Sound Waves

Exercise Solutions

Solution 1:

Velocity of sound in air = v = 330 m/s Velocity of sound through the steel tube = $v_s = 5200$ m/s Length of the steel tube= S = 1 m

Required time gap = $t = t_1 - t_2$

Where t_1 = time taken by the sound in air = 1/330 and t_2 = time taken by the sound in steel tube = 1/5200

=> t = 1/330 - 1/5200 = 2.75 ms

Solution 2:

S = 80x2 = 160m

v= 320 m/s

So, maximum time interval is: t = S/v = 160/320 = 0.5 sec

Solution 3:

S = 50 m Man has to clap 10 times in 3 sec So, the time interval between two claps = 3/10 Time taken by the sound to reach the wall = t = 3/20 sec

Velocity = v = S/t

= 50/(3/20)

= 333 m/sec

Solution 4:

Speed of sound =v= 360 m/sec

Frequency for minimum wavelength, f = 20 kHz

We know, $v = f\lambda$

or λ = 18 x 10⁻³ mm

Again, Frequency for max. wavelength, f = 20 Hz

 $\lambda = 360/20 = 18 \text{ m}$

Solution 5:

Speed of sound =v= 1450 m/sec

For minimum wavelength, frequency should be max.

f = 20 kHz

We know, v = $f\lambda$

or $\lambda = 1450/[20x10^3] = 7.25$ cm

For minimum wavelength, frequency should be min.

λ = 20 Hz

 $v = f\lambda$

λ = 1450/20 = 72.5 m

Solution 6:

Wavelength of the sound is 10 times the diameter of the loudspeaker.

 $\lambda = 20 \times 10 = 200 \text{ cm or } 2 \text{ m}$

(a) v = $f\lambda$

 $f = v/\lambda = 340/2 = 170 Hz$

 λ = 2 cm = 2 x 10⁻² m

 $f = v/\lambda = 340/(2x10^{-2}) = 17000 Hz = 17 k Hz$

Solution 7: Frequency of ultrasonic wave = f = 4.5 MHz or 4.5×10^{6} Hz Speed of sound in tissue = 1.5 km/s Velocity of air v = 340 m/sec

v= fλ

 $\lambda = 340/[4.5 \times 10^6]$

= 7.6 x 10⁻⁵ m

(b) Velocity of sound in tissue:

v_t = 1500 m/s

 $\lambda = v_t f$

 $\lambda = 1500/[4.5 \times 10^6] \text{ m}$

= 3.3 x 10⁻⁴ m

Solution 8:

Given: $r_y = 6.0 \times 10^{-5} m$

(a) $2\pi/\lambda = 1.8$

 $=>\lambda=2\pi/1.8$

So, $r_y/\lambda = [6.0 \times 10^{-5} \times 1.8]/2\pi$

= 1.7 x 10⁻⁵ m

(b) Let v_y be velocity amplitude.

v = dy/dt = 3600 cos(600t -1.8)x10⁻⁵ m/s

Here $v_y = 3600 \times 10^{-5} \text{ m/s}$

and $\lambda = 2\pi/1.8$ and T = $2\pi/600$

=> wave speed = v = λ/T = 600/1.8 = 1000/3 m/s

So, the ratio = $v_y/v = [3600x3x10^{-5}]/1000$

Solution 9:

(a) v = $f\lambda$

 $\lambda = v/f = 350/100 = 3.5 m$

In 2.5 ms, the distance travelled by the particle, $\Delta x = (350 \times 2.5 \times 10^{-3})m$

Now, phase difference = $\phi = (2\pi/\lambda) \Delta x$

 $= [2\pi x 350x 2.5x 10^{-3}]/[3.5]$

 $=> \phi = \pi/2$

(b) Distance between the two points:

 $\Delta x = 10 \text{ cm} = 0.1 \text{ m}$

 $\varphi = (2\pi/\lambda) \, \Delta x$

On substituting the values,

 $\phi = (2\pi(0.1)/3.5 = 2\pi/35)$

Phase difference between the two points.

Solution 10:

(a) $\Delta x = 10$ cm and $\lambda = 5$ cm

 $\Rightarrow \phi = (2\pi/\lambda) \Delta x = (2\pi/5)10 = 4\pi$

Phase difference between the two waves is zero.

(b) Zero: the particles are in the same phase since they have the same path.

Solution 11: $p = 1 \times 10^5 \text{ N/m}^2$, T = 273 K, M = 32 g and g = $32 \times 10^{-3} \text{ kg}$ $v = 22.4 \text{ I} = 22.4 \times 10^{-3} \text{ m}^3$

Therefore, $C/C_v = r = 3.5R/2.5R = 1.4$

 $V = V(rp/f) = [1.4x1.0x10^{-5}]/[32/22.4] = 310 m/s$

Solution 12: velocity of sound = v_1 = 340 m/s

T₁ = 17° C = 17+273 = 290 K

Let v_2 velocity of sound at temp T_2

T₂ = 32° C = 32 + 273 = 305 K

Relation between velocity and temperature:

 $v \propto \sqrt{T}$

Now, $v_1/v_2 = \sqrt{T_1}/\sqrt{T_2}$

=> v₂ = 340 x V(305/290) = 349 m/s

The final velocity of sound is 349 m/s.

Solution 13:

 $T_1 = 273$, $v_2 = 2v_1$, $v_1 = v$ and $T_2 = ?$

We know that, $v \propto \sqrt{T}$

 $=> T_2/T_1 = v_2^2/v_1^2$

=> T₂ = 273 x 2² = 4 x 273 K

So, temp will be (4 x 273) - 273 = 819° C

Solution 14:

Temperature variation: T = $T_1 + [(T_2 - T_1)x]/d$

 $v \propto \sqrt{T}$

 $v_T/v = v(T/273)$

And, $dt = dx/v_T = du/v (v(273/T))$

$$t = \frac{\sqrt{273}}{v} \int_{0}^{d} \frac{dx}{\left[T_{1} + \frac{(T_{2} - T_{1})}{d}x\right]^{\frac{1}{2}}}$$
$$t = \frac{\sqrt{273}}{v} \times \frac{2d}{T_{2} - T_{1}} \left[T_{1} + \frac{(T_{2} - T_{1})}{d}x\right]_{0}^{d}$$
$$t = \frac{\sqrt{273}}{v} \times \frac{2d}{T_{2} - T_{1}} \left(\sqrt{T_{2}} - \sqrt{T_{1}}\right)$$
$$t = \left(\frac{2d}{v}\right) \left(\frac{\sqrt{273}}{\sqrt{T_{2}} + \sqrt{T_{1}}}\right)$$

We are given, initial temp = $T_1 = 280k$ Final temp = $T_2 = 310 k$

Space width = d = 33 m and v = 330 m/s => T = [2x33xV273]/[330(V280+V310)] = 96 m/s

Solution 15:

The velocity in terms of the bulk modulus and density :

v = V(k/p)where, k = v² p => k = (1330)² x 800 N/m²

 $\mathsf{K}=(\mathsf{F}/\mathsf{A})/(\Delta \mathsf{v}/\Delta \mathsf{v})$

Therefore, $\Delta V = [pressure x v]/k$

```
\Delta v = [2x10^{5}x1x10^{-3}]/[1330x1330x800]
```

```
= 0.14 \text{ cm}^3
```

The change in the volume of kerosene 0.14 cm³.

Solution 16: Wavelength of sound wave = λ = 35 cm = 35 x 10⁻² m Pressure amplitude = p₀ = (1 x 10⁵ ± 14) pa Displacement amplitude of the air particles =S₀ = 5.5 x 10⁻⁶ m

Now, Bulk modulus of air = B = $p_0\lambda/2\pi S_0 = \Delta p/(\Delta v/v)$ = $[14x35x10^{-2}]/[2\pi(5.5 \times 10^{-6})]$

= 1.4 x 10⁵ N/m²

Solution 17: (a) Distance of the source = r = 6.0 mIntensity = I = P/Ahere P = 20 W and A = area = $4\pi r^2$ => $I = 20/[4\pi r^2]$ Given r = 6 m => $I = 44 \text{ mw/m}^2$ (b) $I = p_0/2\rho v$ => $p_0 = v(2I\rho v)$ => $p_0 = v(2x12x340x44x10^{-3})$ => $p_0 = 6 \text{ Pa}$ (c) As, $I = 2\pi^2 S_0^2 v^2 \rho v$

Where S_{o} is the displacement amplitude

 $s_o = v(I/2\pi^2 v^2 \rho v)$

on substituting the values, we get

S_o = 1.2 x 10⁻⁶ m

Solution 18:

Here $l_1 = 1 \times 10^{-8} \text{ W m}^{-2}$ $r_1 = 5 \text{ m and } r_2 = 25 \text{ m}$ $l_2 = ?$

We know, $I \propto 1/r^2$

 $=> I_1 r_1^2 = I_2 r_2^2$

 $=> I_2 = (I_1 r_1^2)/r_2^2$

 $= [1x10^{-8}x25]/[625]$

 $= 4 \times 10^{-10} \text{ W m}^{-2}$

Solution 19: Sound level = β = 10 log₁₀ (I/l_o)

As per given statement, $\beta_A = 10 \log_{10} (I_A/I_o)$

 $=> I_A/I_o = 10^{(\beta_A/10)} ...(1)$

Again, $\beta_B = 10 \log_{10} (I_B/I_o)$

 $=> I_{B}/I_{o} = 10^{(\beta_{B}/10)} ...(2)$

From (1) and (2)

 $I_A/I_B = 10^{(\beta A - \beta B)}/10) ...(3)$

Also,

 $I_A/I_B = r_B^2/r_A^2 = (50/5)^2 = 100 \dots (4)$

From (3) and (4),

 $10^2 = 10^{(\beta A - \beta B)}/10)$

 $=>2 = (\beta_A - \beta_B)/10$

 $\Rightarrow \beta_A - \beta_B = 20$

=> β_B = 40-20 = 20 dB

Therefore, sound level of a point 50 m away from the point source is 20 dB.

Solution 20:

Sound level β_1 :

 $\beta_1 = 10 \log_{10} (I/I_o)$ Where, I_o is constant reference intensity

When the intensity doubles, the sound level: $\beta_2 = 10 \log_{10} (2I/I_0)$

 $\Rightarrow \beta_2 - \beta_1 = 10 \log(2I/I) = 10 \times 0.3010 = 3 \text{ dB}$

Thus, sound level is increased by 3 dB.

Solution 21:

If sound level = 120 dB then I = intensity = 1 W/m^2 Audio output = 2W (given)

Let x be the closest distance. So, intensity = $(2/4\pi x^2) = 1$

 $=> x^2 = 2/2\pi$

=> x = 0.4 m or 40 cm

Solution 22:

Constant reference intensity = $I_0 = 10^{-12} \text{ W/m}^2$

The initial intensity is: $\beta_1 = 10 \log_{10} (I_1/I_0)$ Where, I_0 is constant reference intensity

```
50 = 10 \log_{10} (I_1 / 10^{-12})
```

 $=>I_1 = 10^{-7} \text{ W/m}^2$

Similarly, $\beta_2 = 10 \log_{10} (l_2/l_0)$

 $=>I_2 = 10^{-6} W/m^2$ Again,

 $I_2/I_1 = (p_2/p_1)^2 = 10^{-6}/10^{-7} = 10$

Therefore, $(p_2/p_1) = \sqrt{10}$. The pressure amplitude is increased by factor $\sqrt{10}$.

Solution 23: Let I be the intensity of each student.

As per question, $\beta_A = 10 \log_{10} (50 I/I_o)$ and $\beta_B = 10 \log_{10} (100 I/I_o)$

Where, l_0 is constant reference intensity Now, $\beta_B - \beta_A = 10 \log_{10} (100 \text{ I}/50 \text{ I})$

 $= 10 \log_{10}(2) = 3$

So, $\beta_A = 50 + 3 = 53 \text{ dB}$

Solution 24:

Distance between maximum and minimum:

 $\lambda/4 = 2.50$ cm

 $=> \lambda = 2.50 \text{ x} 4 = 10 \text{ cm} = 10^{-1} \text{ m}$

As we know, $v = f\lambda$

or f = v/ λ

=> f = 340/10⁻¹ = 3400 = 3.4 kHz

Therefore, the frequency of the sound is 3.4 kHz.

Solution 25:

(a) $\lambda/4 = 16.5 \text{ mm}$

 $\Rightarrow \lambda = 16.5 \text{ x} 4 = 66 \text{ mm} = 66 \text{ x} 10^{-3} \text{ m}$

We know, v = $f\lambda$

or f = v/λ = 340/[66x10⁻³] = 5 kHz

(b) Ratio of maximum intensity to minimum intensity:

$$\frac{I_{Max}}{I_{Min}} = \frac{K(A_1 - A_2)^2}{K(A_1 + A_2)^2} = \frac{I}{9I}$$
$$= > \frac{(A_1 - A_2)^2}{(A_1 + A_2)^2} = \frac{I}{9I}$$
$$(A_1 + A_2)/(A_1 - A_2) = 1/9$$

$$=> A_1/A_2 = 2/1$$

Ratio of the amplitudes is 2:1.

Solution 26:

The path difference of the two sound waves is: $\Delta L = 6.4 - 6.0 = 0.4 \text{ m}$

The wavelength of either wave = $\lambda = v/f = (320/f)$ m/s

For destructive interference,

 $\Delta L = (2n+1)\lambda/2$; n = integer

or 0.4 = (2n+1)/2 x (320/f) [using f = 2x0.4] => f = (2n+1)400 Hz

On different values of n, the frequencies within the specified range that caused destructive interference are 1200 Hz, 2000 Hz, 2800 Hz, 3600 Hz and 4400 Hz.

Solution 27:

Distance between maximum and minimum intensity:

 $\lambda/4 = 20 \text{ cm}$ => $\lambda = 80 \text{ cm} = 80 \times 10^{-2} \text{ m}$ Let f Frequency of sound, We know, v = f λ Therefore, f = v/ λ = 336/[80x10⁻²] = 420 Hz

Solution 28:

Wavelength of the source: $\lambda = d/2$

Initial path difference is $2V[(d/2)^2 + 2d^2 - d]$

If it is shifted a distance x then path difference will be

$$2\left(\sqrt{\left(\frac{d}{2}\right)^2 + (\sqrt{2d} + x)^2}\right) - d = 2d + \frac{d}{4}$$
$$\left(\frac{d}{2}\right)^2 + (\sqrt{2d} + x)^2 = \frac{169}{64}d^2$$

$$[V(2d)+x]^2 = [(169-16)/64] d^2 = (153/64) d^2$$

=> √(2d)+x = 1.54 d

or x = 1.54 d - 1.414 d = 0.13 d

Solution 29:

Distance between the two speakers =d = 2.40 m Speed of sound in air=v = 320 m/sec Find Frequency of the two stereo speakers.

Path difference between the sound waves reaching the listener:

$$\Delta x = \sqrt{[(3.2)^2 + (2.4)^2]} = 3.2$$

Wavelength of either sound wave = 320/f

Now, destructive interference will occur.

$$\sqrt{(3.2)^2 + (2.4)^2} - 3.2 = \frac{(2n+1)}{2} \left(\frac{320}{f}\right)$$
$$\sqrt{16} - 3.2 = \frac{(2n+1)}{2} \left(\frac{320}{f}\right)$$

1.6f = (2n + 1)320

=> f = 200(2n+1)

Where n = 1,2,3,...,49

Solution 30:

Wavelength of sound wave = λ = 20 cm Distance of detector from source BD = 20 cm Separation between the two sources AC = 20 cm

Now, Path difference = AB-BC

$$= \sqrt{[(20^2+(10+x)^2]} - \sqrt{[(20^2+(10-x)^2]]}$$

To hear the minimum, this path difference:

 $[(2n+1)\lambda]/2 = \lambda/2 = 10 \text{ cm}$

 $=> V[(20^2+(10+x)^2] - V[(20^2+(10-x)^2] = 10$

on solving above equation, we have

x = 12.6 cm

Solution 31:

f = 600 Hz and v = 330 m/s

We know, v = f λ or $\lambda = v/f = 330/600 = 0.5$ mm

Let x be the path difference between the two sound waves reaching the man:

Form figure, $x = S_2Q - S_1Q = yd/D$ Where y = distance travelled by man parallel to y-axis. and d = distance between the two speakers and D = Distance of man from origin.

Also, we are given d = 2m Now, $\theta = y/D$ (a) For minimum intensity: x = (2n + 1)($\lambda/2$) For n = 0 yd/D = $\lambda/2$

We know, $\theta = y/D$

 $=> \Theta d = \lambda/2$

 $\Rightarrow \theta = \lambda/2d = 0.55/4 = 0.1375 \text{ rad} = 7.9^{\circ}$

(b) For maximum intensity:

 $x = n\lambda$

For n =1

=> yd/D = λ or $\theta = \lambda/d = 0.55/2 = 0.275$ rad = 16°

(c) The more number of maxima is given by the path difference:

yd/D = 2λ, 3λ,

 $=> y/D = \theta = 32^{\circ}, 64^{\circ}, 128^{\circ}$

Therefore, man can hear two more maxima at 32° and 64° because the maximum value of may be at 90°.

Solution 32:

Since the 3 sources are of the same size, the amplitude is equal to So, $A_1 = A_2 = A_3$ The resulting amplitude = 0 (By vector method) So, the resulting intensity at B is zero.

Solution 33:

 S_1 and S_2 are in the same phase. At O, there will be maximum intensity. There will be maximum intensity at P.

From right angled triangles, $\Delta S_1 PO$ and $\Delta S_2 PO$

 $(S_1P)^2 - (S_2P)^2$ = $(D^2 + x^2) - ((D-2\lambda)^2 + x^2)^2$ = $4\lambda D + 4\lambda^2$ = $4\lambda D$ If λ is small, then λ^2 is neglisible. $(S_1P + S_2P)(S_1P - S_2P) = 4\lambda D$ => $(S_1P - S_2P) = 4\lambda D/[2v(x^2+D^2)] = n\lambda$ => $2D/v(x^2+D^2) = n$ or x = $(D/n)v(4-n^2)$ When n = 1, x = $\sqrt{3}D$ When n = 2, x = 0

When $x = \sqrt{3D}$, the intensity at P is equal to the intensity at O.

Solution 34:

Let S_1 and S_2 sound waves from the two coherent sources reach the point P.

From the figure,

 $PS_1^2 = PQ^2 + QS^2 = (R \sin\theta)^2 + (R\cos\theta - 1.5 \lambda)^2$

 $PS_1^2 = PQ^2 + QS_1^2 = (R \sin\theta)^2 + (R\cos\theta - 1.5 \lambda)^2$

Path difference between the sound waves reaching point P:

 $(S_1P)^2 - (S_2P)^2 = [(R \sin\theta)^2 + (R\cos\theta + 1.5 \lambda)^2] - [(R \sin\theta)^2 + (R\cos\theta - 1.5 \lambda)^2]$

= 6 λ cosθ

=> $(S_1P - S_2P) = 3 \lambda \cos\theta = n \lambda$

 $\Rightarrow \cos \theta = n/3$

 $=> \theta = \cos^{-1}(n/3)$

Where n = 0, 1, 2,

 θ = 0°, 48.2°, 70.5° and 90° are similar points in other quadrants.

Solution 35:

(a) When $\theta = 45^{\circ}$: Path difference = $S_1P - S_2P = 0$ So, when the source is switched off, the intensity of sound at P is $I_0/4$.

(b) When $\theta = 60^{\circ}$, the path difference is also zero. Similarly, it can be proved that the intensity at P is I_o/4 When the source is switched off.