A. Very Short Answer Type Questions

- Q.1 Express the following in the form of p/q. (i) $.\overline{3}$ (ii) $.\overline{37}$
- **Q.2** Write two irrational numbers between 0.2 and 0.21.
- **Q.3** Write three irrational numbers between 0.202002000200002...and 0.203003000300003...
- Q.4 Write three irrational numbers between $\sqrt{3}$ and $\sqrt{5}$.
- Q.5 Find two irrational numbers between 0.5 and 0.55.
- Q.6 Find two irrational numbers lying between 0.1 and 0.12.
- Q.7 Given a rational approximation of $\sqrt{3}$ correct to two places of decimals.
- **Q.8** In the following express the result in the simplest form : $\sqrt[3]{108a^4b^3}$
- **Q.9** Express as a pure surd : $\frac{1}{3}\sqrt[3]{54}$
- **Q.10** Simplify: $2.\sqrt[3]{40} + 3.\sqrt[3]{625} + 4.\sqrt[3]{320}$
- **Q.11** Simplify: $(3\sqrt{5} 2\sqrt{3})(3\sqrt{5} + 2\sqrt{3})$
- **Q.12** Simplify: $\sqrt{m^2n^2} \times \sqrt[6]{m^2n^2} \times \sqrt[3]{m^2n^2}$
- **Q.13** Simplify: $\sqrt[5]{\sqrt[4]{(2^4)^3}} 5\sqrt[5]{8} + 2\sqrt[4]{\sqrt[5]{(2^3)^4}}$
- **Q.14** If $\sqrt{3} = 1.732$, find the value of $\frac{2}{\sqrt{3}}$.

B. Short Answer Type Questions

- Q.15 Which of the following is (i) rational (ii) irrational number (A) $(2+\sqrt{3})^2$ (B) $(3+\sqrt{4})^2$
- **Q.16** Given that $\sqrt{3} = 1.732$, find the value of $\sqrt{75} + \frac{1}{2}\sqrt{48} \sqrt{192}$.
- Q.17 Determine a and b if $\frac{5+\sqrt{3}}{7-4\sqrt{3}} = 94 a + 3\sqrt{3} b$.
- Q.18 If $\sqrt{5} = 2.236$ and $\sqrt{6} = 2.449$, find the value of $\frac{1+\sqrt{2}}{\sqrt{5}+\sqrt{3}} + \frac{1-\sqrt{2}}{\sqrt{5}-\sqrt{3}}$.
- Q.19 If $x = 7+4\sqrt{3}$, find the value of $\sqrt{x} + \frac{1}{\sqrt{x}}$.
- **Q.20** If $p = 3 2\sqrt{2}$, determine $p^2 + \frac{1}{p^2}$.
- **Q.21** Find the simplest rationalising factor of $\sqrt{5} + \sqrt{3} + 2$.
- **Q.22** Simplify: $3\sqrt{2} + \sqrt[4]{64} + \sqrt[4]{2500} + \sqrt[6]{8}$.
- Q.23 Simplify and express the results in simplest form: $\frac{\sqrt{x^2 - y^2} + x}{\sqrt{x^2 + y^2} + y} \div \frac{\sqrt{x^2 + y^2} - y}{x - \sqrt{x^2 - y^2}}.$
- **Q.24** Evaluate : $\sqrt{5+2\sqrt{6}}$.

C. Fill in the Blanks

Q.25 Every point on the number line corresponds to a number which may be either or

- Q.26 The decimal form of an irrational number is neither nor
- Q.27 The decimal representation of the rational number $\frac{8}{27}$ is
- Q.28 0 is a/an number . (Rational /Irrational)
- **Q.29** The decimal equivalent to $\frac{7}{12}$ is
- **Q.30** The decimal equivalent to $\frac{49}{396}$ is
- Q.31 The common fraction equivalent to 0.09375 is
- Q.32 The common fraction equivalent to 0.4312 is
- Q.33 Every real number is either number or number.

D. True/False Type Questions

- Q.34 The sum of two rational numbers is rational.
- Q.35 The sum of two irrational numbers is irrational.
- Q.36 The product of two rational numbers is rational.
- **Q.37** The product of two irrational numbers is irrational.
- **Q.38** The sum of a rational number and an irrational number is irrational.
- **Q.39** The product of a nonzero rational number and an irrational number is a rational number.
- Q.40 Every real number is rational.

- **Q.41** π is irrational and $\frac{22}{7}$ is rational.
- Q.42 Every rational number must be a whole number.
- Q.43 The number zero is both positive and negative.
- Q.44 The sum of the two prime numbers is always even.
- Q.45 The product of two odd numbers is always odd.
- Q.46 A number of three digits has for its middle digit, the sum of the other two digits. Then the number must be a multiple of 11.
- Q.47 If $u = x^2 y^2$ is an even number, where x and y are whole numbers, then u must be a multiple of 4.
- Q.48 The distance between the points a and b on the number line is equal to |b a|.

ANSWER KEY

A. VERY SHORT ANSWER TYPE :

1.	(i) $\frac{1}{3}$	(ii) $\frac{37}{99}$			
2.	0.20100100	01	., 0.2020020002		
3.	0.20201001000100001,				
	0.20202002	0002, ().202030030003		
4.	1.80100100	01, 1	1.9010010001,		
	2.010010001				
5.	0.50100100	1 an	d 0.5020020002		
6.	0.10100100	010000	and 0.1020020002		
7.	1.73		8. 3ab $\sqrt[3]{4a}$		
9.	∛2		10. $35\sqrt[3]{5}$		
11.	33		12. m^2n^2		
13.	$-2.\sqrt[5]{8}$		14. 1.154		
<u>B. SHORT ANSWER TYPE :</u>					
15.	(a) irrationa	1	(b) rational		
16.	- 1.732		17. $a = \frac{1}{2}, b = 9$		
18.	- 0.213		19. 4		
20.	34		21. $(2+\sqrt{3}-\sqrt{5})$ $(1-2\sqrt{3})$		
22.	$11\sqrt{2}$		23. $\frac{y^2}{x^2}$		
24.	$\sqrt{3} + \sqrt{2}$				

C. FILL IN THE BLANKS :

25. real, rational number, an irrational number

26. terminating, recurring

27. 0.296	28. rational
29. 0.583	30. 0.1237
31. $\frac{3}{32}$	32. $\frac{718}{1665}$

33. rational, irrational

48. True

D. TRUE/FALSE TYPE :

34. True	35. False
36. True	37. False
38. True	39. False
40. False	41. True
42. False	43. False
44. False	45. True
46. True	47. True

EXERCISE # 2

Which of the following statements

are True/False. (Q. 1 to 13)

- Q.1 Every natural number is a whole number.
- Q.2 Every whole number is an integer.
- **Q.3** Every whole number is a natural number.
- Q.4 Collection of whole numbers is denoted by W.
- Q.5 Collection of integers is denoted by N.
- **Q.6** A real number is a rational number.
- Q.7 Every point on the number line is a real number.
- **Q.8** Reciprocal of an irrational number is an irrational number.
- Q.9 Every real number can be expressed in the form $\frac{p}{q}$ where p and q are integers and $q \neq 0$.
- Q.10 Square root of every natural number is an irrational number.
- **Q.11** Every rational number can be expressed in the form of terminating decimal expansion.
- **Q.12** Decimal expansion of $\frac{2}{7}$ is of recurring form.
- Q.13 The number 0.21211211121111.....is an irrational number.
- Q.14 Express the rational number $\frac{1}{27}$ in recurring decimal form by using the recurring decimal expression of $\frac{1}{3}$. Hence write $\frac{59}{27}$ in recurring decimal form.
- Q.15 Express in $\frac{p}{q}$ form (i) $2.\overline{124}$, (ii) $0.2\overline{37}$
- Q.16 Express $\frac{1}{37}$ in decimal form and hence write the decimal expansion of $\frac{79}{37}$.

- **Q.17** Visualize the position of 5.665 on the number line, through successive magnification.
- **Q.18** Visualize the representation of $1.\overline{3}$ on the number line upto 4 decimal places, that is, upto 1.3333. Further locate 1.33333.
- **Q.19** Express $\sqrt{3.5}$ geometrically.
- **Q.20** Express $\sqrt{5.42}$ geometrically and represent it on the number line.
- Q.21 By taking $\pi = 3.141$ and $\sqrt{2} = 1.414$, evaluate $\frac{2\pi + 3\sqrt{2}}{5}$ upto three places of decimals.
- Q.22 Simplify the following expressions : (i) $(2\sqrt{2} + 5\sqrt{3}) + (\sqrt{2} - 3\sqrt{3})$ (ii) $(3 + \sqrt{3})(2 + \sqrt{2})$ (iii) $(3 + \sqrt{5})(3 - \sqrt{5})$
- Q.23 If $a = 2 + \sqrt{3} + \sqrt{5}$ and $b = 3 + \sqrt{3} \sqrt{5}$, prove that $a^2 + b^2 - 4a - 6b - 3 = 0$.
- **Q.24** If $x = \sqrt{3} + 2\sqrt{2}$ and $y = \sqrt{3} 2\sqrt{2}$, evaluate $x^4 + y^4 + 6x^2y^2$.
- Q.25 If $x = 1 \sqrt{2}$, find the value of (i) $x + \frac{1}{x}$ (ii) $x - \frac{1}{x}$ (iii) $x^{2} + \frac{1}{x^{2}}$ (iv) $x^{2} - \frac{1}{x^{2}}$ (v) $x^{4} + \frac{1}{x^{4}}$ (vi) $x^{4} - \frac{1}{x^{4}}$
- **Q.26** For the identity $\frac{7+\sqrt{5}}{7-\sqrt{5}} \frac{7-\sqrt{5}}{7+\sqrt{5}} = a + 7\sqrt{5}b$, determine the rational numbers a and b.
- Q.27 Simplify the following expressions : (i) $\frac{1}{\sqrt{2}+1} + \frac{1}{\sqrt{3}+\sqrt{2}} + \frac{1}{\sqrt{4}+\sqrt{3}} + \frac{1}{\sqrt{5}+\sqrt{4}}$ (ii) $\frac{1}{\sqrt{2}+1} + \frac{1}{\sqrt{3}+2} + \frac{2}{\sqrt{5}+3} + \frac{2}{\sqrt{5}-3}$

Q.28 Simplify :

(i)
$$(9)^{\frac{9}{2}}$$
 (ii) $(9)^{-\frac{3}{2}}$ (iii) $(25)^{\frac{3}{2}}$
(iv) $(36)^{\frac{3}{2}}$ (v) $(49)^{-\frac{3}{2}}$ (vi) $(.0001)^{-\frac{3}{4}}$

Simplify:
(i)
$$\left(\frac{243}{32}\right)^{-\frac{4}{5}}$$
 (ii) $\sqrt[3]{(343)^{-2}}$

If $a^x = b$, $b^y = c$ and $c^z = a$, then prove that Q.30 xyz = 1. Here a, b, c are positive real numbers and x, y, z are rational numbers.

ANSWER KEY

