PRACTICE PAPER

Time allowed: 45 minutes Maximum Marks: 200

General Instructions: As given in Practice Paper - 1.

Section-A

Cl

(c) $\tan^{-1} e - \frac{\pi}{4}$

7. The value of $\int \tan^8 x \sec^4 x \, dx$ is

hoo	se the correct option:			
1.	If $A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 5 & 7 \end{bmatrix}$ and $2A - 3B = \begin{bmatrix} 4 & 5 & -9 \\ 1 & 2 & 3 \end{bmatrix}$ then B is equal to			
	(a) $\frac{1}{3}\begin{bmatrix} -2 & -1 & 15 \\ 5 & 8 & -11 \end{bmatrix}$ (b) $\begin{bmatrix} 2 & 1 & -15 \\ 5 & -8 & -11 \end{bmatrix}$	(c) $\begin{bmatrix} 2 & -1 & 15 \\ 5 & 8 & 11 \end{bmatrix}$	(d) $\frac{-1}{3}\begin{bmatrix} 2 & 1 & -15 \\ 5 & -8 & -11 \end{bmatrix}$	
2.	The value of the determinant			
	(a) 1 (b) -1	(c) 0	(d) None of these	
3.	If $A = \begin{bmatrix} 2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3 \end{bmatrix}$, then A^{-1} exists if			
	(a) $\lambda = 2$ (b) $\lambda \neq 2$	(c) λ ≠ -2	(d) None of these	
4.	If $f(x) = \log x$ then $f''(1)$ equal to			
	(a) 1 (b) 0	(c) $\frac{1}{2}$	(d) - 1	
5.	The tangent to the curve given by $x = e^t \cdot \cos t$, $y = e^t \cdot \sin t$ at $t = \frac{\pi}{4}$ makes with x-axis an angle of			
	(a) 0 (b) $\frac{\pi}{4}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{2}$	
6.	Integration of $\int_{0}^{1} \frac{e^{x}}{1+e^{2x}} dx$ is			

(d) None of these

(a)	$\frac{\tan^{11}x}{11}$ +	tan ⁹ x	+0
(11)	11	9	+ (

(b)
$$\frac{\tan^6 x}{6} + \frac{\tan^9 x}{9} + C$$

$$(c) \frac{\tan^8 x}{8} + \frac{\tan^4 x}{4} + C$$

(d)
$$\frac{\tan^{11}x}{11} + \frac{\tan^8x}{8} + C$$

8. The value of $\int \frac{dx}{2\sin^2 x + 5\cos^2 x}$ is

(a)
$$\frac{1}{\sqrt{5}} \tan^{-1} [\sqrt{2} \tan x] + C$$

(b)
$$\frac{1}{\sqrt{10}} \tan^{-1} \left[\frac{\sqrt{2} \tan x}{\sqrt{5}} \right] + C$$

(c)
$$\frac{\sqrt{2}}{\sqrt{5}} \tan^{-1} \left[\frac{\sqrt{2} \tan x}{\sqrt{5}} \right] + C$$

(d)
$$\frac{1}{\sqrt{10}} \tan^{-1} [\sqrt{2} \tan x] + C$$

9. The value of $\int_{-1}^{1} \frac{(x^2 + \sin x) dx}{1 + x^2}$ is equal to

(a)
$$2 - \pi$$

(c)
$$2 - \pi/2$$

(d) none of these

10. The area of the curve $y = \sin x$ between 0 and π is

(d) 14 sq. units

11. The degree of the differential equation $\frac{d^2y}{dx^2} + e^{dy/dx} = 0$ is

(a) 0

(b) 2

(c) 1

(d) Not defined

12. The general solution of $\frac{dy}{dx} + ay = e^{mx}$ is

(a)
$$(m + a) y = e^{mx} + ke^{-ax}$$
 (b) $y = e^{mx} + k$

(b)
$$y = e^{mx} + k$$

(c)
$$y = e^{-ax} + k$$

(d) None of these

Feasible region is the set of points which satisfy

(a) the objective functions

(b) some of the given constraints

(c) all of the given constraints

(d) None of these

14. The mean of the numbers obtained on throwing a die having written 1 on three faces, 2 on two faces and 5 on one face is

 Suppose that two cards are drawn at random from a deck of cards. Let X be the number of aces obtained. Then the value of E(X) is

(d) 2/13

Section-B (B1)

Let R be a relation on A = {a, b, c} such that R = {(a, a), (b, b), (c, c)}, then R is

- (a) Reflexive
- (b) Symmetric only
- (c) Non transitive
- (d) Equivalence

 Let A = {1, 2, 3}. Then, the number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive, are

18. Let $A = R - \{3\}$ and $B = R - \{1\}$. Consider the function $f: A \to B$ defined by $f(x) = \left(\frac{x-2}{x-3}\right)$ then $f^{-1}(x)$ equals

(a)
$$\frac{3x-2}{x-1}$$
; $x \neq 1$

(a)
$$\frac{3x-2}{x-1}$$
; $x \neq 1$ (b) $\frac{3x-2}{x+1}$; $x \neq -1$ (c) $\frac{3x+2}{x-1}$; $x \neq 1$

(c)
$$\frac{3x+2}{x-1}$$
; $x \neq 1$

(d)
$$\frac{3x-1}{x-2}$$
; $x \neq 2$

Let * be a binary operation on N given by a * b = a + b then (2 * 3) * 4 is equal to

20.	Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x) = 2x^3 + 2x^2 + 300x + 5 \sin x$ then f is				
	(a) one-one onto		(b) one-one into		
	(c) many one onto		(d) many one into		
21.	The value of $\cos^{-1}\left(\cos\frac{5\pi}{3}\right) + \sin^{-1}\left(\sin\frac{5\pi}{3}\right)$ is equal to				
	(a) 0	(b) $\frac{\pi}{2}$	(c) $\frac{10\pi}{3}$	(d) $\frac{2\pi}{3}$	
22.	The value of $\sin^{-1}\left(\frac{4}{5}\right) + 2 \tan^{-1}\left(\frac{1}{3}\right)$ is equal to				
	(a) $\tan^{-1} \left(\frac{3}{4} \right)$	(b) $\tan^{-1}\left(\frac{4}{3}\right)$	(c) $\tan^{-1} \frac{3}{\sqrt{10}}$	(d) $\frac{\pi}{2}$	
23.	$\cot^{-1} \left[\frac{\sqrt{1 - \sin x} + \sqrt{1 + \sin x}}{\sqrt{1 - \sin x} - \sqrt{1 + \sin x}} \right]$	$\left[\frac{\ln x}{\ln x}\right]$ is equal to			
	(a) $\pi - x$	(b) $2\pi - x$	(c) $\frac{\pi}{2}$	(d) $\pi - \frac{x}{2}$	
24.	Simplified value of the expression $\tan \left\{ \frac{1}{2} \sin^{-1} \frac{2x}{1+x^2} + \frac{1}{2} \cos^{-1} \frac{1-y^2}{1+y^2} \right\}$ is				
	(a) $\frac{x+y}{1+xy}$	$(b) \ \frac{x+y}{1-xy}$	(c) xy	(d) $x\sqrt{1-x^2} + y\sqrt{1-x^2}$	
25.	$\begin{bmatrix} 7 & 1 & 2 \\ 9 & 2 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} + 2 \begin{bmatrix} 4 \\ 5 \end{bmatrix} $ is equ	aal to			
	(a) [45] 44]	(b) [43] 45]	(c) [44] 43]	(d) $\begin{bmatrix} 43\\ 50 \end{bmatrix}$	
26.	Read the following staten	nents.			
		onal element of skew-symn			
		natrix is not a skew symmet	ric matrix.		
	Choose the correct option. (a) Statement I is correct b.		t.		
	(a) Statement I is correct but statement II is not correct. (b) Statement II is correct but statement I is not correct.				
	(c) Both statements I and I	II are correct.			
	(d) None of these				
27.		$\cos A \& B, A = 2 \& B =$			
	(a) 2	(b) 6	(c) 12	(d) none of these	
28.	If the value of a third order determinant is 12, then the value of the determinant formed by replacing each element by its cofactor will be			nt formed by replacing each	
	(a) 12	(b) 144	(c) -12	(d) 13	
29.	If $f(x) = \cos x - \sin x $, the	hen $f'\left(\frac{\pi}{3}\right)$ is equal to			
	(a) $\frac{(\sqrt{3}+1)}{2}$		(b) $\frac{\sqrt{3}}{2}$		
	(c) $\frac{(\sqrt{3}-1)}{2}$		(d) none of these		

- 30. For the curve $\sqrt{x} + \sqrt{y} = 1$, $\frac{dy}{dx}$ at $\left(\frac{1}{4}, \frac{1}{4}\right)$ is

 (a) 1 (b) -1 (c) 0 (d) 2
- 31. The function $f(x) = \begin{cases} \frac{\sin x}{x} + \cos x, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases}$ is continuous at x = 0, then the value of k is
 - (a) 3 (b) 2 (c) 1 (d) 1.5
- 32. If $y = \sec^{-1}\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right) + \sin^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)$, then $\frac{dy}{dx}$ is equal to

 (a) 1 (b) π (c) 0 (d) -1
- 33. If $f(x) = \frac{x}{\sin x}$ and $g(x) = \frac{x}{\tan x}$, where $0 < x \le 1$, then in the interval
 - (a) both f(x) and g(x) are increasing functions.
 - (b) both f(x) and g(x) are decreasing functions.
 - (c) f(x) is an increasing function.
 - (d) g(x) is an increasing function.
- 34. The value of $\int \cos x \cos 2x \cos 3x \, dx$ is

$$(a) \ \ \frac{1}{4} \left[x + \frac{\sin 2x}{2} + \frac{\sin 4x}{4} + \frac{\sin 6x}{6} \right] + C \\ \qquad \qquad (b) \ \ \frac{1}{4} \left[x - \frac{\sin 2x}{2} + \frac{\sin 4x}{4} - \frac{\sin 6x}{6} \right] + C$$

(c)
$$x + \frac{\sin 2x}{2} + \frac{\sin 4x}{4} + \frac{\sin 6x}{6} + C$$
 (d) $x - \sin 2x + \sin 4x + \sin 6x + C$

35. If $\int \frac{3e^x - 5e^{-x}}{4e^x + 5e^{-x}} dx = ax + b \log |4e^x + 5e^{-x}| + C$, then

(a)
$$a = \frac{-1}{8}$$
, $b = \frac{7}{8}$ (b) $a = \frac{1}{8}$, $b = \frac{7}{8}$ (c) $a = \frac{-1}{8}$, $b = \frac{-7}{8}$

36. If $g(x) = \int_0^x \cos^4 t \, dt$, then $g(x + \pi)$ is equal to

(a)
$$g(x) - g(\pi)$$
 (b) $g(x) \cdot g(\pi)$ (c) $g(x)$ (d) $g(x) + g(\pi)$

37. The area bounded by the curve $y^2 = 4x$ and the circle $x^2 + y^2 - 2x - 3 = 0$ is equal to

(a)
$$\left(2\pi + \frac{8}{3}\right)$$
 sq. units.
(b) $\left(4\pi + \frac{8}{3}\right)$ sq. units.
(c) $\left(\pi + \frac{8}{3}\right)$ sq. units.
(d) $\left(\pi - \frac{8}{3}\right)$ sq. units.

38. The solution of differential equation $\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$ is

(a)
$$y = e^{x-y} - x^2 e^{-y} + C$$
 (b) $e^y - e^x = \frac{x^3}{3} + C$

(c)
$$e^x + e^y = \frac{x^3}{3} + C$$
 (d) $e^x - e^y = \frac{x^3}{3} + C$

39. The differential equation of system of concentric circles with centre (1,2) is

(a)
$$(y-2)\frac{dy}{dx} + (x-1) = 0$$
 (b) $y\frac{dy}{dx} + x = 0$

	$(c) \ \frac{dy}{dx} + x = 0$		(d) None of these	
40.	If \vec{a} , \vec{b} , \vec{c} are three	non-coplanar vectors an	d \vec{p} , \vec{q} , \vec{r} are reciproca	l vectors of them, then
	$(l\vec{a} + m\vec{b} + n\vec{c}) \cdot (l\vec{p} + m\vec{q} + l\vec{c})$			
	(a) $l+m+n$	(b) $l^3 + m^3 + n^3$	(c) $l^2 + m^2 + n^2$	(d) None of these
41.	The locus of a point equi	distant from two points wh	nose position vectors are \vec{a}	and \vec{b} is
	(a) $\left\{ \vec{r} - \frac{1}{2}(\vec{a} + \vec{b}) \right\} \cdot (\vec{b} - \vec{a})$) = 0	$(b) \ \left\{ \overrightarrow{r} - (\overrightarrow{a} + \overrightarrow{b}) \right\} \cdot \overrightarrow{b} = 0$	
	$(c) \ \left\{ \overrightarrow{r} - \frac{1}{2} (\overrightarrow{a} + \overrightarrow{b}) \right\} \cdot \overrightarrow{a} = 0$		$(d) \ \left\{ \vec{r} - \frac{1}{2} (\vec{a} - \vec{b}) \right\} \cdot (\vec{a} + \vec{b})$	= 0
42.	The number of vectors of	f unit length perpendicular	to vectors $\vec{a} = 5\hat{i} + 6\hat{j} + 0\hat{k}$	and $\vec{b} = 6\hat{i} + 5\hat{j} + 0\hat{k}$ is
	(a) 1	(b) 4	(c) 3	(d) 2
43.	The value of $\overrightarrow{A} \cdot \{(\overrightarrow{B} + \overrightarrow{C})\}$	$\times (\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C})$ is		
	(a) 0		(b) $[\overrightarrow{A} \overrightarrow{B} \overrightarrow{C}][\overrightarrow{B} \overrightarrow{C} \overrightarrow{A}]$	
	(c) $[\overrightarrow{A} \overrightarrow{B} \overrightarrow{C}]$		(d) $\overrightarrow{A} \times (\overrightarrow{B} \times \overrightarrow{C})$	
44.	If the line drawn from a pof the plane is	ooint (-2, -1, -3), meets a pla	ne at right angle at the poin	t (1, –3, 3), then, the equation
	(a) $3x - 2y + 6z - 20 = 0$		(b) $3x + 2y - 5z - 5 = 0$	
	(c) $x + 2y + z - 4 = 0$		(d) $3x - 2y + 6z - 27 = 0$	
45.		int on the line joining the p	oints Q (2, 2, 1) and R (5, 1, -	2) is 4, then its z-coordinate
	is (a) - 1	(b) 0	(c) 1	(d) 2
46.	The distance of a point (-2, 4, -5) from the line $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$ is			
	(a) $\frac{\sqrt{7}}{2}$	(b) $\sqrt{\frac{15}{7}}$	(c) $\sqrt{\frac{37}{10}}$	(d) None of these
47.	The angle between the	lines whose direction cosi	nes are given by the equa	tions $3l + m + 5n = 0$ and
	6 mn - 2 nl + 5 lm = 0 is			
	(a) $\cos^{-1}\left(-\frac{5}{6}\right)$	(b) $\cos^{-1}\left(-\frac{1}{6}\right)$	(c) $\cos^{-1}\left(\frac{2}{3}\right)$	(d) 0
48.	If $P(A) = 1/2$, $P(B) = 0$, the	en P(A/B) is		
	(a) 0	(b) 1/2	(c) not defined	(d) 1

(c) $A \cap B = \phi$

50. If A and B are two events such that $A \subset B$ and $P(B) \neq 0$, then which of the following is correct?

(d) P(A) = P(B)

(d) none of these

49. If A and B are events such that P(A/B) = P(B/A), then

(b) A = B

(a) $P(A/B) = \frac{P(B)}{P(A)}$ (b) P(A/B) < P(A) (c) $P(A/B) \ge P(A)$

(a) $A \subseteq B$ but $A \neq B$