
V

x
a

V

y
a

V

y
ax y z.

Cylindrical:

∇ =
∂
∂

+
∂
∂

+
∂
∂

V
V

a
V

a
V

Z
a

r r fr. . .
1

ϕ z

Spherical:

∇ =
∂
∂

+
∂
∂

+
∂
∂

V
V

r
a

r

V
a

r

V
ar

1 1

q q fq
sin

ϕ

Divergence of a Vector (∇. Ā)
Divergence of a vector A  is the net outward flow of flux per 
unit volume over a closed incremental surface.

∇. A  = 
∂
∂

+
∂
∂

+
∂
∂

⎛

⎝⎜
⎞

⎠⎟x
a a

z
ax

y
y z (Ax ax + Ay ay + Az az)

∇. A  = 
∂
∂

+
∂
∂

+
∂
∂

A

x

A

y

A

z
x y z

∇. A  = 
1 1

r r
r r

r f
∂
∂

+
∂
∂

+
∂
∂

( )A
A A

z
ϕ z

∇ =
∂
∂

+
∂
∂

. ( )
sin

( sin )A
r r

r A
r

A
1 1
2

2
r q q

qq  +
∂
∂

1

r

A

sinq f
ϕ

Physically, the divergence of a vector field at a given point 
is the measure of how much field emanates from that point. 

Positive at source point 

Negative at sink point

If ∇. A  = 0, then A  is said to be solenoidal.
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Curl of a Vector
Curl of a vector field is an axial vector, which provides the 
maximum value of the circulation of the field per unit area and 
indicates the direction along which the maximum value occurs. 

(or)

The curl of a vector field A  at a point P is the measure of 
the circulation of how much field curl around ‘p’.

curl is zero

P

Direction of ∇×P is out of page.
Properties:
 1. Curl of a vector is another vector.
 2. ∇ × (A + B) = ∇ × A + ∇ × B
 3. ∇ × (A × B) = A (∇.B) – B(∇.A) + (B.∇) A – (A.∇)B
 4. ∇. (∇ × A) = 0
 5. ∇ × ∇V = 0
If the curl of a vector is zero, then the vector is said to be 
irrotational or conservative field.

∇ × A = 0.
Cartesian:

∇× =
∂
∂

∂
∂

∂
∂

A

a a a

x y z

A A A

x y z

x y z
Cylindrical:

∇× =
∂
∂

∂
∂

∂
∂

A

a a a

x y z

A A A

z

z

1

r
r r

r ϕ

ϕ.
Spherical:

∇× =
∂
∂

∂
∂

∂
∂

A
r

a r a r a

r

A r A r Ar

1
2 sin

. sin

. sin

q

q

q
q

q

q

r ϕ

ϕ
ϕ

Laplacian Operator
The Laplacian of a scalar field V, written as ∇2 V is the 
divergence of gradient of V. 

∇2 V = ∇.(∇V)

if ∇2 V = 0, V is called harmonic function.

Gauss–Ostrogradsky Theorem
It states that the total outward flux of a vector field A  
through the closed surface S is the same as the volume inte-
gral of the divergence of A .

A ds A dv
v

. ( . )= ∇∫∫ ��

This is also called divergence theorem.

Closed 
surfaces S

Volume 

Solved Examples

Example 1

Consider a closed surface ‘S’ surrounding volume V. If r  
is the position vector of a point inside‘s’ with 

�
n  is the unit 

normal vector on ‘s’, the value of integral 3 .r nds =∫∫�
(A) 3 V (B) V (C) 9 V (D) V

3

Solution
According to the divergence theorem 

 3 . 3( . )
s v

r rds r dv= ∇∫∫ ∫∫∫�

= 3(3) dv
v
∫∫∫  = 9V (∇. r  = 3)

Stokes Theorem
The line integral of tangential component of vector A  taken 
around a simple closed curve C is equal to the surface inte-
gral of the normal integral of the curl of A  taken over any 
surface S having C as its boundary.

A d A ds
c s

. ( ).��∫ ∫= ∇×

dl

Closed 
curve C

ds

Surface S H

Electromagnetic Fields
In static electromagnetic fields, electric and magnetic fields 
are independent of each other. While in dynamic electro-
magnetic fields, both are interdependent and the latter one 
is of more practical use. Therefore, familiarity with the 
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static fields provides good background for understanding 
dynamic EM fields.

 1. A stationary charge produces electrostatic field. 
 2. A moving charge or steady current produces magnetic 

fields 
 3. Time-varying currents produce electromagnetic 

fields.

Electrostatic Fields
Coulomb’s Law
This law states that the force of attraction or repulsion 
between two point charges (Q1) and (Q2) is 

 1. Along the line joining the charges. 
 2. Directly proportional to the product of the charges. 
 3. Inversely proportional to the square of the distance 

between them.

Mathematically, 

F
KQ Q

r
= 1 2

2

K = constant = 
1

4
9 10

0

9

p ∈
≈ × m F/

Q1 and Q2 in Coulombs (C), where r is the distance in  
meters.

∈0 – 8.85 × 10-12 ≈ 
10

36

9−

p
F m/

Q1

r12

Q2

r2

r1

origin

 1. Force due to Q1 on Q2: F12

F
Q Q

R
ar12

0

1 2
2

1

4 12
=

∈p
.

|r12| = R

ar12
 is the unit vector along line joining Q1 and Q2

ar
12

 = 
r r

R
2 1−

F
Q Q

R
r r12

0

1 2
3 2 1

1

4
=

∈
−

p
. ( )

 2. Like charges repel each other and unlike charge 
attract each other.

− −

−

+ +

+

 3. Force due to charges Q1, Q2 ….., Qn on charge ‘q’
r1, r2, r3…..rn are position vectors of Q1, Q2, Q3….., 
Qn, respectively, r- position vector of q and resultant 
force on q is 

Fq
q Qi r ri

r rii

n

=
∈

−

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

∑4 0
3

1p
( )

Electric Field Intensity
Force acting on a unit positive charge is called electric field 
intensity.

E Lim
F

QQ
12

1

12

22

=
→

E = 
F

Q
orvector coulomb Volt meter/ /( )

where E is in the direction of force F.
Electric field due to a charge Q at a distance is R 

E
Q

R
aR=

∈4 0
2p

- Electric field due to n charges is 

E
R Ri

R R
Q

ii

n
i=

∈
−
−

⎡

⎣
⎢

⎤

⎦
⎥

=
∑1

4 0
3

1p
( )

( )

Example 2
Two point charges 1 nC and -2 nC are placed along the 
x-axis at (0, 0, 0) and (2, 0, 0), respectively.
The force exerted by 1 nc on -2 nC is
(A) 4.5 × 109 N (B) −4.5 × 109 N
(C) 9 × 109 N (D) 9 × 109 N

Solution
y

1nC

z

x

− 2nC
x

(2, 0, 0)
(1, 0, 0)

(0, 0, 0)

F12– Force exerted by 1 on 2

F
Q Q

RO
12

1 2
24

=
∈p
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a12 is the unit vector =  ax

F ax12

9 9

0
2

2 10 10

4 2
=
− × ×

∈ ×
×

− −

p

=
− × × ×

×
− −2 10 9 10

4

18 9

ax

F12 = -4.5 × 109 ax Newton

Force is along negative X-axis direction. This means that the 
charge is pulling the other towards it, that is, unlike charges 
attract each other.

Example 3
In the previous problem, the electric field at Q2(-2 nc) is 

(A) -4.5 × 109 ax N m/  (B) -2.25× 10 9− ax N m/

(C) 2.25 ax N m/  (D) 4.5 ax N m/

Solution
Electric field is force acting on a unit positive charge

is E = F

Q
ax12

2

9

9

4 5 10

2 10
=
− ×
− ×

−

−
.

N m/  = 2.25 N m/ ax

Electric field is along the positive x-direction, which is away 
from the 1 nc charge. 
It depends on permittivity of the medium 

∈ = ∈o ∈r

where ∈r is the  electric relative permittivity that    originates 
at positive charge and terminates at negative charges.

q+

q−

Fields due to continuous charge distributions:

Line charge Surface charge Volume charge

L
d= ∫ ��r

+ + +
+ ρs +

+ + +
+ +
+ + +

+ +
+
+ρv

dQ = rldl dQ = rsds dQ = rvdv

L

Q dl= ∫ �r s s
s

Q d= ∫ r v v
v

Q d= ∫ r

E = 2
04 R
dl

a
R∈∫ �r

p 2
04

s
R

ds
E a

R
=

∈∫ r
p 2

04
v

R
dv

E a
R

=
∈∫ r

p

Electric fields due to a line charge of finite length placed 
along z-axis.

E a aL
z=

∈
− − + −

r
p r

a a r a a
4 0

2 1 2 1[ (sin sin ) (cos cos ) ]

Electric fields due to infinite line charge placed along  
z-axis 

E aL=
∈
r

p r
r

2 0

B

x

y

dE

α1

α2

A

Z

α

ρ

Example 4
If the line x = 0 = y carries a charge 2p nc/m, the electric 
field intensity at (0, 1, 0) is

(A) 
10 9−

∈O

ay N m/  (B) 
109

∈O

ay N m/

(C) 
10 8−

∈O

ay N m/  (D) 
108

∈O

ay N m/
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Solution
The line x = 0 = y is ‘z’-axis

z

x

y
Ep(0,1,0)

Electric field due to infinite line change at a distance r is 

E = 
r

p r r
L a

2 0∈

E
nc m

m
a m=

× ∈ ×
=

2

2 1
1

0

p
p

r r
/

( )

E a N m
o

=
∈

−10 9

r /

at (0,1,0) ar = ay

∴ =
∈

−
E a

o
y

10 9

Electric Fields due to Continuous Charge 
Distribution for Infinite Sheet
Consider an infinite sheet of charge in the x–y plane with 
uniform charge density rs.

Electric field E at point p(0, 0, h) by differential charge 
dQ on the element a is 

z

y

Rh

ρ

ρs

θ

P(0, 0, h)

b

a

x

dE =
dQ

4 0
2p ε R

aR
�

⇒ differential charge dQ = rs ds
ds is differential element area = rdf dr

zˆ ˆ( )R a ha= − +rr

dE
R

=
r r f r
p
s d d R

�

4 0
3 2ε /

=
− +⎡⎣ ⎤⎦
+

r r f r r

p r
s d d a ha

h

ˆ ˆ

( )

r

ε
z

4 0
2 2 3 2/

⇒ From symmetry of charge distribution, for every element 
in region a, there is a corresponding element in region b .
Therefore, field along ar cancels.

Er = 0

Electric field has only z component and the point can vary 
from 0 to ∞ and f ∈ (0, 2p)

E dE
s d d ha

h
= =

+∫ ∫∫z
zr

p
r f r
r

p

4 0
2 2 3 2

00

2

ε

∞ ˆ

[ ] /

s
z2 2 3/ 2

0 0

2
ˆ

4 [ ]

h d
a

h

∞

=
ε +∫

p r r r
p r

E as=
r
2ε0

ˆz  this is for h > 0

E a= s−r
2 0ε

ˆz  for h < 0

In general, electric field for an infinite charge sheet is 
rS

2 0ε
ân

Example 5
Electric field on the surface of a perfect conductor is 4 
Volts m/ . The conductor is immersed in water with ∈ = 
40∈o. The surface charge density on the conductor is 
(A) 80∈o (B) 40∈o
(C) 20∈o (D) 160∈o

Solution
The electric field due to the plane sheet with surface charge 

density r
r

s
s

o

is
2 ∈

, whereas due to conducting plane sheet  

is 
rs

∈
∴ =

∈
E sr

rs

∈
 = 4 v/m

rs o= × ∈4 40  = 160 × ∈o  = 160∈o

Example 6
Two infinite plane sheets of equal charge densities 1

2
c

m
 

are placed at (0, 0, 0) and (0, 0, 2), respectively. Then, the 
electric field intercity at (0, 0, 1) is

 (A) 0 N/m  (B) 
1

∈o
zâ N m/

 (C) 
−
∈

1

o

N m/  (D) None 
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Solution
The direction of field lines shown in the following figure:

z

x

y
Ep

(0, 0, 0)

(0, 0, 1)

(0, 0, 2)
~~ ~~

E(0,0,1) = Eq(0,0,2) + Eq(0,0,0)

E(0,0,1) = 
−
∈

+
∈

r rs

o
z

s

o
za a

2 2

rs is equal for both, that is, 1 C m/ 2

E(0,0,1) = 0

(a) E(0,0,3) = E q(0,0,2) + Eq(0,0,0)

= 
r rs

o
z

s

o
za a

2 2∈
+

∈

= 
rs

o
za

∈
N m/

E (0,0,3) = 
1

∈o
za N m/

(b) (0,0,-1) = 
−
∈

+
−
∈

r rs

o
z

s

o
za a

2 2

= −
∈
rs

o
za

E(0,0,-1) = 
−
∈

1

o
za N m/

NOTES

Electric field between two infinite plane sheets of equal sur-
face densities is zero.

Electric Flux Density (D)
D is independent of the medium. Electric flux f = ∫D ds

��� ���
.  is 

measured in Coulombs.

Hence, D is called electric flux density. D is measured in 
Coulombs/m2, and D is also called electric displacement. The 
direction of D  at a point is given by the direction of field lines 
at that point and magnitude is number of flux lines crossing a 
surface normal to the lines divided by the surface area.

D Eo= ∈  (free space)

Gauss Law
Total electric flux through a closed surface is equal to charge 
enclosed by that surface.

Mathematically, 

y = Qencl.

y = ∫ D ds
s

.�  = Qencl.

Total charge enclosed is 

Qencl.= rv

v

dv( )∫

∴ = ∫∫ D ds dvv

vs

. r�
Applying divergence theorem 

( . )∇ = ∫∫ D dv dv v

vv

r

∇ =.D vr

rv is the  volume charge density. 
Gauss Law can be used to determine E Dor  for sym-

metrical charge distributions such as a point charge and infi-
nite line charge.

Gauss Law always holds good whether the charge distri-
bution is symmetric or not.

Example 7
The flux through the surface s shown in the following figure

12mc

−10mc
5mc

(A) 7 mc (B) 2 mc (C) 27 mc (D) 3 mc

Solution
According to the Gauss law, the total dielectric flux enclosed 
by the surface ‘s’ is equal to the charge enclosed by that 
surface

Y = 12 mc -10 mc = 2 mc.

Applications of Gauss Law
Procedure for applying Gauss law:

 1. Check for the symmetry.
 2. Construct a Gaussian surface.
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Conditions for a Special Gaussian Surface
 1. The surface is closed.
 2. At each point of the surface, D  is either normal or 

tangential to the surface.
 3. D is sectionally constant over that part of the surface 

where D  is normal.

Point Charge
Spherical symmetry exists for the point charge, and there-
fore, the Gaussian surface is a sphere that encloses the 
charge ‘Q’, as shown in the figure.

x

y

D

P
r

Q

Z

D is everywhere normal to the surface. 

Therefore, D D ar r=

D ds D a ds Qenclr r

ss

. .= =∫∫ ��

ds in spherical coordinates 

= r2 sinq dq dfar + rsinq drdfaq + rdr dq af

D ds D r d dr

s

. .sin= ∫∫ 2 q q ϕ��
= Dr.4pr2

D ds D r Qr

s

= =∫ 4 2p�

D
Q

r
r =

4 2p

D
Q

r
ar=

4 2p

E
Q

r
a D E

o
r o=

∈
=∈⎡⎣ ⎤⎦4 2p

Infinite Line Charge

D aL=
r
pr

r
2

rL is the  linear charge density. 

Uniformly Charged Sphere

      D

Q r

a
a r a

Q

r
a r a

r

r

=
< ≤

≥

⎧

⎨
⎪⎪

⎩
⎪
⎪

.
;

;

4

4

3

2

p

p

0

E

Q r

a
a r a

Q

r r
a r a

o
r

o
r

=
∈

< ≤

∈
≥

⎧

⎨
⎪⎪

⎩
⎪
⎪

.
;

;

4
0

4

3

2

p

p

For example, charge sheet. 

Energy Associated with Charge Distribution
If there are n point charges that are brought in infinity to 
specific points, then work done.

No work is required to bring initial charge

W
q q

R
=

=

−

=
∑∑1

4 1

1

2p ε
i j

jij

i

i

N

Work done for volume charge is

W VdV= ∫
1

2
rv

v

= ∫
1

2
( . )∇ D VdV

v

= ∫
1

2
D E dV.

= ∫
1

2
0

2ε E dV

Electrostatic energy density WE is 
dW

dV

Therefore, WE =
1

2
D E.

= =
1

2 2
0

2
2

0

ε
ε

E
D

 

Electric Potential
Electric potential at a point is defined as the work done in 
bringing a unit positive charge from infinity to that point in 
an electric field. Work done in moving a charge Q through 
a distance dl is 

dw = -Fdℓ

dw = -Q E d F QE. � =⎡⎣ ⎤⎦

w = -Q E d
A

B

. �∫
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V
W

Q
E dAB

A

B

= = −∫ . �

V
W

Q
E dB

r
B

= = −
∞
∫ . �

Here, rA = ∞

Example 8
The electric scalar potential to a charge of ‘q’ at origin at a 
distance ‘r’ is

 (A) 
q

ro4p ∈
volts  (B) 

q

ro8 2p ∈
volts

 (C) 
q

ro8p ∈
volts  (D) 

q

ro8 2p ∈
volts

Solution
The field due to ‘q’ is

E
q

r
a

o
r=

∈4 2p

vr
q

r
a dr

o
r

r

= −
∈∞

∫ 4 2p

v
q

r
drr

o

r

= −
∈∞

∫ 4 2p
 =

+
∈
q

r4 0p
 

Potential Difference
VAB = VB - VA

VAB  is called as potential at B with respect to A. 
Potential at infinity is chosen as zero.

Example 9
A point charge of +1 nc is placed in free space, as shown 
in the figure. 

5mm

Q
1nc 10mm

The potential difference between two points P and Q, vpq is
(A) +90 v (B) -90 v
(C) +900 v (D) -900 v

Solution

VpQ = Vp - VQ 
=

∈
−

∈
q

r

q

ro p o q4 4p p

=
∈

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

q

r ro p q4

1 1

p

=
∈

−⎡
⎣⎢

⎤
⎦⎥

q

o4

1

5

1

10p mm mm

VPQ = =
∈

×
q

o4

1

10p mm

VPQ = 
10 10 9 10

10

9 3 9− × × ×

1

4
9 109

p ∈
= ×

⎛
⎝⎜

⎞
⎠⎟o

m

F

VPQ = 900 v

VAB is independent of path taken, and hence, 

VAB = -VBA

VAB + VBA = 0

is Edl =∫ 0�
Applying Stokes theorem 

∇×( ) =∫ E ds 0�
⇒ ∇ × E = 0

where E  is irrotational vector or conservative field; thus, 
electrostatic field is conservative field. 

E = -∇V

Example 10

The scalar potential V = 
10

2r
 sinq cosf, and electric flux 

density at 1 2 0, ,p /( )
(A) 10 2∈o c m/  (B) − ∈10 2

o c m/

(C) 20 2∈o c m/  (D) − ∈20 2
o c m/

Solution

D = ∈o E

E  = -∇v

= −
∂
∂

+
∂
∂

+
∂
∂

⎡

⎣
⎢

⎤

⎦
⎥

v

r
a

r

v
a

r

v
ar

1 1

q
q

qsin ϕ
ϕ

= −
−

+ +
−⎡

⎣⎢
⎤
⎦⎥

20 10 10
3 3 3r

a
r

a
r

arsin cos cos cos sinq q qϕ ϕ ϕ ϕ  

E  = 20 10 10
3 3 3r

a
r

a
r

arsin cos . cos cos sinq q q jϕ ϕ ϕ− +

E a
1 2 0

20
, ,
p( ) = r

D = ∈0 E  = 20∈0 ar    
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Equipotential Surface
Any surface on which the potential is same throughout the 
surface is known as equipotential surface. Work done in a 
moving a charge from one point to another along an equipo-
tential surface is zero.

Edl =∫ 0

Properties of Equipotential Surface
 1. Lines of force or flux lines are always normal to the 

surface. 

Flux Line

Equipotential 
Surface 

Energy Density in Electrostatic Fields

W E
D

E o
o

= ∈ =
∈

1

2 2
2

2

Energy due to continuous volume charge distribution.

W D E dv E dE

v

o= = ∈∫ ∫
1

2

1

2
2

. u

W Q vE k k
k

n

=
=
∑1

2 1

Example 11
Two point charges of -5 nc and 5 nc are located in free 
space at (-1, 0, 0) m and (1, 0, 0), respectively. The energy 
stored in field is 
(A) 0  (B) 225 nJ
(C) 112.5 nJ (D) -112.5 nJ

Solution
y

z

X
5nc

(1, 0, 0)
XX

−5nc

(−1, 0, 0)

W
q q

r
=

∈
1 2

04p

W
o

=
× ×

∈ ×

−5 5 10

4 2

18

p

= −
× × × −25 10 9 10

2

9 18

= − × −225

2
10 9

= -112.5 × 10-9 J

Current
Current through a point is defined as the rate of charge pass-
ing through that point in unit time.

i
dq

dt
= ( )amps

Current density at a given point is the current through a unit 
normal at that point denoted by J.

I J ds
s

= ∫ .

Unit of J is ampere/meter 2.

Convection Current
 1. It does not involve conductors
 2. It does not satisfy ohms law
 3. It occurs when current flows through in an insulating 

medium such as liquid or vacuum 

For example, a beam of electron in a vacuum tube.

Convection Current Density
Jcv = rv.V

where rv is the charge density and V is the velocity.

Conduction Current
 1. It requires conductors
 2. Large amount of free electrons in a conductor 

provides conduction current.

Conduction Current Density
Jc = sE

The above relation is also called as Ohms law.

Conductors
 1. The electric field inside a conductor placed in an 

electric field is zero.
 2. Conductor is an equipotential surface. 
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R
A
c=

r �

rc = 1
s

s is the conductivity of material. 

R
V

I

Edl

E ds
l

s

= =
∫

∫s .

Joule’s Law
Power (P) 

P E Jdv I R VI= = =∫ . . 2

Power density, Wp = 
dp

dv

W E J Ep = =. s 2

Dielectrics
The effect of dielectric on electric field E is to increase D
inside it by an amount P .

D E po= ∈ +

D Ddielectric freespace>

where p is  ce o E∈  and 
ce  is electric susceptibility. 

D E Ee o= ∈ + ∈0 c

D Ee= ∈ +0 1( )c

D Eo r= ∈ ∈

D E= ∈

∈= ∈ + = ∈ ∈0 1( )ce o r

∈ = +r e1 c

Dielectric Strength
It is the maximum electric field that a dielectric can tolerate 
or withstand without breakdown.

Continuity Equation

∇ = −
∂
∂

.J
t
vr

 for steady currents 
∂
∂

=
rv

t
0,

Therefore, ∇J = 0
This means the charge entering the volume is same as the 

charge leaving.

r r t
v vo

t
e r=
−

.

where tr is the relaxation time, that is. the time it takes a 
charge placed in the interior of a material to drop to e-1 = 
36.8% of its initial value  

t
s sr

o r=
∈
=
∈ ∈

For a good conductor, the relaxation time is so short that 
most of the charge will vanish from any interior point and 
appear at the surface.

Boundary Conditions
Dielectric–Dielectric
 1. Tangential electric fields are continuous 

i.e., E1t = E2t 
 2. Normal components of electric flux density are 

discontinuous by an amount of charge density is  
D1n – D2n = rs

For a source-free region, 

rs  = 0

D1n = D2n

∈1E1n = ∈2 E2n

and 
tan

tan

q
q

1

2

1

2

=
∈
∈

r

r

Example 12
Medium 1 has electrical permittivity ∈1 = 3 ∈0 F/m and 
occupies the region in the left of x = 0 plane. Medium 2 has 
electrical permittivity ∈2 = 5∈0 F/m and occupies the region 
to the right of x = 0 plane. If E1 in the medium 1 is 

E a a ax y z= − +2 3 volt
m , then E2 v

m( )  in medium 2 is

(A) 1.2 ax - 2 ay + 3az  (B) ax - ay + 3 az

(C) 0.6 ax - 2 ay + 3 az  (D) ax - 2 ay + 1.5 az

Solution
y

X = 0

x
E2

Plane

X > 0

Medium 2

Medium 1

E1

z

X < 0

Y and Z components of E  are tangential components and 
x-component is normal component.

E2y = E1y, E2z = E1z
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(tangential electric field is continues) 
Since the region is source free 

D1n = D2n,

D1x = D2x,

∈ = ∈, E Ex x1 2 2

E2x = ∈
∈

1

2

 × E1x

E2x = = 0.6

E2  = 0.6ax – 2ay + 3az 

Conductor Dielectric
 1. E1t = 0 [electric field in a conductor = 0]

E2t = 0
 2. E1n = 0 [E in a conductor = 0]

D1n = 0
D2n = is = ∈0 ∈r E2n
For a source-free region 
D2n = 0

Conductor-free Space
This is a special case of conductor– dielectric condition:
 1. E1t = E2t

E1t = 0 [electric field inside a conductor is zero]
E2t = 0

 2. D1n – D2n = rs
D1n = 0 (conductor)
D2n = rs = ∈o En (free space ∈r = 1)

Poisson’s Equation for Electric Fields

∇ =
−
∈

2V vr

A special case of this is when rv = 0 (charge-free region). 
∇ =2 0V  called as Laplace equation. 

Example 13
The potential (scalar) distribution is given as V = 10y3 + 2x2. 
If ∈o is permittivity of free space, what is the charge density 

at the point (3, 0) in C
m3 ?

(A) 4 ∈o  (B) -4 ∈o 
(C) 8 ∈o  (D) -8 ∈o

Solution

Poisson equation for electric fields is ∇ = −
∈

2

0

V Vr

V = 10y3 + 2x2

∇ =
∂
∂

+
∂
∂

2
2

2

2

2
v

v

y

v

z

∇ = +2 4 60v y

−
∈

= +
rv

o

y4 60

at (2, 0)

−
∈

⎛
⎝⎜

⎞
⎠⎟

rv

o (2,0)

 = 4 + 60 × 0

-pv = 4∈o 

pv = -4∈o 

Capacitance: It is the ratio of magnitude of charge on one 
of the plates to the potential difference between them. 

C
Q

V

E ds

E dl
= =

∈∫
∫

.

.

Parallel-plate capacitor

C
A

d
o

o=
∈

where A is the area of the plate and  
d is the distance between the plates. 

C
A

d
o r=

∈ ∈

∈ =r
o

c

c

Example 14
A parallel-plate capacitor is shown in the figure. It is made 
up of two square plates of 100 mm side. The 4 mm space 
between the plate is filled with two layers of dielectric ∈r = 
4, 2 mm thick and ∈r = 2, 2 mm thick. Neglecting the fringe 
fields at the edges, the capacitance is 
(A) 2.94 pF (B) 29.4 pF
(C) 5.98 pF (D) 59.8 pF

X
∈r= 4

∈r = 2

2mm

2mm

C1

C2

Solution
Capacitance is in series 

− ∈ =
+

C
C C

C C
q

1 2

1 2
(or)

1 1 1

1 2C C Cq∈
= +

C1 = ∈ ∈
=

∈o r oA

d

A

d
1

1 1

4
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C1 = ∈ ∈
=

∈o r oA

d

A

d
2

2 2

2

1

4 2
1 2

C

d

A

d

Aeq o o

=
∈

+
∈

d1 = d2 = 2 mm

A = 100 × 100 × 10-6 m2

1 2

2
3

2C Aeq o

=
∈ ( )mm

 =
×

× ∈ ×

−

−
3 10

2 10

3

2
o

1 0 15

Ceq o

=
∈
.

Ceq = ∈0 × 
20

3

= 8.82 × 10-12 ×
20

3

= 2.94 × 10-12 × 20

Ceq = 59.8 pF = 59.8 pF  

Energy stored in a capacitor 

W QV CV
Q

C
E = = =

1

2

1

2 2
2

2

 (b) Co-axial capacitor

C
L

n b
a

=
∈2p

� ( )

b

a

 (c) Spherical capacitor:

C

a b

=
∈

−⎛
⎝⎜

⎞
⎠⎟

4

1 1

p

dielectric − − −−−
−
−
−
−
−
−

−
−

−−−−−−−−−
−−−

−−
−−
−−

−− −

+

+

a+
+

+ +

+

b

Magnetostatic Fields
A constant current flow produces magnetostatic or static 
magnetic fields.

Biot–Savart Law
It states that the magnetic field intensity dH produced at a 
point P by the differential current element Idl is:  

 1. Proportional to product of Idl and sine of the angle 
between the element and the line joining P to the 
element.

 2. Inversely proportional to the square of the distance 
between P and element. 

dH
Id

R
a

a�sin
2

dH
Id

R
=
�sina
p4 2

dH
Id a

R
R=

×�
4 2p

a
R

R
R =

dH
Id R

R
=

×�
4 3p

P
R

dl

I

α

The direction of dH can be determined by the right-
hand thumb rule 

H = dH∫

  

 (i) (ii)
 ‘H’ is into the page  ‘H’ is out of the page

Line Current Surface Current Volume Current

Idl

I
kds

Jdv

Idl Kds Jdv

24
R

l

Idl a×∫ p R 24
R

s

kds a
R
×∫ p 24

R

v

Jdv a
R
×∫ p
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H due to a Line Current

 1. Finite length:

B

H

A

Z

α

α2

α1

p

p

C
ur

re
nt

 e
le

m
en

t

H
I

a= −
4

2 1pr
a a(cos cos ) ϕ

 2. Semi-infinite length:

a2 = 0, a1 = 90°

H
I

a z=
4p r ϕ

 3. Infinite length:

a1 = 180°; a2 = 0

H
I

a=
2p r ϕ

If a conducting wire of infinite length carrying current 
I is placed along the z-axis, the direction of H  is along 
the tangent of circle drawn at that point with the wire as  
centre.

HI

Example 15
Two infinitely long wires carrying current areas shown in 
the following figure one wire is in x–z plane and parallel to 
x-axis. The other wire is in the y–z plane and parallel to the 
z-axis. Which components of resulting magnetic field are 
non-zero at origin?
(A) x, y, z components (B) x, y components
(C) y, z components (D) x, z components

z

y

x

(1)

1A

1A

(2)

Solution
The magnetic field intensity due to infinite wire is along the 
direction of tangent drawn to a circle formed with the wire 
as centre through that point.

H  due to (1) is along negative y-direction. H  due to (2) is 
along positive x-direction

H  contains only x and y components.

Ampere’s Law
It states that the line integral of tangential component of 
magnetic field intensity around a closed path is same as the 
net current enclosed by that path. Mathematically, 

H dl. .=∫ Ienclosed�
By applying Stokes theorem 

H dl H ds Iencl

sl

. .= ∇×( ) =∫∫
However,

I J dsencl

s

= ∫ .

∴ ∇×( ) = ∫∫ H ds J ds
s

. .

∴∇× =H J

Applications of Ampere’s Law
Infinite line current:

H
I

a=
2p r ϕ  (already derived using Biot–Savarts’ law).

Example 16
The Z-axis carries filamentary current of 5pA along a2. 
Which of the following is incorrect?

(A) H a A mx= − /  at (0, 2.5, 0)

(B) H a A m= ϕ /  at 2 5 4 0. , ,p( )
(C) H a A my= − /  at ( . , , )2 5 0p

(D) H a A m= − j /  at 2 5 3
2 0. , ,p( )



Chapter 1  •  Elements of  Vector Calculus and Static Fields  | 3.817

Solution

H  due to infinite wire carrying current I at a distance ‘r’ 

is H
I

a=
2p r

 (a) H a=
×
5

2 2 5

p
p r.

ϕ

H a= ϕ

At (0, 2.5, 0), f = 90°

∴ = −a axj

Therefore, (a) is correct

 (b) H at
I

a2 5 4 0
2

, , ,p
p r( ) = ϕ

H a= ϕ

Therefore, (b) is correct

 (c) H  at (2.5, p, 0)

H a A
m= ϕ

At (2.5, p, o), f = 180°
af = - ay

Therefore, (c) is correct

 (d) H at 2 5 3 4 0. , ,p( )
H

I
a A

m=
2p r ϕ

H a A
m= ϕ

Therefore, option (d) is incorrect.
 (ii) Infinite sheet of current:

y

z

x

b
P

Field lines

a

D

B

A

C

k

Current density I k ac x x( ) = A/m  applying Ampere’s rule to 
loop ABCD 

I enclosed = kxb

∴ =∫ H dl k bx. .�

H
H a y

H a y
z

z

=
>

− <
⎧
⎨
⎩

0

0

0

0

H dl H dl
A

D

D

C

B

A

C

B

. .= + + +
⎛

⎝
⎜

⎞

⎠
⎟∫ ∫ ∫∫∫�

along and H
c

b

A

D

∫∫  and dl are perpendicular. 

Those two will disappear

H dl H dl H dl
B

A

D

C

. . .= + ∫∫∫�
= −Ho (-b) + Ho(b)

Kxb = 2Hob

Ho =
kx

2

H = 

k
a y

k
a y

x
z

x
z

2
0

2
0

>

−
<

⎧

⎨
⎪⎪

⎩
⎪
⎪

H = 
1

2
(k × an)

Magnetic Flux Density (B)
The magnetic flux density is defined as the number of mag-
netic flux lines per unit area, and the direction of flux lines 
or tangent to the magnetic flux lines gives the direction of 
magnetic flux density.

B and H are related as 

B = m0H (Wb/m2 or T)

m po = × −4 10 7 H
m

Flux through a surface s is given by 

y = B ds
s

.∫
Magnetic flux lines are closed lines; therefore, an isolated 
magnetic charge does not exist:

B ds
s

. =∫ 0�
Total flux through a closed surface is zero.

Applying divergence theorem to the abovementioned 

integral B ds B dv
v

. ( . )= ∇ =∫∫ 0�
∇. B = 0

This equation is also referred to as solenoid at property of 
magnetic field lines.
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Magnetic Scalar and Vector Potentials
Magnetic scalar potential Vm related to H as H = -∇Vm.  
If J = 0, Vm is only defined in a region where J = 0 (source-
free region) and Vm also satisfies the Laplace equation.

∇2Vm = 0

Magnetic vector potential A  is defined in a such a way that

B A= ∇×

y = B s A s
s
∫ ∫∂ = ∇× ∂. ( ) .

= A dl
L

.�∫ (Stokes theorem)

∴ = ∂∫y A. �

Example 17

If A  = xyax + y2ay, then A dl.�∫  over the path shown in the 
following figure.

z

x

y
5nc

3
1

CD

BA

3

1

3
2

(A) 1
3

 (B) 0 (C) −1
3  (D) 2

3

Solution

A dl Adl Adl A dl A dl
A

B

C

D

B

C

D

A

. . .= + +∫ ∫∫ ∫∫�

A dl dl d ax x

A

B

. ⇒ =∫

A dl xy dx y x

A

B

. = = ⎡
⎣⎢

⎤
⎦⎥∫∫ 2

1
3

2
3

1
3

2
3

2  = ⎡
⎣

⎤
⎦ =

1

2
1

3
1

6

A dl dl d ay y

B

C

. .⇒ =∫

A dl y dy y

B

C

. = = ⎡
⎣⎢

⎤
⎦⎥

=∫∫
3

1

3

1

3

3
26

3

A dl dl dxax

C

D

. ⇒ =∫ ,

A dl xydx
C

D

.
/

/

⇒ ∫∫
2 3

1 3

= ⎡
⎣⎢

⎤
⎦⎥ = −⎡

⎣
⎤
⎦ =

−3 2
3

2
1

3
1

2
2

2
3

1
3x

A dl dl dy ay
D

A

. .⇒ =∫

A dl y dy
D

A

. = ∫∫ 2

3

1

 = 
−26

3

A dl
c

. = − + −∫ 1
6

1
2

26

3
26

3�

A dl. = −∫ 1
3�  

Poisson’s equation for magnetostatic fields. 

∇2A = – mo J

Lorentz Equation
Force acting on a charged particle moving in an electromag-
netic field is 

F Q E V B= + ×( ) .

where V is the velocity of charged particle. 
Force on a current element:

F I d B
L

= ×∫ �

= ×∫ kds B
s

= ×∫ Jdv B

Magnetic dipole moment: t is defined as the product of 
current and area of the loop and its direction is normal to 
the loop:

m = IS ân

where an is the normal vector
Torque (T) = m B× .

Magnetization (M): It is the magnetic dipole moment per 
unit volume and units are Amp meter/

Jb= ∇M

In magnetic materials,

B = mo (H + M)

M = cm
 H

χm is the magnetic susceptibility

B = mo ( )1+ cm  H

B = mo mr H
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Boundary conditions
 1. B1n = B2n

m1 H1n = m2 H2n
Normal components of magnetic flux density are 
continuous.

 2. (H1 – H2) x an12 = K
an12 is the normal vector divided from medium 1 to 2 
for a source-free region K = 0.
H1t = H2t

Example 18

A current sheet of K = 5ay A m/  lies on the dielectric 
interface x = 0 between two dielectric media with Îr1 =  5, 
mr1 = 2 in region -1 (x < 0) and Îr2 = 5, mr2 = 4 in region 
-2 (x > 0). If the magnetic field in region -1 at x = 0 is 

H a ax y1 2 20= + A/m , then the magnetic field in region -2 
is at x = 0+.

(A) ax  + 20 ay + 5 az A m/  

(B) ax + 20 ay - 5 az A m/

(C) ax - 20 ay + 5 az A m/

(D) ax - 20 ay 5 - az A m/

Solution
The tangential field due to a sheet separating two medium 
are discontinued by current density 

Ht1- Ht2 = k an× 12

Ht1- Ht2 = 5ay × ax

Ht2 – Ht1 = 5az

Ht2 – Ht1 = 5az

Ht2- 20ay = 5az

Normal components of magnetic flux densities are con tinuous 
Bn1 = Bn2

is m1, Hn1 = m2, Hn2

Hn2
2 2

4
1=

×
=

∴ = +H H Ht n2 2 2

H a a ax y z2 20 5= + −
Inductance:

L
N

I

N Bds

J ds
= = ∫

∫
y

.

L = 
2

2

W

I
m

where Wm is the  magnetic energy stored in an inductor.

Wm = 
1

2

1

2
2LI B Hdv= ∫ .

= ∫
m
2

2H dv

Laplace and Poisson Equations in Electric 
and Magnetic Fields

Electric field (E ) Magnetic field (M )

E = –∇V B = ∇ × A

D = Î0E B = m0H

∇D = rv ∇ × H = J

∇(Î0E) = rv ∇ × 
0

B 
  m

 = J

Î0∇(– ∇V) = rv ∇ × (∇ × A) = m0J

∇2V = – 
0

v

∈
r

∇2A = –m0J

The abovementioned expres-
sion is called Poisson’s equa-
tion for electric field.

The abovementioned expres-
sion is called Poisson’s equa-
tion for magnetic field.

Laplace equation for electric 
field is expressed as  
∇2V = 0.

Laplace equation for magnetic 
field is expressed as  
∇2A = 0.

Summary of Boundary Conditions

Electric field Magnetic field

1) Dn1 = Dn2 (charge free)

 ( ) 121 2 . nD D a−  = –rs

 (with surface charge)

1) Bn1 = Bn2

2) Et1 = Et2 2) Ht1 = Ht2 (current  free)

( ) 121 2 . nH H a k− × =

(with current sheet)

3) 1 2

2 1

tan
tan

r

r

θ ε
θ ε

=  

(charge free)

3) 1 2

2 1

tan
tan

r

r

θ µ
θ µ

=  

(current free)

Capacitors Inductors

C = 
.D ds Q

VE dl
=

− ⋅
∫
∫
� L = 

.

.
m

B ds

H dl

ψ=
Ι

∫
∫�

Parallel plate C = 0 A
d

∈

A
d

∈=

Solenoid L = 
2

0N A
d
µ

= 
2N A
d
µ

Concentric cylinder C 

= 02
ln( / )

l
b a

π ∈

Concentric cylinder 

= 0

2
lµ

π
 ln(b/a)

WE = 
1
2

 CV2 WE = 
1
2

 LI2
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Direction for questions 1 to 16: Select the correct alterna-
tive from the given choices.

Example 19
The small identical conducting spheres have charges of –1 
nC and 2 nC, respectively. If they are brought in contact and 
separated by 4 cm, what is the force between them?
(A) 251.1 × 10–6 N (B) 1.125 × 10–5 N
(C) 1.125 N (D) 1.125 × 10–8 N

Solution

F = 
9 10 1 2 10

16 10

9 18

4

× × − × ×
×

−

−
( )

F = 1.125 × 10 – 5 N

Example 20

If Coulomb’s force F = 2ax + ay + az and N is acting on a 

charge of 10 C, find the electric field intensity.
(A) 0.2ax + 0.1ay + 0.1az (B) 2ax + ay + az
(C) 20ax + 10ay + 10az (D) 0.2449

Solution

E = 
F

Q

a a ax y z=
+ +2

10

E = 0.2ax + 0.1ay + 0.1az

Example 21
Two wires are carrying in the same direction of 500 A and 
800 A are placed with their axes 5 cm apart. Calculate the 
force between them.
(A) 0.4 N (B) 0.15 N
(C) 0.6 N (D) 0.8 N

Solution

I1 = 500 A

I2 = 800 A 

r = 5 × 10 –2 m

F = 
m

p
0 1 2

4

I I

r
 = 

4 10 500 800

4 5 10

7

2

p
p

× × ×
× ×

−

−

F = 
4

5
 = 0.8 N

Example 22
A point charge Q = 10 nC is at origin in free space. Find 
the electric field at P (1, 0, 1). Further, find the electric flux 
density at ‘P’.
(A) (0.281 × 10 – 9) (ax + az)
(B) (0.281 × 10 – 9)
(C) 281 (ax + az)
(D) 281.62 (ax + az)

Solution

D = ε0E = 
Q

r4 2p ar

r2 = (1, 0, 1), r1 = (0, 0, 0)

r = r2  r1 = (1, 0, 1)

|r| = 2 , ar = 
r

r| |
 = 

10 10

4 2 2

9×
× ×

−

p
(ax + az)

D = (0.281 × 10 –9)(ax + az)

Example 23
A circular coil of radius 10 cm is made up of 100 turns. 
It carries a current of 5 A. Compute the magnetic field 
intensity at the centre of the coil
(A) 25 AT/m (B) 250 AT/m
(C) 2,500 AT/m (D) 25 × 10 –3 AT/m

Solution

a = 10 × 10- 2 m

N = 100, I = 5 A

H = 
NI

a2

H = 
100 5

2 0 1

×
× .

H = 2,500 AT/m

Example 24
Find Tr of seawater whose εr = 81 and s = 5 � /m
(A) 143.37 ps (B) 14.337 ps
(C) 1.4337 ps (D) 1,433.7 ps

Solution

ε = εrε0

ε = 81 × 8.854 × 10-12

ε = 715.23 × 10-12

Tr = 
715 23 10

5

12. × −

Tr = 143.37 × 10 -12 s

Tr = 143.37 ps

Example 25
A parallel-plate capacitor with d = 1 m and plate area 0.8 
m2 and a dielectric relative permittivity of 2.8. A DC volt of 
500 V is applied between the plates. Find the energy stored.
(A) 2.479 µJ (B) 24.79 µJ
(C) 247.9 µJ (D) 24.79 J
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Solution

d = 1 m, A = 0.8 m2, ε = 2.8,

and V = 500 V

C = 
e e0

128 854 10 0 8 2 8

1

A

d
r =

× × ×−. . .

C = 19.83 pF

E = 
1

2
CV2 = 

1

2
 × (500)2 × 19.83 × 10 -12

E = 2.479 µJ

Example 26
Two thin parallel wires are carrying current in the same 
direction. The force experienced between them is:
(A) Attractive
(B) Repulsive
(C) Perpendicular to their axis joining wires
(D) No force exists

Solution: (A)

Example 27
Laplacian of a scalar function V is:
(A) Divergence of V
(B) Gradient of V
(C) Gradient of divergence of V
(D) Divergence of gradient of V

Solution: (D)

Example 28
Units of vector magnetic potential are
(A) A/m2 (B) A/m (C) Wb/m2 (D) Wb/m

Solution: (A)

Example 29
In a cylindrical conductor of radius 2 mm, the current 
density varies with the distance from the axis according to 

J = 103e– 400r  A/m2.Find the total current I.
(A) 8.894 A (B) 8.964 A
(C) I = 8.649 A (D) I = 8.268 A

Solution

I = J ds.�∫
r = 2 mm = 0.002 m

I = J drd
r

.
.

ϕ
==
∫∫

0

0 002

0

2

j

p

 = 103 400

0

0 002

0

2

e drdr

r

−

==
∫∫ ϕ

ϕ

.p

= 103 
e

d
r−

= −
⎡

⎣
⎢

⎤

⎦
⎥∫

400

0

0 002

0

2

400

.

ϕ
ϕ

p

= 
−

−∫
10

400
0 4493 1

3

0

2

[ . ]dϕ
p

= 
−10

4
 (– 0.55067) (2p – 0)

I = 8.649 A 

Example 30
Calculate the magnetic flux density due to circular coil of 
100 AT and area of 70 cm2 on the axis of the coil at distance 
10 cm from the centre.
(A) 102.7 µT (B) 103.7 µT
(C) 10.27 µT (D) 10.37 µT

Solution

NI = 100 AT,

pa2 = 70 × 10-4

d = 0.10 m

a2 = 22.28 × 10 - 4

Magnetic flux density

B = 
m0

2

2 2
3

22

NIa

b d( )+

B = 
4 10 100 22 28 10

2 22 28 10 0 01

7 4

4
3

2

p × × × ×

× +

− −

−

.

( . . )

B = 103.7 × 10-6 T

B = 103.7 µT

Example 31
Determine the force per unit length between two long 
parallel wires separated by 5 cm in air and carrying currents 
of 40 A in the same direction.
(A) 6.4 N/m (B) 6.4 × 10-6 N/m
(C) 6.4 × 10-3 N/m (D) 6.4 × 10-9 N/m

Solution

Force/length = 
m

p
0 1 2

2

I I

D

= 
40 40

2 5 10 2

×
× × −p

 × 4p × 10-7

= 6.4 × 10 -3 N/m

Example 32
Units of magnetic dipole moment are _____
(A) A/m  (B) Am (C) A/m2 (D) Am2

Solution: (A)
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Example 33
Solutions of Laplace’s equation, which are continuous 
through the second derivative, are called
(A) Bessel functions
(B) Odd functions
(C) Harmonic functions
(D) Fundamental functions

Solution
Harmonic functions

Example 34
Find volume charge density if the electric field, E = x2ax + 
2y2ay + z2az V/m in a medium whose εr = 2

(A) rv = 35.416x + 70.832y + 35.416z C/m3

(B) rv = 35.416x + 70.832y C/m3

(C) rv = 35.416x + 35.416y + 70.832z C/m3

(D) none of these

Solution

E = x2ax + 2y2ay + z2az V/m

D = ∈E = ε0εrE

= 8.854 × 10 – 12 × 2 × (x2ax + 2y2ay + z2az)

D = 17.708x2ax + 35.416y2ay + 17.708z2az, pC/m2

From Maxwell’s equation, we have

∇D = Div (D) = 
∂
∂

+
∂
∂

+
∂
∂x

D
y

D
z

Dx y z  = rv

rv = 35.416x + 70.832y + 35.416z C/m3 

Exercises

Practice Problems 1
Direction for questions 1 to 20: Select the correct alterna-
tive from the given choices.

 1. If a vector field V  is related to another vector field A  

through V A=∇× , which of the following is true. c 
and sc are any closed contour and any surface whose 
boundary is c

 (A) v dl A ds
sc

. .= ∫∫∫�

 (B) A d v ds
c sc

∫ ∫∫=. .�

 (C) ∇×( ) = ∇×( )∫ ∫∫V dl A ds
C Sc

. ..�

 (D) ∇×( ) = ∫∫∫ A dl v ds
Sc

. .�

 2. If n is the unit normal vector to any closed surface s, 

then ∇∫∫∫ .ndv
v

 (A) 0 (B) s (C) 
s

3
 (D) 3s

 3. The electric field strength at a distance p due to a point 
charge +q located on the origin is 10  µv/m. If the point 
charge now enclosed by a perfectly conducting metal 
sheet whose centre is at the origin, then the electric field 
strength at the point p, outside the sphere, becomes

 (A) 0 (B) 10 μV m

 (C) 100 μV m  (D) 50 μV m

 4. The infinite plane sheet at z = 6 m, there exists a uni-

form surface charge density of 
1800 2

p
nC m . Then, 

associated electric field strength is

 (A) 30 V m  (B) 32.4 V m

 (C) 32.4K V m  (D) 324 V m

 5. Electric field lines at the equipotential surface V are 
shown in the following figure. Which of the following 
is correct?

 (A) v

q

 (B) 
v

 (C) 

V

 (D) 
V

 6. In an electrostatic field, 

 (A) ∇ =.E 0  (B) ∇× =E 0

 (C) ∇ =.E 0  (D) none of these
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 7. The electric field E1 in medium with ε1 = 3∈o  
is E a a ax y z1 5= − + V m , while medium 2 has 

e2 5= ∈o  and x = 0 is boundary shown in the follow-
ing figure.

y

x = 0

z

x

5∈0
3∈0
x = 0

21

  Then, E2  is equal to 

 (A) 1 2 5. a a ax y z− + V m

 (B) 0 6 5. a a ax y z− + V m

 (C) 2 ax – 5ay + az V m

 (D) a a ax y− + 5 2 V m

 8. Which of the following are true?

 (A) B A= ∇.  (B) B A= ∇×

 (C) ∇ =.B 0  (D) ∇× =B Jom

 9. Magnetic vector potential A az= − r2

4 . Then, flux 

through the surface shown in the following figure is

z
5

x

yρ = 2 ρ = 4
0

 (A) 3 T (B) 5 T
 (C) 15 T (D) 0 T

 10. If D y a xyax y= + +( )2 2 42  +xa C mz / 2 , then volume 

charge density rv at (-1, 0, 3) is

 (A) zero /C m3  (B) 4 3C m/

 (C) −4 3C m/  (D) 2 3C m/

 11. A finite length wire carrying current pA is placed along 
z-axis as shown in figure below.

z

x

y
p

45°

45°

πA

  The H  at P(1, 1, 1) is

 (A) 
1

2
ax A m  (B) 

−1

2
ax A m  

 (C) 
1

2
( )a ax y+ A m  (D) 

1

2
( )a ax y− A m

 12. In the field of a charge Q at the origin, the potentials at 

A (4, 0, 0) and B 1
2 0 0, ,( )  are VA = 15 v, VB = 60 v, 

respectively. Then, potential at C (2, 0, 0) is
 (A) 35 V (B) 45 V (C) 30 V (D) 40 V

 13. Find the work done in moving a 5 µc charge from ori-
gin to P(2, −1, 4)m via the straight line path x = −2y,  
z = 2x through the field 

  E  = (y ax

∧
 + x ay

∧
 + xy az

∧
)V/m.

 (A) 22.2 µJ (B) 111.2 µJ 
 (C) 22.2 mJ (D) 111.2 mJ

 14. Given A
��

 = yz a
∧

x + xy a
∧

y + xz a
∧

z, ∇×A
� ���

 at the point  
P(0, 1, 2) is 

 (A) 0 (B) 2  (C) 3  (D) 5

 15. D  = (4xy2z3 ax

∧

 + 3x2z ay

∧
+ 2y az

∧
) nC/m2. Find the 

amount of flux passing through the plane defined by x = 3;  
0 ≤ y ≤ 2; 0 ≤ z ≤ 1 in a direction away from the origin.

 (A) 4 nC (B) 3 nC (C) 2 nC (D) 8 nC

Direction for questions 16 and 17:
Select the value of K so that each of the fields satisfy 
Maxwell’s equations.

 16. Let D  = (5x ax

∧
 − 2y ay

∧
 + Kz az

∧
) µC/m2 is defined in 

a region with charge-free and perfect dielectric
 (A) −3 µC/m3 (B) 3 µC/m3

 (C) −2 µC/m3 (D) 2 µC/m3

 17. E = (Kx − 100t) ay

∧
V/m and H = (x + 20t) az

∧
A/m in a 

region rv = 0, s = 0, and µ = 0.25 H/m
 (A) −5 V/m2 (B) +5 V/M2

 (C) −
1

5
V/m2 (D) 

1

5
V/m2
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 18. The electric flux and field intensity inside a conducting 
sphere is

 (A) zero (B) uniform
 (C) maximum (D) minimum

 19. A point charge of Q Coulombs is located at the origin. 
Find expression for the electric field at any point in the 
free space in spherical coordinates.

 (A) E
Q

r
ar=

∈

∧

4 2p
 (B) E

Q

r
a=

∈

∧

4 2p j

 (C) E
Q

r
a=

∈

∧

4 2p q  (D) E
Q

r
ar=

∈
−

∧

4 2p
( )

 20. Two infinitely parallel conductors are separated by 
a distance 2r and they carry equal and identical 

currents, as shown in the figure. Find the magnitude 
of magnetic field strength midway between these two  
fields.

2r

r

r

I I

 (A) H  = 0 (B) H  = ∞

 (C) H  = undefined (D) H  = 1

Practice Problems 2
Direction for questions 1 to 15: Select the correct alterna-
tive from the given choices.

 1. Which of the following is not the property of static 
magnetic fields?

 (A) It is solenoid 
 (B) It is conservative
 (C) It has no sinks or sources 
 (D) Magnetic flux lines are always closed

 2. Interface of two regions of two magnetic materials 
is current free. Region 1 for which relative perme-
ability mr1 = 2 is defined by z < 0 and region 2. z > 0  
has mr2 = 1

  If B1  = 6ax + 0.4ay + 0.2az T, then H 2 ( )A m/  =

 (A) 
2

3 0 2 0 2
mo

[ . . ]a a ax y z+ +

 (B) 
1

6 0 4 0 2
mo

[ . . ]a a ax y z+ +

 (C) 
1

3 0 2 0 2
mo

[ . . ]a a ax y z+ +

 (D) 
2

6 0 4 0 1
mo

[ . . ]a a ax y z+ +

 3. A conductor carrying a current I with a constant cur-
rent density across its cross section, the magnetic field 
strength H at any distance (r < R) from the centre of the 
conductor (radius R) is given by (r < R)

 (A) H
I

R
r=

2p  (B) H
I

R
r=

2 2p

 (C) H
I

R
r=

2 3p  (D) H
I

R
r=

2 4p

 4. If V = coshx cosky.e2pz is a solution of Laplace equa-
tion, then what is the value of K?

 (A) 4 2+ p  (B) p2

4 1+

 (C) 1 4 2+ p  (D) 0

 5. If the magnetic flux density due to an infinite long wire 

at 1 m distance is B  = 2
2

m
wb

m
aϕ , then current =

 (A) 1 A (B) 100 A (C) 1,000 A (D) 10 A

 6. For any closed surface s, encloses a volume V. Then 
( ).∇× =∫∫ F nds

s

 (A) 0 (B) S (C) V (D) 3 V

 7. There are three charges that are given by Q1 = 1 µc,  
Q2 = 4 µc, and Q3 = 8 µc

  The field due to each charge at point p in free space is 
ax + 2ay – 3az, ax + 3ay, and ax – 3ay + 3az. Then, total 
field at P is due to all charges is

 (A) (ax + 2ay) N C/

 (B) (ax - 2ay) N C/

 (C) (ax + 2ay+ 3a2) N C/

 (D) (ax + 2ay + 3a2) N C/

 8. Two dielectric media with permittivity 2 and 2  are 
separated by a charge-free boundary, as shown in the 
figure. The E1  in medium 1 at point P1 has magni-
tude E1 and makes an angle a1 = 30° with normal. The 
direction of E2  at point P2 is a2=

 (A) sin−
⎛

⎝⎜
⎞

⎠⎟
1 1

6
 (B) sin−

⎛

⎝⎜
⎞

⎠⎟
1 1

3

 (C) tan−
⎛

⎝⎜
⎞

⎠⎟
1 1

6
 (D) 45°
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 9. V = 4x + 2 v, then the electric field is

 (A) 4ax V m/  (B) 2ax V m/  

 (C) −4ax V m/  (D) −2ax V m/

 10. Current element is represented by 4 103× ayA/m  and it 

is placed in a magnetic field H ax=
−10

2

3

m
A/m . Then, 

the force acting on the element is

 (A) 2az N (B) -2az N

 (C) 0 N (D) 
4

2m
 N

 11. Two infinite long wires carrying current are placed 
along z-axis and along a line parallel to z-axis, as shown 
in the figure.

z

x

y
P Q

  Find the component in the magnetic field H at Q on 
y-axis.

 (A) x and y components
 (B) Only y components
 (C) Only x components
 (D) x and z components

 12. Two infinite plane sheets carry equal charge densities of 

2 10 9 2× − C m/  and placed at x = 0 and x = 2 planes shown 

in the figure. The electric displacement at the point  
P(3, 0, 0) is shown in the following figure.

 (A) 24 2C m/ ax

 (B) −24 2C m/ ax

 (C) 0

 (D) 4 2n axC m/

 13. Which of the following system does not form the right-
handed coordinate system?

 (A) 
x

z

y

 (B) z

y

x

 (C) x

y

z

 (D) x

z

y

 14. The line integral of the vector potential A  around the 
boundary of a surface s represents

 (A) scalar potential of the surface
 (B) flux density in the surface
 (C) flux through the surface
 (D) current density

 15. A metal sphere with 1 m radius and a surface charge den-

sity of 
10

p
 coulomb/m2  is enclosed in a cube of 10 m  

side. The total outward electric displacement normal to 
the surface of the cube is

 (A) 0 4. C/m2  (B) 4 C/m2

 (C) 40 C/m2  (D) 400 C/m2
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Previous Years’ Questions

 1. For static electric and magnetic fields in an inhomo-
geneous source-free medium, which of the following 
represents the correct form of two of Maxwell’s equa-
tions? [2008]

 (A) ∇. E = 0 (B) ∇. E = 0
  ∇× B = 0  ∇. B = 0
 (C) ∇× E = 0 (D) ∇× E = 0
  ∇× B = 0  ∇. B = 0

 2. Consider a closed surface S surrounding a volume V. 
If r
�

 is the position vector of a point inside S, with n̂

the unit normal on S, the value of the integral 5
s
�∫∫ r. n̂

dS is [2011]
 (A) 3 V (B) 5 V (C) 10 V (D) 15 V

Direction for questions 3 and 4:
An infinitely long uniform solid wire of radius a carries a 
uniform DC current of density j

 3. The magnetic field at a distance r from the centre of 
the wire is proportional to [2012]

 (A) r for r < a and 1/r2 for r > a
 (B) 0 for r < a and 1/r for r > a
 (C) r for r < a and 1/r for r > a
 (D) 0 for r < a and 1/r2 for r > a

 4. A hole of radius b(b < a) is now drilled along the 
length of the wire at  a distance d from the centre of 
the wire, as shown in the following figure.

b
d

a

  The magnetic field inside the hole is  [2012]
 (A) uniform and depends only on d
 (B) uniform and depends only on b
 (C) uniform and depends on both b and d
 (D) non-uniform 

 5. The divergence of the vector field 

  A xa ya za= + +x y z
� � �  is [2013]

 (A) 0 (B) 1/3 (C) 1 (D) 3

 6. The force on a point charge +q kept at a distance d 
from the surface of an infinite grounded metal plate 
in a medium of permittivity ∈ is [2014]

 (A) 0

 (B) q

d

2

216p ∈
 away from the plate

 (C) q

d

2

216p ∈
 towards the plate

 (D) 
q

d

2

24p ∈
 towards the plate

 7. Given the vector A = (cosx)(siny) ax
�  + (sinx) (cosx) 

ay
� , where a ax y

� �,  denote unit vectors along x and y 
directions, respectively. The magnitude of curl of A is 
_____ [2014]

 8. The electric field (assumed to be one-dimensional) 
between two points A and B is shown. Let ΨA and ΨB 
be the electrostatic potentials at A and B, respectively. 
The value of ΨB – ΨA in volts is _____ [2014]

A B
5 µm

0 kV/cm

20 kV/cm

40 kV/cm

 9. Given F za xa ya
�� � � �= + +x y z  If S represents the por-

tion of the sphere x2 + y2 + z2 = 1 for z ≥ 0, then 

∇
s

F ds∫ ×
�� ���

.  is __________ [2014]

 10. If E x xz y xyz z
→ ∧ ∧ ∧
= +− − − −( ) ( ) ( )2y 3yz 6xy3 2 2 3 62  

is the electric field in a source-free region, a valid 
expression for the electrostatic potential is [2014]

 (A) xy3 – yz2 (B) 2xy3 – xyz2

 (C) y3 + xyz2 (D) 2xy3 – 3xyz2

 11. Consider a straight, infinitely long, current carrying 
conductor lying on the z-axis. Which one of the fol-
lowing plots (in linear scale) qualitatively represents 
the dependence of HF on r, where HF is the magni-
tude of the azimuthal component of magnetic field 
outside the conductor and r is the radial distance from 
the conductor? [2015]

 (A) HΦ

r
 (B) HΦ

r
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 (C) 
HΦ

r

 (D) HΦ

r

 12. In a source-free region in vacuum, if the electrostatic 
potential f = 2x2 + y2 + cz2, the value of constant c 
must be _______. [2015]

 13. Concentric spherical shells of radii 2m, 3m and 8m 
carry uniform surface charge densities of 20nC/m2, 
–4nC/m2 and rs,  respectively. The value of r (nC/m2) 

required to ensure that the electric flux density D
��� �

= 0  
at radius 10 m is __________ . [2016]

14. The current density in a medium is given 

 by J
��

 = 
400

2 42

sin

)

θ
π r +( )  âr Am-2.

  The total current and the average current density flow-
ing through the portion of a spherical surface r = 0.8 

m, 
π

12
 ≤ q ≤ 

π

4
, 0 ≤ f ≤ 2p are given respectively, by

 [2016]

 (A) 15.09A, 12.86Am-2

 (B) 8.73A, 13.65Am-2

 (C) 12.86 A, 9.23Am-2

 (D) 10.28A, 7.56Am-2

 15. A uniform and constant magnetic field B = ẐB  exists 
in the Ẑ  direction in vacuum. A particle of mass m 
with a small charge q is introduced in to this region 
with an initial velocity V XV ZVx z= +ˆ ˆ . Given that 
B, m, q, vx and vz are all non zero, which one of the 
following describes the eventual trajectory of the 
 particle? [2016]

 (A) Helical motion in the Z
∧

- direction 

 (B) Circular motion in the xy plane 

 (C) Linear motion in the Z
∧

- direction

 (D) Linear motion in the X
∧

- direction 

 16. The parallel plate capacitor shown in the figure has 
movable plates. The capacitor is charged so that the 
energy stored in it is E when the plate separation is d. 
the capacitor is then isolated electrically and the plates 
are moved such that the plate separation becomes 2d.

d

  At this new plate separation, what is the energy stored 
in the capacitor, neglecting fringing effects? [2016]

 (A) 2E (B) 2  E

 (C) E (D) 
E

2
 

 17. A positive charge q is placed at x = 0 between two 
infinite metal plates placed at x = -d and at x = + d 
respectively. The metal plates lie in the yz plane.

 [2016]

+q

x=0at
 x

=
-d

at
 x

=
+

d

 

  The charge is at rest at t = 0, when a voltage +V is 
applied to the plate at -d and voltage -V is applied 
to the plate at x = +d. Assume that the quantity of 
the charge q is small enough that it does not perturb 
the field set up by the metal plates. The time that the 
charge q takes to reach the right plate is proportional 
to: [2016]

 (A) 
d

V
 (B) 

d

V

 (C) 
d

V
 (D) d

V

 18. Consider the charge profile shown in the figure. The 
resultant potential distribution is best described by 

 [2016]
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0b

a

p(x)

p1

p2

x

V(x)
V(x)

V(x) V(x)

x

x
x

x

a

aa

a

0 0

0
0

b
b

b b

(B)(A)

(D)(C)

Answer Keys

Exercises
Practice Problems 1
 1. B 2. B 3. B 4. C 5. D 6. B 7. B 8. B 9. C 10. C
 11. B 12. C 13. B 14. B 15. D 16. A 17. A 18. A 19. A 20. A

Practice Problems 2
 1. B 2. C 3. B 4. C 5. D 6. A 7. A 8. C 9. C 10. B
 11. C 12. A 13. C 14. C 15. A

Previous Years’ Questions
 1. D 2. D 3. C 4. C 5. D 6. C 7. 0 8. 14.5 to –15.5 9. 3.14
 10. D 11. C 12. –3.1 to –2.9 13. –0.25nC/m2 14. A 15. A 16. A 17. C
 18. D
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