

**DPP No. 80** 

Total Marks : 25

Max. Time : 26 min.

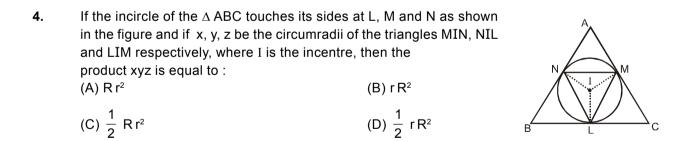
| Type of Questions                                     |                   | M.M. | ., Min. |
|-------------------------------------------------------|-------------------|------|---------|
| Comprehension (no negative marking) Q.1 to Q.3        | (3 marks, 3 min.) | [9,  | 9]      |
| Single choice Objective (no negative marking) Q.4,5,6 | (3 marks, 3 min.) | [12, | 12]     |
| Subjective Questions (no negative marking) Q.7        | (4 marks, 5 min.) | [4,  | 5]      |

## **COMPREHENSION (Q. 1 to 3)**

**Topic : Solution of Triangle** 

G is the centroid of triangle ABC. Perpendiculars from vertices A, B, C meet the sides BC, CA, AB at D, E, F respectively. P, Q, R are feet of the perpendiculars from G on sides BC, CA, AB respectively. L, M, N are the mid points of sides BC, CA, AB respectively, then

1. Length of the side PG is


3.

(A)  $\frac{1}{2}$  b sin C (B)  $\frac{1}{2}$  c sin C (C)  $\frac{2}{3}$  b sin C (D)  $\frac{1}{3}$  c sin B

**2.** (Area of  $\triangle$ GPL) to (Area of  $\triangle$ ALD) is equal to

| (A) $\frac{1}{3}$          | (B) <u>1</u><br>9 | (C) $\frac{2}{3}$ | (D) <u>4</u> |
|----------------------------|-------------------|-------------------|--------------|
| Area of $\triangle PQR$ is |                   |                   |              |

(A)  $\frac{1}{9}(a^2 + b^2 + c^2) \sin A \sin B \sin C$ (B)  $\frac{1}{18}(a^2 + b^2 + c^2) \sin A \sin B \sin C$ (C)  $\frac{2}{9}(a^2 + b^2 + c^2) \sin A \sin B \sin C$ (D)  $\frac{1}{3}(a^2 + b^2 + c^2) \sin A \sin B \sin C$ 



5. Given an isosceles triangle, whose one angle is 120° and radius of its incircle is  $\sqrt{3}$  unit. Then the area of the triangle in sq. units is

(A) 
$$7 + 12\sqrt{3}$$
 (B)  $12 - 7\sqrt{3}$  (C)  $12 + 7\sqrt{3}$  (D)  $4\pi$ 

- 6. If in triangle ABC, right angle at B, s a = 3 and s c = 2, then
  (A) a = 2, c = 3
  (B) a = 3, c = 4
  (C) a = 4, c = 3
  (D) a = 6, c = 8
- 7. Circles with radii 3, 4 and 5 touch each other externally. If P is the point of intersection of tangents to these circles at their points of contact, find the distance of P from the points of contact.

## **Answers Key**

- **1.** (D)
- **2.** (B)
- **3.** (B)
- **4.** (C)
- **5.** (C) **6.** (B) **7.** √5