
Data file handling266

CHAPTER 12

DATA FILE HANDLING

OBJECTIVES

 To understand the concepts of files.

 Usage of types of files.

 The role of text and binary files.

 Concept of opening and closing of files

 Concept of input and output operations in text files.

 Concept of input and output operations in binary files.

 Concept of file pointers and their manipulations.

Data file handling 267

12.1 Introduction:

We have already used the cin and cout for handling the input and ouput
operations. They are used to accept inputs through keyboard and display outputs
on the screen. C++ provides a rich set of operations for both unformatted and
formatted I/O operations. In C++, these IO operations are implemented through
iostream library.

The C++ standard libraries provide an extensive set of input/output
capabilities which we will see in subsequent topics. This chapter will discuss
very basic and most common I/O operations required for C++ programming.

C++ I/O occurs in streams, which are sequences of bytes. If bytes flow
from device like a keyboard, a disk drive, or a network connection etc. to main
memory, this is called input operation and if bytes flow from main memory to a
device like a display screen, a printer, a disk drive, or a network connection etc.,
this is called output operation.

Most computer programs work with files. This is because files help in
storing information permanently. Word processors create document files.
Database programs create files of information. Compilers read source files and
generate executable files. So, we see, it is the files that are mostly worked with,
inside programs. A file itself is a bunch of bytes stored on some storage device
like tape or magnetic disk etc.

In C++, file input/output facilities are implemented through a header file
of C++ standard library. This header file is fstream.h.

In C++, a file, at its lowest level, is interpreted simply as a sequence, or
stream of bytes. In C++, file I/O library manages the transfer of these bytes. At
this level, the notion of a data type is absent.

On the other hand, file, at user level, consists of a sequence of possibly
intermixed data types-characters, arithmetic values and class objects.

The fstream library predefines a set of operations for handling files related
input and output. It defines certain classes that help to perform file input and
output. For example, ifstream class ties a file to the program for input. ofstream
class ties a file to the program for output and fstream classifies a file to the
program for both input and output. File manipulation and related operations
using streams are the topics we are going to discuss in this chapter.

Data file handling268

12.2 fstream.h header file

The C++ input/output operations are very much similar to the console
input and output operations. The file operations also make use of streams as an
interface between the programs and the files.

A stream is a general name given to a flow of data at the lowest level; data
is just the binary data without any notion of data type. Different streams are
used to represent different kinds of data flow such as whether data is flowing
into the memory or out of the memory. Each stream is associated with a particular
class, which contains member functions and definitions for dealing with that
particular kind of data flow. For example, the ifstream class represents input
disk files.

The stream that supplies data to the program is known as input stream. It
reads the data from the file and hand it over to the program. The stream that
receives data from the program is known as output stream. It writes the received
data to the file. Following figure shows it.

The information / data stored under a specific name on a storage
device, is called a file.

Stream refers to a sequence of bytes

Data file handling 269

The fstream base is derived from the basic class ios. The class ifstream is
derived from both istream and fstream base and similarly, the class ofstream is
derived from both the ostream and fstream base. Both ifstream and ofstream act
as base classes for fstream class. The class filebuf is derived from class streambuf.
The complete class hierarchy is shown above.Central to file handling are three
classes. They are ifstream, ofstream and fstream.

That is why, if you include fstream.h file in your file handling program,
you need not to include iostream.h file as classes of fstream.h inherit from
iostream.h only.The functions of these classes have summarized in the below
table.

Meanings

It sets the file buffers to read and write.

It provides the facilities for file operations and consists of open(
) and close() member functions. This is base class for fstream,
ifstream, ofstream.

Stream class to read from files. It provides input operations
for file. It inherits the function get(), getline(),read() and
functions supporting random access (seekg() and tellg()) from
istream class defined inside iostream.h file.

Stream class to write on files. It provides output operations
for file. It inherits the function put(), write()and functions

fig: Stream class hierarchy for I/O operations:

Classes

filebuf

fstreambase

ifstream

ofstream

12.2.1 Classes for file stream operation

Data file handling270

supporting random access (seekp() and tellp ()) from
ostream class defined inside iostream.h file.

Stream class to both read and write from/to files.It
provides support for simultaneous input and output
operations. It inherits all the functions from istream
and ostream classes through iostream class defined
inside iostream.h file.

12.3 Types of data Files:

Files are used to store data or information permanently for future use.
Depending on how data are stored and retrieved, the files are classified into two
types. They are Text file and Binary file.

12.3.1 Text file:

It is a file that stores information in ASCII characters. In text files, each
line of text is terminated with a special character known as EOL (End- of-line)
character or delimiter character. When this EOL character is read or written,
certain internal translations take place.

12.3.2 Binary file:

It is a file that contains information in the same format as it is held in
memory. In binary files, no delimiters are used for a line and no translations
occur here.

12.4 Opening and Closing files:

In C++, while opening a file, we need the stream like input, output and
input_output. To create an input stream you must declare the stream to be of
class ifstream. To create an output stream you must declare the stream to be of
class ofstream. Streams that will be performing both input and output operations
must be declared as class fstream.

Opening a file can be accomplished in two ways:

 Opening file using constructor
 Opening file using open() member function

The first method is preferred when a single file is used with a stream.
However for managing multiple files with the same stream, the second method
is preferred.

12.4.1 Opening file using constructor:

The syntax of opening a file for output purpose only using an object of
ofstream class and the constructor is as follows:

ofstream ofstream _object(“file_name”);

fstream

Data file handling 271

ofstream _object is an object of type ofstream and “file name” is any valid
identifier of a file to be opened for output purpose only.

Example: ofstreamfout(“results.dat”); //output only
ofstreamfout(“text.dat”); //output only

fout is declared to be an object of ofstream type and it is made to represent
the file results.dat and text.dat opened for output purpose only.

The syntax of opening a file for input purpose only using an object of
ifstream class and the constructor is as follows.

ifstream ifstream _object(“file_name”);

ifstream _object is an object of type ifstream and “file name” is any valid
identifier name of a file to opened for input purpose only.

Example: ifstream fin(“results.dat”); //input only
ifstream fin(“text.dat”); //input only

fin is declared to be an object of ifstream type and it is made to represent
the file results.dat and text.dat opened for input purpose only.

12.4.2 Opening file using open():

The syntax for opening a file for output purpose only using an object of
ofstream class and open() member function is as follows:

ofstream-object.open(“filename”)

ofstream-object is an object of type ofstream and “filename” is any valid
name of a file to be opened for output purpose only.

Example: ofstream ofile;
ofile.open(“data1”);
ofile.open(“text.dat”);

ofile is declared to be an object of ofstream type and is made to represent
the file data1 or text.dat opened for output purpose only.

The syntax for opening a file for input purpose only using an object of
ifstream class and open() member function is as follows:

ifstream-object.open(“filename”)

ifstream-object is an object of type ifstream and “file name” is any valid
name of a file to be opened for input purpose only.

Example: ifstream ifile;
ifile.open(“data1”);
ifile.open(“text.dat”);

Data file handling272

ifile is declared to be an object of ifstream type and is made to represent
the file data1 or text.dat opened for output purpose only.

If we have to open a file for both input and output operations, we use
objects of fstream class. We know that the class fstream is derived from both
ifstream and ofstream. As a result objects of the class can invoke all the members
of the function of its base class.

The syntax for opening a file, an object of type fstream class and the
constructor is as follows:

fstream fstream-object(“filename”, mode)

 The syntax for opening a file an object of type fstream class and the open
() member function is as follows:

 fstream-object.open(“filename”,mode)

The need of mode is provided in the following table:

12.4.3. Concepts of file modes (in, out, app modes)

File mode parameter Meaning Stream type
ios::app Append to end of file ofstream
ios::in open file for reading only ifstream
ios::out open file for writing only ofstream
ios::ate Open file for updation and move ifstream ,

the file pointer to the end of file ofstream
ios:binary Opening a binary file ifstream ,

ofstream
ios::noreplace Turn down opening if the file

already exists ofstream
ios::nocreate Turn down opening if the file

does not exists ofstream
ios::trunc On opening, delete the contents of file ofstream

All these flags can be combined using the bitwise operator OR (|).

Example: fstream fout(“text.dat”,ios::out); open text.dat in output mode
fstream fin(“text.dat”,ios::in); open text.dat in input mode
fstream file;
file.open (“example.bin”, ios::out | ios::app | ios::binary);

If we want to open the file “example.bin” in binary mode to add data we
could do it by the above call to member function.

Data file handling 273

12.4.4. Closing File:

We learn that opening a file establishes the linkage between a stream
object and an operating system file. After the intended operations are done with
the file, the file should be safely saved on the secondary storage for later retrieval.
This is done by the member function close() The function on its execution removes
the linkage between the file and the stream object.

Syntax: stream_object.close();
fout.close();
fin.close();

12.5. Input and output operation on text files:

We know that a text file consists of a group of ASCII values. The data in
text files are organized into lines with new line character as terminator. Text
files need following types of character input and output operations:

 put() function
 get() function

put(): The put() member function belongs to the class ofstream and writes a
single character to the associated stream.

Syntax: ofstream_object.put(ch);

ch is character constant or char variable. The function writes ch onto the
file represented by ofstream_object.

char ch = ‘a’;
ofstream fout(“text.txt”);
fout.put(ch);

Write the character stored in ch onto the file represented by the object
fout. i.e., text.txt.

get(): The get() member function belongs to the class ifstream and the function
get() reads a single character from the associated stream.

Syntax: ifstream_object.get(ch);

ch is character constant or char variable. The function reads ch from the
file represented by the ifstream_object into the variable ch.

char ch = ‘a’;
ifstream fin(“text.txt”);
fin.get(ch);

Reads a character into the variable ch the current byte position from the
file represented by the object fin, i.e., text.txt.

Data file handling274

String I/O:

The getline() function:

It is used to read a whole line of text. It belongs to the class ifstream.

Syntax: fin.getline(buffer, SIZE);

Reads SIZE characters from the file represented by the object fin or till
the new line character is encountered, whichever comes first into the buffer.

Example: char book[SIZE];
fstream fin;
fin.getline(book, SIZE);

Input and output operation on binary files:

The binary files are of very much use when we have to deal with database
consisting of records. Since the records usually comprise heterogeneous data
types, the binary files help optimize storage space and file I/O would be faster
when compared to text files. Binary files needs following types of input and
output operations.

 write() member function
 read() member function

write(): The write() member function belongs to the class ofstream and which
is used to write binary data to a file.

Syntax: ofstream_object.write((char *) &variable, sizeof(variable));

fout is an object of type ofstream. The function requires two arguments.
The first argument ofstream_object is the address of the variable, the contents of
which are written to the file and the second argument is the size of the variable.
The address of the variable is type casted to pointer to char type. It is because
the write function does not bother to know the type of variable. It requires data
in terms of only bytes. The function writes the contents of variable to the file
represented by the object fout.

Example: student s;
ofstream fout(“std.dat”,ios::binary);
fout.write((char*) &s, sizeof(s));

Write the contents of the object s to the file std.dat.

read(): The read() member function belongs to the class ifstream and which
is used to read binary data from a file.

Syntax: ifstream_object.read((char *) &variable, sizeof(variable));

ifstream_object is an object of type ifstream. The function requires two
arguments. The first argument is the address of the variable, the contents of
which are read from the file and the second argument is the size of the variable.

Data file handling 275

The address of the variable is type casted to pointer to char type. It is because
the read function does not bother to know the type of variable. It requires data
in terms of only bytes. The function reads a record from the file represented by
the object fin to the object std.

Example: student s;
ifstream fin(“std.dat”,ios::binary);
fin.read((char*) &s, sizeof(s));

Read a student record from the file std.dat into the object s.

12.6. Detecting end of file:

While reading the contents of a file, care has to be taken to see to it that
the operation does not cross the end of file. The ios class provides a member
function by name eof(), which helps in detecting the end of file. Once the end of
file is detected with the use of eof() member function, we can stop reading further.

eof() returns true (non zero) if end of file is encountered while reading;
otherwise return false(zero).

if(fin.eof())
{

statements;
}

This is used to execute set statements on reaching the end of the file
represented by the object fin.

while (!fin.eof())
{

statements;
}

This is used to execute set statements as long as the end of the file fin is
not reached.

12.7. File pointers and their manipulation:

In C++, the file I/O operations are associated with the two file pointers,
known as get pointer and the put pointer. These are synonymous for input
pointer and output pointer respectively. They are useful in traversing the opened
file while reading or writing.

 ifstream, like istream, has a pointer known as the get pointer that
points to the element to be read in the next input operation.

 ofstream, like ostream, has a pointer known as the put pointer that
points to the location where the next element has to be written.

Data file handling276

When an input or output operation is performed, the appropriate pointer
is automatically advanced. So the programmer need not bother about
incrementing the file pointer to the next location inside the file for the next
action.

There are three modes under which we can open a file:

 Read only mode
 Write only mode
 Append mode

When a file is opened in a read only mode, the get pointer is automatically
set to the very first byte (0th byte) of the file. This helps to read the file contents
from the beginning (The bytes in a file is numbered starting from zero).

Similarly, when a file is opened in a write only mode, the contents of file
are erased (if it exists) and the put pointer is set to the first byte of the file, so
that we can write data from the beginning. In some situations, it would be
necessary for us to add new data (or text) to the existing file. In this case we have
to open the file in append mode. When a file is opened in a append mode, the
put pointer moves to the end-of-file, so that we write new data from that location.

These internal stream pointers that point to the reading or writing locations
within a stream can be manipulated using the following member functions:

 seekg()
 seekp()
 tellg()
 tellp()

seekg():

Move the get pointer to a specified location from the beginning of a
file. There are two types:

 seekg(long);
 seekg(offset, seekdir);

The seekg(long) moves the get pointer to a specified location from the
beginning of a file.

Example: inf.seekg(20) ;

The above example tells that the get pointer points to 20th byte in a file
from 0th byte.

The seekg(offset, seekdir) has two arguments: offset and seekdir. The offset
indicates the number of bytes the get pointer is to be moved from seekdir
position.

Data file handling 277

The offset takes long data type and seekdir (direction for seeking the offset
position inside a file) takes one of the following three seek direction constants.
These constants are defined in ios class.

Constant Meaning

 ios::beg Offset specified from the beginning of the file

 ios::cur Offset specified from the current position of the get pointer

 ios::end Offset specified from the end of the file

 Examples: inf.seekg(0, ios::beg);

Move the get pointer to the 0th byte (i.e., beginning of the file).

inf.seekg(20, ios::beg);

Moves the get pointer to the 20th byte (i.e., from current position of the file
in forward direction).

inf.seeg(-20, ios::beg);

The above example tells that the get pointer points to 20th byte in a file
from end of file in backward direction.

seekp():

Move the put pointer to a specified location from the beginning of a file.
There are two types:

 seekp(long);
 seekp(offset, seekdir);

The seekp(long) moves the put pointer to a specified location from the
beginning of a file.

Example: inf.seekg(20) ;

The above example tells that the put pointer points to 20th byte in a file
from 0th byte.

The seekp(offset, seekdir) has two arguments offset and seekdir. The offset
indicates the number of bytes the put pointer is to be moved from seekdir
position.

The offset takes long data type and seekdir (direction for seeking the offset
position inside a file) takes one of the following three seek direction constants.
These constants are defined in ios class (see above table).

Examples: inf.seekp(0, ios::beg);

Move the put pointer to the 0th byte (i.e, beginning of the file) for writing.

inf.seekg(20, ios::beg) ;

Data file handling278

Move the put pointer to the 20th byte (i.e, from current position of the file
in forward direction) for writing.

inf.seekg(-20, ios::beg) ;

The above example tells that the put pointer points to 20th byte in a file
from end of file in backward direction.

tellg() member function:

The ifstream class provides the member function name tellg(). The purpose
of the function is to return current position of the get pointer.

Syntax: int position;
position = fin.tellg();

tellp() member function:

The ifstream class provides the member function name tellp(); The purpose
of the function is to return current position of the put pointer.

Syntax: int position;
position = fin.tellp();

Basic operation on binary file in C++

The basic Operation on Binary File in C++ are

1. Searching.

2. Appending data.

3. Inserting data in sorted files.

4. Deleting a record

5. Modifying data

Points to remember:

 File: The information / data stored under a specific name on a storage
device, is called a file.

 Stream: It refers to a sequence of bytes.

 ifstream: Stream class to read from files. It provides input operations
for file.

 ofstream: Stream class to write on files. It provides output operations
for file.

 fstream: Stream class to both read and write from/to files.

 Text file: It is a file that stores information in ASCII characters.

Data file handling 279

 Binary file: It is a file that contains information in the same format as it is
held in memory.

 File can be opened in two ways :

a. Opening file using constructor: Useful when a single file used with
stream.

b. Opening file using open(): Useful for managing multiple files with
the same stream.

 The classes defined with inside fstream.h derive from classes under
iostream.h.

 File can be closed using function close ().

 File modes: Describes how a file is to be used.

 ios::in: Open file for reading only.

 ios::out: Open file for writing only.

 ios::app: Append to end of file.

 The put() member function belongs to the class ofstream and writes a
single character to the associated stream.

 The get() member function belongs to the class ifstream and the function
get() reads a single character from the associated stream.

 getline(): It is used to read a whole line of text. It belongs to the class
ifstream.

 The write() member function belongs to the class ofstream and which is
used to write binary data to a file.

 The read() member function belongs to the class ifstream and which is
used to read binary data from a file.

 eof():Helps in detecting the end of file.

 eof(): returns true (non-zero) if end-of-file is encountered while reading,
otherwise return false(zero).

 seekg():Moves the get pointer to a specified location from the beginning of
a file.

 The seekg(long) moves the get pointer to a specified location from the
beginning of a file.

 seekp():Moves the put pointer to a specified location from the beginning
of a file.

Data file handling280

 tellg(): The ifstream class provides the member function name tellg(); The
purpose of the function is to return current position of the get pointer.

 tellp(): The ifstream class provides the member function name tellp(); The
purpose of the function is to return current position of the put pointer.

One marks questions:

1. Which header file is required for file handling functions in C++.
2. What is stream?
3. Name the streams generally used for file I/O.
4. What are output streams?
5. What are input streams?
6. Mention the methods of opening file within C++ program.
7. Write the member functions belonging to fstream class.
8. What is ifstream class
9. What is ofstream class.
10. Write the member functions belonging to ofstream class.
11. Write the member functions belonging to ifstream class.
12. Name the stream classes supported by C++ for file input.
13. Name the stream classes supported by C++ for output.
14. Mention the file modes.
15. What is ios :: in?
16. What is ios::out?
17. Mention the types of file.
18. What is text file.
19. What is binary file.
20. What is the use of write () function.
21. What is the use of writeln () function.
22. What is the use of get () function.
23. What is the use of put () function.
24. What is the use of getline () function.
25. What is the use of read () function.
26. What is the use of seekp () function.
27. What is the use of seekg () function.
28. What is the use of eof () function.

Two marks questions:
1. What is stream? Name the streams generally used for file I/O.
2. What are input and output streams?
3. Mention the methods of opening file within C++ . Discuss any one.
4. Write the member functions belonging to fstream class.
5. Differentiate between ifstream class and ofstream class.
6. Differentiate between read () and write ().
7. Differentiate between get () and getline ().

Data file handling 281

8. Write the member functions belonging to ofstream class.
9. Write the member functions belonging to ifstream class.
10. Name the stream classes supported by C++ for file input and output.
11. What are the advantages of saving data in Binary form

Three marks questions:
1. Mention the methods of opening file within C++ program. Discuss.
2. Differentiate between ifstream class and ofstream class.
3. Differentiate between read () and write ().
4. Differentiate between get () and getline ().
5. Name the stream classes supported by C++ for file input and output.
6. Mention the types of file. Explain any one.
7. What are the advantages of saving data in 1.Binary form. 2. Text form.

Five marks questions:
1. What are input and output streams?
2. What is significance of fsream.h header file.
3. Mention the methods of opening file within C++, Discuss.
4. Differentiate between ifstream class and ofstream class.
5. Differentiate between read () and write () with example.
6. Differentiate between get () and getline () with example.
7. Explain any three file modes.
8. Differentiate between ios::in and ios::out.
