CBSE Test Paper 01

CH-05 Complex & Quadratic

- 1. The complex numbers z = x + iy ; x , y \in R which satisfy the equation $\left| rac{z-3i}{z+3}
 ight| = 1$ lies on
 - a. the y axis
 - b. the x axis
 - c. the line x + y = 0
 - d. the line parallel to y axis
- 2. If $\left(\sqrt{3}+i\right)^{10}=a+ib; a,b\in R,$ then a and b are respectively :
 - a. 64 and $64\sqrt{3}$
 - b. 512 and 512 $\sqrt{3}$
 - c. 128 and 128 $\sqrt{3}$
 - d. none of these
- 3. $z + \overline{z} \neq 0$ if and only if
 - a. $z \neq 0$
 - b. $Re(z) \neq 0$
 - c. Im (z) $\neq 0$
 - d. $|\mathbf{z}| \neq 0$
- 4. If $\alpha = \frac{z}{\overline{z}}$, then $|\alpha|$ is equal to :
 - a. -1
 - b. 0

- c. 1
- d. none of these
- 5. $1+i^2+i^4+i^6+i^8+\ldots$ up to 1001 terms is equal to
 - a. none of these
 - b. 0
 - c. 1
 - d. -1
- 6. Fill in the blanks:

The modulus and argument of z = 1 + i $\tan \alpha$ is _____ and ____ respectively.

7. Fill in the blanks:

The value of $\frac{1}{i^7}$ is _____.

- 8. Solve $x^2 + 3 = 0$
- 9. Express the complex numbers (1 + i) (-1 + i6) in standard form
- 10. Find the difference of the complex numbers (6 + 5i), (3 +2i).
- 11. Express the complex numbers $\left(rac{1}{5}+rac{2}{5}i
 ight)-\left(4+rac{5}{2}i
 ight)$ in standard form
- 12. Solve: $ix^2 + 4x 5i = 0$.
- 13. Find the square root of 1 i.
- 14. If Re (z²) = 0, |z| = 2, then prove that $z = \pm \sqrt{2} \pm i\sqrt{2}$.
- 15. Find all non-zero complex numbers of z satisfying $\overline{z} = iz^2$.

CBSE Test Paper 01 CH-05 Complex & Quadratic

Solution

1. (c) the line x + y = 0

Explanation: Let z=x+iy

Now
$$\left| \frac{z-3i}{z+3} \right| = 1$$

 $\Rightarrow |z-3i| = |z+3|$
 $\Rightarrow |(x+iy)-3i| = |x+iy+3|$
 $\Rightarrow |x+i(y-3)| = |(x+3)+iy|$
 $\Rightarrow \sqrt{(y-3)^2+x^2} = \sqrt{(x+3)^2+(y)^2}$
 $\Rightarrow (y-3)^2+x^2 = (x+3)^2+(y)^2$
 $\Rightarrow y^2-6y+9+x^2=x^2+6x+9+y^2$
 $\Rightarrow 6x+6y=0$
 $\Rightarrow x+y=0$

2. (b) 512 and - 512 $\sqrt{3}$

Explanation:

First we will find the polar representation of the complex number $\sqrt{3}+i$

Let
$$\sqrt{3} + i = r(\cos\theta + i\sin\theta) \Rightarrow r\cos\theta = \sqrt{3}$$
 and $r\sin\theta = 1$
 $\therefore r^2(\cos^2\theta + \sin^2\theta) = 3 + 1 = 4 \Rightarrow r^2 = 4 \Rightarrow r = 2$

$$\therefore r^2 \left(\cos^2 \theta + \sin^2 \theta\right) = 3 + 1 = 4 \Rightarrow r^2 = 4 \Rightarrow r = 3$$

Now $cos heta = rac{\sqrt{3}}{2}, \quad sin heta = rac{1}{2}$, both are positive .

So Amplitude
$$= heta = rac{\Pi}{6}$$

Hence
$$\sqrt{3}+i=2\left(cosrac{\Pi}{6}+isinrac{\Pi}{6}
ight)=2e^{rac{i\Pi}{6}}$$

Now,

$$(\sqrt{3}+i)^{10}=\left(2e^{rac{i\pi}{6}}
ight)^{10}=2^{10}e^{rac{i5\pi}{3}}=2^{10}\left(\cos\left(rac{5\Pi}{3}
ight)+i\sin\left(rac{5\Pi}{3}
ight)
ight) \ =2^{10}\left(\cos\left(2\Pi-rac{\Pi}{3}
ight)+i\sin\left(2\Pi-rac{\Pi}{3}
ight)
ight)=2^{10}\left(\cos\left(rac{-\pi}{3}
ight)+i\sin\left(rac{-\pi}{3}
ight)
ight)$$

$$=2^{10}\left(\cos\left(rac{\Pi}{3}
ight)-i\sin\left(rac{\Pi}{3}
ight)
ight)=2^{10}\left(rac{1}{2}-irac{\sqrt{3}}{2}
ight)=2^{10}\left(rac{1-\sqrt{3}i}{2}
ight)=2^{9}(1-\sqrt{3}i)$$
 Hence $\left(\sqrt{3}+i
ight)^{10}=a+ib\Rightarrow 2^{9}\left(1-\sqrt{3}i
ight)=a+ib$ $\Rightarrow a=2^{9}=512$ and $b=-2^{9}\sqrt{3}=-512\sqrt{3}$

3. (b) $Re(z) \neq 0$

Explanation: Let Z=x+iy then we have

So
$$Z+ar{Z}=2x$$

Now z + $ar{z}
eq 0$
 $\Leftrightarrow 2x
eq 0$
 $\Leftrightarrow x
eq 0$
 $\Leftrightarrow Re(z)
eq 0$

4. (c) 1

Explanation:

Given
$$lpha=rac{z}{\overline{z}}$$
 Then $|lpha|=\left|rac{z}{\overline{z}}\right|=rac{|z|}{|\overline{z}|}=1$ $\left[\because\left|rac{z_1}{z_2}\right|=rac{|z_1|}{|z_2|},|z|=|\overline{z}|
ight]$

5. (c) 1

Explanation:

$$1 + i^{2} + i^{4} + i^{6} + i^{8} + \dots \text{ upto } 1001 \text{ terms}$$

$$= (i^{2})^{0} + (i^{2})^{1} + (i^{2})^{2} + (i^{2})^{3} + \dots \text{ upto } 1001 \text{ terms}$$

$$= (i^{2})^{0} + (i^{2})^{1} + (i^{2})^{2} + (i^{2})^{3} + \dots + (i^{2})^{1000}$$

$$= \left[(i^{2})^{0} + (i^{2})^{1} \right] + \left[(i^{2})^{2} + (i^{2})^{3} \right] + \dots + \left[(i^{2})^{998} + (i^{2})^{999} \right] + \left[(i^{2})^{999} + (i^{2})^{999} \right]$$

$$= [1 - 1] + [1 - 1] + \dots + [1 - 1] + 1$$

- 6. $\sec \alpha$, α
- 7. i

8. Here
$$x^2$$
 + 3 = 0 \Rightarrow x^2 = -3 \Rightarrow x = $\pm\sqrt{-3}$ = $\pm\sqrt{3}i$

9.
$$(1 + i) - (-1 + i6)$$

 $1 + i + 1 - 6i = 2 - 5i$

10.
$$(6 + 5i) - (3 + 2i) = (6 + 5i) + (-3 - 2i)$$

= $(6 - 3) + (5 - 2)i = 3 + 3i$

11.
$$\left(\frac{1}{5} + \frac{2}{5}i\right) - \left(4 + \frac{5}{2}i\right)$$

$$= \frac{1}{5} + \frac{2}{5}i - 4 - \frac{5}{2}i$$

$$= \left(\frac{1}{5} - 4\right) + \left(\frac{2}{5} - \frac{5}{2}\right)i$$

$$= \frac{-19}{5} - \frac{21}{10}i$$

12. We have,
$$ix^2 + 4x - 5i = 0$$
 ...(i)

On comparing Eq. (i) with $ax^2 + bx + c = 0$, we get

$$a = i, b = 4 \text{ and } c = -5i$$

$$\therefore x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\therefore x = \frac{-4 \pm \sqrt{(4)^2 - 4 \times i(-5i)}}{2 \times i}$$

$$= \frac{-4 \pm \sqrt{16 + 20i^2}}{2i}$$

$$= \frac{-4 \pm \sqrt{16 - 20}}{2i} [\because i^2 = -1]$$

$$= \frac{-4 \pm \sqrt{-4}}{2i} = \frac{-4 \pm 2i}{2i}$$

$$= \frac{4i^2 \pm 2i}{2i} = 2i \pm 1 [\because -1 = i^2]$$

$$\therefore x = 2i + 1 \text{ and } x = 2i - 1$$

Hence, the roots of the given equation are 2i + 1 and 2i - 1.

13. Let
$$x + yi = \sqrt{1 - i}$$

Squaring both sides, we get

$$x^2 - y^2 + 2xyi = 1 - i$$

Equating the real and imaginary parts

$$x^2 - y^2 = 1$$
 and $2xy = -1...$ (i)

$$\therefore xy = \frac{-1}{2}$$

Using the identity

$$(x^{2} + y^{2})^{2} = (x^{2} - y^{2})^{2} + 4x^{2}y^{2}$$

$$= (1)^{2} + 44\left(-\frac{1}{2}\right)^{2}$$

$$= 1 + 1$$

$$= 2$$

$$\therefore x^2 + y^2 = \sqrt{2} \dots$$
 (ii) [Neglecting (-) sign as $x^2 + y^2 > 0$]

Solving (i) and (ii) we get

$$x^2=rac{\sqrt{2}+1}{2}$$
 and $y=rac{\sqrt{2}-1}{2}$ $\therefore x=\pm\sqrt{rac{\sqrt{2}+1}{2}}$ and $y=\pm\sqrt{rac{\sqrt{2}-1}{2}}$

Since the sign of xy is negative.

$$\therefore \text{ if } x = \sqrt{\frac{\sqrt{2}+1}{2}} \text{ then } y = -\sqrt{\frac{\sqrt{2}-1}{2}}$$
 and if $x = -\sqrt{\frac{\sqrt{2}+1}{2}} \text{ then } y = \sqrt{\frac{\sqrt{2}-1}{2}}$
$$\therefore \sqrt{1-i} = \pm \left(\sqrt{\frac{\sqrt{2}+1}{2}} - \sqrt{\frac{\sqrt{2}-1}{2}}i\right)$$

14. Let
$$z = x + iy$$

$$\Rightarrow$$
 z² = (x + iy)² [squaring both sides]

$$\Rightarrow$$
 z² = x² + i² y² + 2 ixy

$$\Rightarrow$$
 z² = (x² - y²) + i (2xy)

:. Re
$$(z^2) = 0$$

$$\Rightarrow$$
 x² - y² = 0 \Rightarrow x = \pm y

$$\Rightarrow$$
 x = y ...(i)

and
$$x = -y$$
 ...(ii)

Again,
$$|z| = 2$$
 [given]

$$\Rightarrow |z|^2 = 4$$

$$\Rightarrow$$
 x² + y² = 4 ...(iii)

From Eqs. (i) and (iii), we get

$$y^2 + y^2 = 4 \Rightarrow 2y^2 = 4$$

$$\Rightarrow$$
 $v^2 = 2 \Rightarrow v = \pm \sqrt{2}$

Therefore, from Eq. (i), we get

$$x = \pm \sqrt{2}$$

$$\therefore$$
 z = $\pm\sqrt{2} \pm i\sqrt{2}$

On putting the value of x from Eq. (ii) in Eq. (iii), we get

$$(-y)^2 + y^2 = 4 \Rightarrow 2y^2 = 4$$

$$\Rightarrow$$
 y² = 2 \Rightarrow y = $\pm\sqrt{2}$

From Eq. (ii),
$$x = \pm \sqrt{2}$$

$$\therefore$$
 z = x + iy \Rightarrow z = $\pm \sqrt{2} \pm i\sqrt{2}$

Hence proved.

15. Let
$$z = x + iy$$

Given:
$$\overline{z} = iz^2$$

$$\Rightarrow$$
 x - iy = i(x² - y² + 2i xy)

$$\Rightarrow$$
 x - iy = i(x² - y²) - 2xy

$$\Rightarrow$$
 (x + 2 xy) - i (x² - y² + y) = 0

$$\Rightarrow$$
 x + 2xy = 0 ...(i) and x² - y² + y = 0 ...(ii)

Now.

$$x + 2 xy = 0 \Rightarrow x (1 + 2y) = 0 \Rightarrow x = 0 \text{ or } 1 + 2y = 0 \Rightarrow x = 0 \text{ or } y = -\frac{1}{2}$$

CASE I: When
$$x = 0$$

Putting x = 0 in (ii), we have

$$\Rightarrow$$
 - y² + y = 0 \Rightarrow y(y - 1) = 0 \Rightarrow y = 0, y = 1

Thus, we have the following pairs of values of \boldsymbol{x} and \boldsymbol{y} :

$$x = 0, y = 0; x = 0, y = 1$$

$$\therefore$$
 z = 0 + i 0 = 0 and z = 0 + 1i = i

CASE II: When $y = -\frac{1}{2}$

Putting $y = \frac{-1}{2}$ in (ii), we get

$$x^{2} - y^{2} + y = 0 \Rightarrow x^{2} - \frac{1}{4} - \frac{1}{2} = 0 \Rightarrow x^{2} - \frac{3}{4} = 0 \Rightarrow x = \pm \frac{\sqrt{3}}{2}$$

Thus, we have the following pairs of values of \boldsymbol{x} and \boldsymbol{y} :

$$x = \frac{\sqrt{3}}{2}$$
, $y = \frac{-1}{2}$ and $x = \frac{-\sqrt{3}}{2}$, $y = \frac{-1}{2}$
 $\therefore z = \frac{\sqrt{3}}{2} - \frac{1}{2}i$ and $z = \frac{-\sqrt{3}}{2} - \frac{1}{2}i$

Hence, all non-zero complex numbers of z are i, $\frac{\sqrt{3}}{2}$ - $\frac{1}{2}$ i, - $\frac{\sqrt{3}}{2}$ - $\frac{1}{2}$ i