
functions
A function is a block of code that performs a specifi c task. It has a
name and is reusable, i.e., it can be executed from as many differ-
ent parts in a program as required.

Functions make possible top down modular programming. In this
style of programming, the high-level logic of overall problem is solved
fi rst, whereas the detail of each lower-level function is addressed later.
This approach reduces the complexity in writing program.

 1. Every C program can be thought of collection of functions.
 2. main() is also a function.

Types of Functions
Library functions
These are the in-built functions of ‘C’ library. These are already
defi ned in header fi les.

Example 1: printf(); is a function which is used to print at output.
It is defi ned in ‘stdio.h’ fi le.

User-defi ned functions
Programmers can create their own function in ‘C’ to perform spe-
cifi c tasks.

Example 2: # include <stdio.h>
main()
{
message();
}
message()
{
printf(“Hello”);
}

 • A function receives zero (or) more parameters, performs a spe-
cifi c task, and returns zero or one value.

 • A function is invoked by its name and parameters.
 • No two functions have the same name in a single C program.
 • The communication between the function and invoker is through

the parameter and the return value.
 • A function is independent.
 • It is “completely” self-contained.
 • It can be called at any place of your code and can be ported to

another program.
 • Functions make programs reusable and readable.

Example 3: Return the largest of two integers.
int maximum (int a, int b)

 {
 if (a > b)
 return a;
 else
 return b;
 }

Note: Function calls execute with the help of execution stack.
 Execution of ‘C program’ starts with main() function. Main() is a
user-defi ned function.

Defi ning User-defi ned Functions
In order to work with user-defi ned functions, it requires the follow-
ing concepts about functions:

 • Declaration of a function
 • Defi nition of a function
 • Function call

Chapter 2

Functions

 Functions

 Library functions

 User defi ned functions

 Defi ning user defi ned functions

 Recursion

 Parameter passing

 Pass by value

 Pass by address

 Scope

 Life time

 Binding

LEARNING OBJECTIVES

Chapter 2  •  Functions | 3.15

Declaration specifies what

 • is the name of the function
 • are the parameters to pass (type, order and number of

parameters).
 • it returns on completion of execution

Example 4: int maximum (int, int); int maximum (int a,
int b);

Syntax:
Return_type Function_Name(Parameter_list);

 • Names of parameters are optional in declaration.
 • Default return type for ‘C’ functions is ‘int’.
 • A function, whose return type is void returns nothing.
 • Empty parenthesis after a function name in declaration

says, function does not accept any parameters.

Definition specifies how

 • to perform the specified task
 • to accept passed parameters
 • to process parameters or execute instruction to producer

equired results (return value).

Function definition is a self-contained block of instructions,
will be executed on call:

Syntax:
Return _type Function -Name(paralist)
{
Local declaration(s);
Executable statements(s);
}
int maximum (int a, int b)
{
if (a > b)
 return a;
else
 return b;
}

Function call specifies

 1. where to execute the function
 2. when to execute the function

Note: If the function definition provided before use (call),
the declaration is optional.

The following example describes control flow during
function call:

void hello(); // Declaration
void main()
{
printf(“\n function”);
hello();
printf(“\n Main after call to hello”)

void hello()//Definition
 {

printf (“\n function Hello”);
return;
 }

A return statement has two important uses:

 1. first, it causes an immediate exit from the function.
 2. second, it may be used to return a value.

If a function does not return any value, then the return
statement is optional.

RecuRsion
In general, programmers use two approaches to write repeti-
tive algorithms. One approach using loops, the other is
recursion.

Recursive functions typically implement recurrence
relations, which are mathematical formula in which the
desired expression (function) involving a positive integer, n,
is described in terms of the function applied to correspond-
ing values for integers less than ‘n’.

 1. The function written in terms of itself is a recursive
case.

 2. The recursive case must call the function with a
decreasing ‘n’.

 3. Recursion in computer programming is exemplified
when a function defined in terms of itself.

 4. Recursion is a repetitive process in which a function
calls itself.

Note: Recursive function must have an if condition to force
the function to return without recursive call being executed.
If there is no such condition, then the function execution
falls into infinite loop.

Rules for designing recursive function
 1. Determine base case
 2. Determine general case
 3. Combine, base and general case into a function

Example 5: Recursive factorial function

 1. int factorial (int n)
 2. {
 3. if (n = = 0)
 4. return 1;
 5. else
 6. return (n ٭ factorial (n − 1));
 7. }

The statement 3 is a base condition, which stops the recur-
sive call of function.

The statement 6 reduces the size of problem by recur-
sively calling the factorial with (n − 1).

3.16 | Unit 3  •  Programming and Data Structures

Execution sequences for factorial (3):

Factorial (3)
= 3* factorial (2)

 Factorial (3)
3* 2 = 6

Factorial (2)
= 2* factorial (1)

Factorial (2)
2* 1 = 2

Factorial (1)
1* factorial (0)

Factorial (1)
1* 1 = 1

Factorial (0) = 1

Disadvantages:

 1. Recursive programs increase the execution time of
program.

 2. Recursive programs typically use a large amount of
computer memory and the greater the recursion, the
more memory is used.

 3. Recursive programs can be confusing to develop and
extremely complicated to debug.

PaRameteR Passing
There are two ways of passing parameters to functions in
‘C’ language.

 1. Pass-by-value: When parameters are passed by value,
create copies in called function. This mechanism
is used when we do not want to change the value of
actual parameters.

 2. Pass-by-address: In this case, only the addresses
of parameters are passed to the called function.
Therefore, manipulation of formal parameters affects
actual parameters.

Examples 6:
void swap1(int, int); /* function – to swap
two numbers by passing values */

void swap2 (int *, int *); /* function to
swap two numbers by passing Address * /
 void main ()
{
int a = 10, b = 15, c = 5, d = 25;
printf(“value of a and b before swapping
:%d, %d” a , b);
swap1(a, b);
printf(“values of a and b after swapping :
%d, %d”, a, b);
printf (“values of c and d before swapping
:%d%d”, c,d);
Swap2(&c, &d);
printf(“values of c and d after swapping
%d, %d”, c, d);
}
void swap1(int x, int y)
{
int temp;
temp = x;
x = y;
y = temp;
}
void swap2 (int *x, int *y)
{
int temp;
temp = *x;
*x = *y:
*y = temp;
}

Output:
Value of a and b before swapping: 10, 15
Value of a and b after swapping: 10, 15
Value of c and d before swapping: 5, 25
Value of c and d after swapping: 25, 5

Solved Examples

Example 1: Consider the program below:
 #include<stdio.h>
 int fun (int n, int *fp)

Table 1 Comparison of pass-by-value and pass-by-address

Pass-by-value Pass-by-address

1. Also known as call-by-value 1. Also known as call-by-address or call by-reference

2. Pass the values of actual parameters 2. Pass the address of actual parameters

3. Formal parameters act as duplicates or as a copy to actual
parameters

3. Formal parameters acts as references to the actual
parameters

4. Operations on formal parameter does not affect actual
parameters

4. Operations on formal parameters affect actual parameters

5. Passing of parameters is time consuming as the data size
increases

5. The size of parameters does not affect the time for transfer-
ring references.

6. Actual parameters are secured 6. Helps to return multiple parameters

Chapter 2  •  Functions | 3.17

 {
 int t,f;
 if (n < =1)
 {
 *fp=1;
 return 1;
 }
 t = fun(n−1, fp);
 f = t+ *fp;
 *fp = t;
 return f;
 }
 int main ()
 {
 int x = 15;
 printf (“%d\n”, fun(5,&x));
 return 0;
 }

 What is the output?
 (A) 2 (B) 4
 (C) 8 (D) 16

Solution: (C)
Execution stack

Function call
sequence

 Corresponding
values of t, f, n, x

main()

t f n x

15− − −

fun (5 &x)
main()

t f n x(fp)
15
155GG

− − −

 t f n x(fp)
15
155GG
154GG

− − −
fun (5 &x)
fun (4 &x)

main()

 t f n x(fp)
15
155GG
154GG
153GG

− − −
fun (5 &x)
fun (4 &x)
fun (3 &x)

main()

main()

fun (5, &x)

fun (4, &x)

fun (3, &x)

fun (2, &x)

t f n x(fp)

15

155GG

154GG

153GG

152GG

− − −

Note: ‘–’ indicates no memory allocated to variable. ‘G’
indicates garbage value.

main()

fun (5, &x)

fun (4, &x)

fun (3, &x)

fun (2, &x)

fun (1, &x)

t f n x(fp)

15

155GG

154GG

153GG

152GG

151GG

− − −

For the function call fun(1, &x) condition (n<=1) is true. So
Assigns ‘1’ to fp and returns ‘1’.

main()

fun (5, &x)

fun (4, &x)

fun (3, &x)

fun (2, &x)

fun (1, &x)

t f n x(fp)

15GG

4GG

3GG

2GG

1.

1.
1.

1.

1.

1.

1GG

− − −

main()

fun (5, &x)

fun (4, &x)

fun (3, &x)

fun (2, &x)

t f n x(fp)

15GG

4GG

3GG

221 1.
1.

1.

1.

1.− − −

main()

fun (5, &x)

fun (4, &x)

fun (3, &x)

t f n x(fp)

5GG

4GG

332

1.− − −

2.

2.

2.

main()

fun (5, &x)

fun (4, &x)

t f n x(fp)

5GG

453

1.− − −

3.

3.

3.18 | Unit 3  •  Programming and Data Structures

main()

fun (5, &x)

t f n x(fp)

5.− − −
585 5.

main()

t f n x(fp)

8

 Finally, x contains ‘8’, so printf prints ‘8’.

Example 2: What does the following program prints?
 #include < stdio.h>
 void f (int *p, int *q)
 {
 p=q;
 *p=12;
 }
 int i = 0, j=1;
 int main()
 {
 f(&i, &j);
 printf(“ %d%d “, i, j);
 return 0 ;
 }
 (A) 2 12 (B) 12 1
 (C) 0 1 (D) 0 12

Solution: (D)
 main()
 f (&i, &j)
 address of ‘i’ is stored in to p.
 and address of ‘j’ is stored into ‘q’.
 i.e., *p and*q refers i and j.
 The statement:
 p = q; updates pointer ‘p’, so that both

pointers refer to parameter ‘j’.
 *p = 12
 Changes value of ‘j’ to ‘12’ But ‘i’ does

not effected. So, prints 0 12.

Example 3: What is the value printed by the following
program?
 # include <stdio.h>
 int f(int *a, int n)
 {
 if (n<=0) return 0 ;
 else if(*a%2 = = 0)
 return *a + f(a+1, n−1);
 else
 return *a – f(a+1, n−1);
 }
 int main ()
 {
 int G [] = { 12, 7, 13, 4, 11, 6};
 printf(“%d”, f (a,b));
 return 0;
 }
 (a) −9 (b) 12
 (c) 15 (d) 20

Solution: (C)

0 1 2 3 4 5

a 12 7 13 4 11 6

 f (a, 6) is the first call to function f ().
 The array _ name refers to base address of array, i.e., address
of first element.
 Thus,
 F (a, 6)
 12 % 2 = 0. So,

12
1

1

5

7

+
+

−

↓
[]f

a
n

a
(),

* is even

12 7
1

1

4

13

+ −
+

−

↓

f a
n

a
(),

[*]is odd

12 7 13
1

4

1

3
+ − −

+

↓

−

f

a n
a

()
, [* is odd]]

12 7 13 4
1

1

2

11

+ − − +
+

−

↓

f
a

n
(),

()

,

[*]a is even

12 7 13 4 11
1

1

1

6

+ − − + −
+

−

↓

f
a

n
(),

[*]a is odd

12 7 13 4 11 6
1

1

0
0

+ − − + − +
+

−

↓

f a
n

(),
()

[*]a is even

 12 + (7 (13 - (4 + (11 - (6 + 0))))) = 15

scoPe, Lifetime and Binding
Storage classes specify the scope, lifetime and binding of
variables. To fully define a variable, one needs to mention
not only its ‘type’ but also its ‘storage class’.

A variable name identifies some physical location within
computer memory where a collection of bits are allocated
for storing value of variable.
Storage class tells us:

 1. Where the variable would be stored (either in memory
or CPU registers)?

 2. What will be the initial value of a variable, if no value
is specifically initialized?

 3. What is the scope of a variable (where it can be accessed)?
 4. What is the life of a variable?

Chapter 2  •  Functions | 3.19

Scope
The scope defines the visibility of an object. It defines
where an object can be referenced/accessed; generally, the
scope of variable is local or global.

 1. The variables defined within a block have local scope.
They are visible only to the block in which they are
defined.

 2. The variables defined in global area are visible from
their definition until the end of program. It is visible
everywhere in program.

Lifetime
The lifetime of a variable defines the duration for which
the computer allocates memory for it (the duration between
allocation and deallocation of memory).

In C, variable can have automatic, static or dynamic
lifetime.

 1. Automatic: Variables with automatic lifetime are cre-
ated each time their declaration are encountered and
are destroyed each time their blocks are exited.

 2. Static: A variable is created when the declaration is
executed for the first time and destroyed when the exe-
cution stops/terminates.

 3. Dynamic: The variable’s memory is allocated and deal-
located through memory management functions.

Binding
Binding finds the corresponding binding occurrence (dec-
laration/definition) for an applied occurrence (usage) of an
identifier. For Binding.

 1. Scope of variables should be known. What is the block
structure? In which block the identifier is variable?

 2. What will happen if we use same identifier name
again? ‘C forbids use of same identifier name in the
same scope’. Same name can be used in different
scopes.

Examples:

 1. double f,y;
 int f() // error
 {
 .
 .
 .
 }
 double y; // error

 2. double y;
 int f()
 {
 double f;// legal
 int y; //legal
 }

There are four storage classes in C.

Storage class Storage Area Default Initial Value Lifetime Scope Keyword

Automatic Memory Till the control remains in block Till the control remains in block Local auto

Register CPU register An unpredictable value (or) gar-
bage value

Till the control remains in block Local register

Static Memory Zero Value of variable persist between
function calls

Local static

External Memory Unpredictable or garbage value Throughout program execution Global extern

Note: Default storage class is auto.

Example 4: What will be the output for the program?
 int i = 33;
 main()
 {
 extern int i;
 {
 int i = 22;
 {
 const volatile unsigned i
 = 11;
 printf (“ %d ”, i);
 }
 printf (“ %d ”, i);
 }
 printf (“%d “, i) ;
 }

 (A) error
 (B) 11 22 33
 (C) 11 22 garbage
 (D) 11 11 11

Solution: (B)
‘{‘ introduces new block and thus new scope. In the inner-
most block, i is declared as const volatile unsigned which
is a valid declaration. i is assumed of type int. So printf
prints 11. In the next block, i has value 22 and so printf
prints 22. In the outermost block, i is declared as extern,
so no storage space is allocated for it. After compilation is
over, the linker resolves it to global variable, i since it is
the only variable visible there. So it prints its value as 33.

3.20 | Unit 3  •  Programming and Data Structures

Example 5: Consider the following C program:

 int f(int n)
 {
 static int r;
 if (n<=0) return 1;
 if (n> 3)
 {
 r=n;
 return (f(n−2)+2));
 }
 return f(n−1) + r;
 }

What is the value of f(5)?
(a) 15 (b) 17
(c) 18 (d) 19

Solution: (C)

Call Sequence r Return Sequence

f (5)
↓

5 18

f (3)+2 5 16+2
↓

f (2)+r 5 11+5
↓

f (1)+r 5 6+5
↓

f (0)+r 5 1+5

↓

Common data for questions 6 and 7: Consider the fol-
lowing recursive ‘C’ function that takes two arguments.
unsigned int foo (unsigned int n, unsigned int r)

{
if (n>0)
return ((n%r)+ foo(n/r,r));
else
return 0;
}

Example 6: What is the return value of the function foo
when it is called as foo (512,2)?
(A) 9 (B) 8
(C) 2 (D) 1

Solution: (D)

foo (513, 2)

0 +

0 +

foo (256, 2)

0 +

foo (128, 2)

0 +

foo (64, 2)

0 +

foo (32,2)

0 +

foo (16,2)

0 +

foo (8, 2)

foo (8, 2)

0 +

0 +

foo (4, 2)

0 +

foo (2, 2)

0 +

f (1, 2)

0 +

foo (1, 2)

0 0+

f (0, 2)Result = 1

Choice D

 Result = 1

Example 7: What is return value for the function call foo
(345, 10)?
(A) 345 (B) 12
(C) 5 (D) 3

Solution: (B)

foo (345, 10)

5 +

4 +

foo (34, 10)

3 +

foo (3, 10)

0 +

foo (0, 10)

0

result 5 + 4 + 3 = 12

Chapter 2  •  Functions | 3.21

exeRcises

Practice Problems 1
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.

 1. What will be the output of the following program?
 main()
 {
 main();
 }
 (A) overflow error (B) syntax error
 (C) returns 0 (D) returns 1

 2. Output of the following program is
 main()
 {
 static int var = 6;
 printf(“%d\t”, var--);
 if(var)
 main();
 }
 (A) 5 4 3 2 1 0 (B) 6 6 6 6 6 6
 (C) 6 5 4 3 2 1 (D) Error

 3. Which of the following will be the output of the
program?

 main()
 {
 char str[] = “Hello”;
 display(str);
 }
 void display (char *str)
 {
 printf (“%s”, str) ;
 }
 (A) compilation error (B) hello
 (C) print null string (D) no output

 4. Consider the following C function
 int fun (int n)
 {
 static int x = 0;
 if (n<=0) return 1;
 if (n>3)
 {
 x = n;
 return fun(n-2)+3;
 }
 return fun(n-1)+ x;
 }
 What is the value of fun(5)?
 (A) 4 (B) 15
 (C) 18 (D) 19

 5. For the following C function
 void swap (int a, int b)
 {
 int t;

 t = a;
 a = b;
 b = t;
 }
 In order to exchange the values of two variables w and

z,
 (A) call swap (w, z)
 (B) call swap (and w, and z)
 (C) swap (w, z) cannot be used as it does not return any

value
 (D) swap (w, z) cannot be used as the parameters are

passed by value

 6. Choose the correct option to fill? x and? y so that the
program below prints an input string in reverse order.
Assume that the input string is terminated by a new line
character:

 void Rev(void) {
 int a;
 if (?x) Rev();
 ?y
 }
 main() {
 printf(“Enter the text”);
 printf(“ \n”);
 Rev();
 printf(“\n”);
 }
 (A) ? x is (getchar()! = ‘\n’)
 ? y is getchar (A);
 (B) ? x is((A = getchar()) ! = ‘\n’)
 ? y is getchar(A) ;
 (C) ? x is (A! = ‘\n’)
 ? y is putchar (A);
 (D) ? x is (A = getchar ()) ! = ‘\n’)
 ? y is putchar(A) ;

 7. main ()
 {
 extern int a;
 a = 30;
 printf (“%d”, a);
 }
 What will be the output of the above program?
 (A) 30 (B) Compiler error
 (C) Runtime error (D) Linker error

 8. Which of the following will be the output of the
program?

 void main ()
 {
 int n = ret(sizeof(float));
 printf(“\n value is %d ”, ++n);
 }
 int ret(int ret)
 {

3.22 | Unit 3  •  Programming and Data Structures

 ret += 2.5;
 return (ret);
 }
 (A) Value is 6 (B) Value is 6.5
 (C) Value is 7 (D) Value is 7.5

 9. The following program
 main()
 {
 pt(); pt();pt();
 }
 pt()
 {
 static int a;
 printf(“%d”, ++a) ;
 }
 prints
 (A) 0 1 2
 (B) 1 2 3
 (C) 3 consecutive, but unpredictable numbers
 (D) 1 1 1

 10. What is the output of the following program?
 main() {
 int i = 0;
 while (i < 4) {
 sum(i);
 i++;
 }
 }
 void sum(int i) {
 static int k;
 printf (“%d”, k + i);
 k++;
 }
 (A) 0 2 4 6 (B) 0 1 2 3
 (C) 0 2 0 0 (D) 1 3 5 7

 11. What will be the output of following code?
 # include <stdio.h>
 aaa() {
 printf(“hi”);
 }
 bbb() {
 printf(“hello”);
 }
 ccc()
 {
 printf(“bye”);
 }
 main ()
 {
 int *ptr[3]();
 ptr[0] = aaa;
 ptr[1] = bbb;
 ptr[2] = ccc;

 ptr[2]();
 }
 (A) hi (B) hello
 (C) bye (D) Garbage value

 12. What is the output?
 void main()
 {
 static int i = 5;
 if(--i)
 {
 main();
 printf(“%d”, i);
 }
 }
 (A) 5 (B) 5 5 5 5
 (C) 0 0 0 0 (D) 1 1 1 1

 13. If the following function gets compiled, what error
would be raised?

 double fun(int x, double y)
 {
 int x;
 x = 100;
 return y;
 }
 (A) Function should be defined as int fun(int x, double y)
 (B) Missing parenthesis in return
 (C) Redeclaration of x
 (D) All of these

 14. Consider the following function:
 fun(int x)
 {
 if ((x/2)! = 0)
 return (fun (x/2) 10 + x%2);
 else return 1;
 }
 What will happen if the function ‘fun’ called with value

16 i.e., as fun(16).
 (A) Infinite loop
 (B) Random value will be returned
 (C) 11111
 (D) 10000

 15. What is the output of the following program?
 void main()
 {
 static int x = 5;
 printf(“%d”, x – –);
 if (x ! = 0)
 main();
 }
 (A) error:main() cannot be called from main()
 (B) Infinite loop
 (C) 5 4 3 2 1
 (D) 0

Chapter 2  •  Functions | 3.23

Practice Problems 2
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.

 1. An external variable
 (A) is globally accessible by all functions
 (B) has a declaration “extern” associated with it when

declared within a function
 (C) will be initialized to 0, if not initialized
 (D) all of the above

 2. The order in which actual arguments are evaluated in a
function call

 (A) is from the left (B) is from the right
 (C) is unpredictable (D) none of the above

 3. In C language, it is necessary to declare the type of a
function in the calling program if the function

 (A) returns an integer (B) Returns a float
 (C) both (A) and (B) (D) none of the above

 4. What is the output?
 void main()
 {
 int k = ret(sizeof(int));
 printf(“%d”, ++k);
 }
 int ret (int ret)
 {
 ret + = 2.5;
 return (ret);
 }
 (A) 3.5 (B) 5
 (C) 4 (D) logical error

 5. When a recursive function is called, all its automatic
variables are

 (A) maintained in stack
 (B) retained from last execution
 (C) initialized during each call of function
 (D) none of these

 6. Consider the following program segment:
 int fun(int x, int y)
 {
 if(x > 0)
 return ((x % y) + fun(x/y, y));
 else
 return 0;
 }
 What will be the output of the program segment if the

function is called as fun(525, 25)?
 (A) 25 (B) 12
 (C) 21 (D) 42

 7. Consider the following C program segment:
 int fun (int x)
 {
 static int i = 0;
 if (x < = 0)

 return 1;
 else if (x > 5)
 {
 i = x;
 return fun (x – 3) +2;
 }
 return fun (x – 2) + i;
 }
 What is the value of fun(7)?
 (A) 17 (B) 10
 (C) 11 (D) 9

 8. Consider the following C program:
 void rearrange()
 {
 char ch;
 if (X)
 rearrange();
 Y;
 }
 void main ()
 {
 printf(“\n enter text to print reverse

order :”);
 rearrange() ;
 }
 Choose the correct option to fill X and Y, so that the

program prints the entered text in reverse order. As-
sume that input string terminates with new line.

 (A) X: (getchar(ch) = = ‘\n’)
 Y: putchar(ch);
 (B) X: (getchar(ch)! = ‘\n’)
 Y: ch = putchar();
 (C) X: ((ch = getchar())! = ‘\n’)
 Y: putchar(ch);
 (D) X: ((ch = getchar()) = = ‘\n’)
 Y: putchar (ch);

 9. Consider the following C function:
 int f(int n)
 {
 static int i = 1;
 if (n > = 5) return n;
 n = n + i;
 i++ ;
 return f(n);
 }
 The value returned by f(1) is
 (A) 5 (B) 6
 (C) 7 (D) 8

 10. Consider the following C function:
 int incr (int i)
 {
 static int count = 0;
 count = count + i;
 return (count);

3.24 | Unit 3  •  Programming and Data Structures

 }
 main ()
 {
 int i, j;
 for (i = 0; i < =4; i++)
 j = incr (i);
 }

 The j value will be
 (A) 10
 (B) 4
 (C) 6
 (D) 7

 11. The following function

 int Trial (int a, int b, int c)
 {
 if ((a > = b) && (c < b))
 return b;
 else if(a > = b)
 return Trail(a, c, b);
 else return Trail (b, a, c);
 }

 (A) finds the maximum of a, b, c

 (B) finds the middle value of a, b, c after sorting

 (C) finds the minimum of a, b, c

 (D) none of the above

 12. Consider the following pseudo code

 f(a, b)
 {
 while(b! = 0)
 {
 t = b;
 b = a % b;
 a = t;
 }
 return a;
 }

 (A) The above code computes HCF of two numbers a
and b

 (B) The above code computes LCM of a and b
 (C) The above code computes GCD of a and b
 (D) None of the above

 13. 1. main ()
 2. {int a = 10, *j;
 3. void *k;
 4. j = k = &a;
 5. j++;
 6. k++;
 7. printf(“\n %u, %u”, j, k);
 8. }

 Which of the following is true in reference to the above
code?

 (A) The above code will compile successfully
 (B) Error on line number 6
 (C) Error on line number 3
 (D) Error on line number 4

 14. Aliasing in the context of programming language refers
to

 (A) multiple variables having the same memory
location

 (B) multiple variables having the same value
 (C) multiple variables having the same identifier
 (D) multiple uses of the same variable

 15. Match the following:

X: m = malloc (5);
m = NULL;

1: Using dangling pointers

Y: free (n); n ↓
value = 5;

2: Using un initialized pointers

Z: char *p; *p = ‘a’; 3: Lost memory

 (A) X – 1 Y – 3 Z – 2
 (B) X – 3 Y – 1 Z – 2
 (C) X – 3 Y – 2 Z – 1
 (D) X – 2 Y – 1 Z – 3

Chapter 2  •  Functions | 3.25

PRevious YeaRs’ Questions

 1. In the following C function, let n ≥ m.
 int gcd(n,m)
 {
 if (n%m ==0) return m;
 n = n%m;
 return gcd(m,n);
 }
 How many recursive calls are made by this function?
 [2007]
 (A) Θ(log)2 n (B) Ω(n)

 (C) Θ(log log)2 2 n (D) Θ()n

 2. What is the time complexity of the following recursive
function?

 int DoSomething (int n) {

 if (n <= 2)

 return 1;

 else

 return(DoSomething(floor(sqrt(n)))+ n);}
 [2007]

 (A) Θ()n2 (B) Θ(log)n n2

 (C) Θ(log)2 n (D) Θ(log log)2 2 n

 3. Choose the correct option to fill ? 1 and ? 2 so that
the program below prints an input string in reverse
order. Assume that the input string is terminated by a
newline character.

 void reverse (void) {

 int c;

 if (?1) reverse();

 ?2

 }

 main () {

 printf (“Enter Text”) ; printf (“\ n”);

 reverse (); printf (“\ n”) ;

 } [2008]
 (A) ?1 is (getchar()! = ‘\n’)
 ?2 is getchar(c);
 (B) ?1 is (c = getchar())! = ‘\n’)
 ?2 is getchar(c);
 (C) ?1 is (c! = ‘\n’)
 ?2 is putchar(c);
 (D) ?1 is ((c = getchar())! = ‘\n’)
 ?2 is putchar(c);

 4. Consider the program below:

include < stdio.h >

 int fun(int n, int * f_p) {

 int t, f;

 if (n <=1) {

 *f_p =1;

 return 1;

 }

 t = fun (n-1, f_p);

 f = t+*f_p;

 *f_p = t;

 return f;

 }

 int main() {

 int x = 15;

 printf (“%d\n”, fun(5,&x));

 return 0;

 }
 The value printed is [2009]
 (A) 6 (B) 8
 (C) 14 (D) 15

 5. What is the value printed by the following C program?

 #include <stdio.h>

 int f(int *a, int n)

 {

 if (n <= 0)return 0;

 else if(*a % 2 = = 0) return * a + f(a+1,
n –1);

 else return *a–f(a+1, n –1);

 }

 int main()

 {

 int a[] = {12, 7, 13, 4, 11, 6};

 printf(“%d”, f(a,6));

 return 0;

 } [2010]
 (A) -9 (B) 5
 (C) 15 (D) 19

Common data for questions 6 and 7: Consider the fol-
lowing recursive C function that takes two arguments.
unsigned int foo (unsigned int n, unsigned int r)
{
if (n > 0) return ((n % r) + foo (n /r,
r));
else return 0;
}

 6. What is the return value of the function foo when it is
called as foo (513, 2)? [2011]

 (A) 9 (B) 8
 (C) 5 (D) 2

3.26 | Unit 3  •  Programming and Data Structures

 7. What is the return value of the function foo when it is
called as foo (345, 10)? [2011]

 (A) 345 (B) 12
 (C) 5 (D) 3

Common data for questions 8 and 9: Consider the fol-
lowing C code segment

 int a, b, c = 0;

 void prtFun (void);

 main ()

 { static int a = 1;

 prtFun();

 a+ = 1;

 prtFun();

 printf(“\n %d %d”, a, b);

 }

 void prtFun(void)

 {static int a = 2;

 int b = 1;

 a+ = ++b;

 printf(“\n %d %d”, a, b);

 }

 8. What output will be generated by the given code seg-
ment if: [2012]

 Line 1 is replaced by auto int a = 1;
 Line 2 is replaced by register int a = 2;
 (A) (B) (C) (D)
 3 1 4 2 4 2 4 2
 4 1 6 1 6 2 4 2
 4 2 6 1 2 0 2 0

 9. What output will be generated by the given code seg-
ment? [2012]

 (A) (B) (C) (D)
 3 1 4 2 4 2 3 1
 4 1 6 1 6 2 5 2
 4 2 6 1 2 0 5 2

 10. What is the return value of f (p, p), if the value of p
is initialized to 5 before the call? Note that the first
parameter is passed by reference, whereas the second
parameter is passed by value.

 int f(int &x, int c) {

 c = c – 1;

 if (c == 0) return 1;

 x = x + 1;

 return f(x, c) * x;

 } [2013]
 (A) 3024 (B) 6561
 (C) 55440 (D) 161051

 11. Consider the following pseudo code. What is the total
number of multiplications to be performed? [2014]

 D = 2

 for i = 1 to n do

 for j = i to n do

 for k = j +1 to n do

 D = D * 3
 (A) Half of the product of the three consecutive inte-

gers.
 (B) One-third of the product of the three consecutive

integers.
 (C) One-sixth of the product of the three consecutive

integers.
 (D) None of the above.

 12. Consider the function func shown below:

 int func (int num) {

 int count = 0;

 while (num) {

 count ++;

 num>>=1;

 }

 return (count);

 }

 The value returned by func(435) is ______ [2014]

 13. Consider the following function

 double f (double X)

 if (abs(X*X – 3) < 0.01)return X;

 else return f(X/2 + 1.5/X);

 }

 Give a value q(to two decimals) such that f(q) will
return q:________ [2014]

 14. Consider the following pseudo code, where x and y
are positive integers [2015]

 begin
 q := 0
 r := x
 while r ≥ y do
 begin
 r := r – y
 q := q + 1
 end
 end

 The post condition that needs to be satisfied after the
program terminates is

 (A) {r = qx + y ∧ r < y}

 (B) {x = qy + r ∧ r < y}

 (C) {y = qx + r ∧ 0 < r < y}

 (D) {q + 1 < r – y ∧ y > 0}

Chapter 2  •  Functions | 3.27

 15. Consider the following C function [2015]
 int fun(int n) {
 int x = 1, k;
 if (n = = 1) return x;
 for (k = 1; k < n; ++k)
 x = x + fun(k) * fun(n

– k);
 return x;
 }
 The return value of fun(5) is _____

 16. Consider the following recursive C function

 void get (int n)
 {
 if (n < 1) return;
 get (n – 1);
 get (n – 3);
 printf(“%d”, n);
 }

 If get (6) function is being called in main () then how
many times will the get () function be invoked before
returning to the main ()?

 (A) 15 (B) 25
 (C) 35 (D) 45

 17. Consider the following C program [2015]

 #include<stdio.h>
 int f1(void);
 int f2(void);
 int f3(void);
 int x = 10;
 int main ()

 {
 int x = 1;
 x += f1() + f2 () + f3 () + f2 (

);
 printf(“%d”, x);
 return 0;
 }
 int f1 () { int x = 25;

x++; return x;}
 int f2 () { static int x

= 50; x++; return x;}
 int f3 () { x *= 10; return

x};

 The output of the program is ______

 18. Suppose c = < c[0],…,c[k – 1]> is an array of length
k, where all the entries are from the set {0, 1}. For
any positive integers a and n, consider the following
pseudo code. [2015]

 DOSOMETHING (c, a, n)
 z ← 1
 for i ← 0 to k – 1
 do z ← z2 mod n
 if c[i] = 1
 then z ← (z × a) mod n
 return z
 If k = 4, c = <1, 0, 1, 1>, a = 2 and n = 8, then the

output of DOSOMETHING(c, a, n) is ______

 19. What will be the output of the following C program?
 [2016]

 void count (int n) {

 static int d = 1;

 printf(“%d ”,n);

 printf(“%d ”,d);

 d ++;

 if (n > 1) count (n -1);

 printf(“%d ”, d);

 }

 void main () {

 count (3);

 }

 (A) 3 1 2 2 1 3 4 4 4

 (B) 3 1 2 1 1 1 2 2 2

 (C) 3 1 2 2 1 3 4

 (D) 3 1 2 1 1 1 2

 20. The following function computes XY for positive inte-
gers X and Y. [2016]

 int exp (int X, int Y)

 {

 int res = 1, a = X, b = Y;

 while (b! = 0)

 {

 if (b%2 = = 0) {a = a*a; b = b/2;}

 else {res = res *a; b = b -1;}

 }

 return res;

 }

 Which one of the following conditions is TRUE
before every iteration of the loop?

 (A) XY = ab

 (B) (res *a)Y = (res* X)b

 (C) XY = res *ab

 (D) XY = (res*a)b

3.28 | Unit 3  •  Programming and Data Structures

 21. Consider the following two functions.
void fun1 (int n) { void fun2 (int n) {

if (n == 0) return; if (n == 0) return;
printf (“%d”, n); printf (“%d”, n);
fun2 (n − 2) ; fun1(++n)
printf (“%d”, n); printf (“%d”, n);

} }

 The output printed when fun1 (5) is called is [2017]
 (A) 53423122233445 (B) 53423120112233
 (C) 53423122132435 (D) 53423120213243

 22. Consider the C functions foo and bar given below:
int foo (int val) {

int x = 0;
while (val > 0) {

x =x + foo (val−−);
}
return val;

}
int bar (int val) {

int x = 0;
while (val > 0) {

x =x +bar (val − 1);
}

return val;
}

 Invocations of foo (3) and bar (3) will result in:
 [2017]
 (A) Return of 6 and 6 respectively.
 (B) Infinite loop and abnormal termination respec-

tively.
 (C) Abnormal termination and infinite loop respec-

tively.
 (D) Both terminating abnormally.

 23. The output of executing the following C program
is______.

include <stdio.h>
int total (int v) {

static int count = 0;
while (v) {

count + = v&1;
v >> = 1;

}
return count;

}
void main () {

static int x = 0;
int i = 5;
for (; i > 0,i−−) {

x = x + total (i);
}
printf (“%d\n”, x);

}

 [2017]

 24. Consider the following C program:
 #include <stdio.h>
 int counter = 0;
 int calc (int a, int b) {
 int c;
 counter++;
 if (b==3) return (a*a*a);
 else {
 c = calc (a, b/3);
 return (c*c*c);
 }
 }
 int main () {
 calc (4, 81);
 printf (“%d”, counter);
 }

 The output of this program is ______. [2018]

 25. Consider the following program written in pseudo-
code. Assume that x and y are integers.

 Count (x,y) {
 if (y ! = 1) {
 if (x ! = 1) {
 print (“*”);
 Count (x/2, y);
 }
 else {
 y = y–1;
 Count (1024, y);
 }
 }
 }

 The number of times that the print statement is exe-
cuted by the call count (1024, 1024) is ______.
 [2018]

Chapter 2  •  Functions | 3.29

answeR KeYs

exeRcises

Practice Problems 1
 1. A 2. C 3. A 4. D 5. D 6. D 7. D 8. C 9. B 10. A
 11. C 12. C 13. C 14. D 15. C

Practice Problems 2
 1. D 2. C 3. B 4. B 5. C 6. C 7. A 8. C 9. C 10. A
 11. B 12. C 13. B 14. A 15. B

Previous Years’ Questions
 1. C 2. - 3. -D 4. B 5. C 6. D 7. B 8. D 9. C 10. B
11. C 12. 9 13. 1.72 to 1.74 14. B 15. 51 16. B 17. 230 18. 0 19. A
 20. C 21. A 22. C 23. 23 24. 4 25. 10230

	Unit 3: Programming and Data Structures
	PART A: Programming and Data Structures
	Chapter 2: Functions
	Functions
	Recursion
	Parameter Passing
	Scope, Lifetime and Binding
	Exercises
	Previous Years’ Questions
	Answer Keys

