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3 

The general equation of second degree  

 ax2  + by2 + 2gx + 2fy + c = 0 

represents pair of straight line; if  = 0 and ab – 

h2  0 

 
Clairaut (1729 A.D.) was the first to gave the 

distance formulae although in clumsy form. He 

also gave the intercept form of the linear 
equation. 

In 1818, Gabriel Lame a civil engineer gave  mE 

+ mE' = 0 as the curve passing through the point 

of intersection of two loci E = 0 and E' = 0. 

Gabriel Lame 
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 3.1 Equation of Pair of Straight lines . 

 Let the equation of two lines be  

 0 cybxa   .....(i)       and     0 cybxa      .....(ii)  

 Hence 0))((  cybxacybxa  is called the joint equation of lines (i) and (ii) and 

conversely, if joint equation of two lines be )( cybxa   0)(  cybxa  then their separate 

equation will be 0 cybxa  and 0 cybxa . 

 (1) Equation of a pair of straight lines passing through origin : The equation 02 22  byhxyax  

represents a pair of straight line passing through the origin where a, h, b are constants. 

 Let the lines represented by 02 22  byhxyax be 01  xmy and 02  xmy  

 where,  1m
b

abhh  2

 and 2m = 
b

abhh  2

 then, 
b

h
mm

2
21   and 

b

a
mm 21  

 Then, two straight lines represented by 02 22  byhxyax  are abhyhyax  2 = 0 and 

02  abhyhyax . 

 Note :    The lines are real and distinct if 02  abh  

   The lines are real and coincident if 02  abh  

   The lines are imaginary if 02  abh  

   If the pair of straight lines 02 22  byhxyax and 0''2' 22  ybxyhxa  should 

have one line common, then )'')(''(4)''( 2 bhhbhaahbaab  .  

    The equation of the pair of straight lines passing through origin and 

perpendicular to the pair of straight lines represented by 02 22  byhxyax is 

given by  02 22  ayhxybx  

   If the slope of one of the lines represented by the equation 02 22  byhxyax be 

the square of the other, then 086 322  habhabba . 

   If the slope of one of the lines represented by the equation 02 22  byhxyax be 

 times that of the other, then 22 )1(4   abh . 

 (2) General equation of a pair of straight lines : An equation of the form, 

     0222 22  cfygxbyhxyax  

 where a, b, c, f, g, h  are constants, is said to be a general equation of second degree in x 

and y. 



   

Pair of Straight Lines  61 

 The necessary and sufficient condition for 0222 22  cfygxbyhxyax to represent a 

pair of straight lines is that 02 222  chbgaffghabc  or 0

cfg

fbh

gha

 

 (3) Separate equations from joint equation: The general equation of second degree be 

0222 22  cfygxbyhxyax . To find the lines represented by this equation we proceed as 

follows : 

 Step I : Factorize the homogeneous part 22 2 byhxyax  into two linear factors. Let the 

linear factors be ybxa ''   and ybxa ""  . 

 Step II: Add constants 'c and "c  in the factors obtained in step I to obtain ''' cybxa   and 

""" cybxa  . Let the lines be 0'''  cybxa  and 0"""  cybxa . 

 Step III : Obtain the joint equation of the lines in step II and compare the coefficients of x, 

y and constant terms to obtain equations in c' and c" . 

 Step IV : Solve the equations in c' and c"  to obtain the values of c' and c". 

 Step V : Substitute the values of c' and c" in lines in step II to obtain the required lines. 
 

Example: 1 If the sum of the slopes of the lines given by 072 22  ycxyx is four times their product. Then c has 

the value   

[AIEEE 2004] 

(a) – 2 (b) – 1 (c) 2 (d) 1 

Solution: (c) We know that, 
b

h
mm

2
21


 and 

b

a
mm 21 . 

Given, 2121 4 mmmm   













7

1
4

7

2c
 2c     

Example: 2 If one of the lines represented by the equation 02 22  byhxyax  be ,mxy  then    [UPSEAT 1999] 

(a) 022  ahmbm  (b) 022  ahmbm  (c) 022  bhmam  (d) 022  ahmbm  

Solution: (a) Substituting the value of y  in the equation 02 22  byhxyax  

  0)()(2 22  mxbmxhxax   02 2  bmhma   

Example: 3 If the equation 051121012 22  Kyxyxyx represent two straight lines, then the value of K is [MP PET 2003] 

 (a) 1 (b) 2 (c) 0 (d) 3 

Solution: (b) Condition for pair of lines,  02 222  chbgaffghabc , Here 

,2,5,12  bha ,2/11g ,2/5f Kc   

 Then, 0)5(
2

11
2

2

5
12

2

11

2

5
2212 2

22

















 



 KK . On solving, we get  K= 2.  

 

 3.2 Angle between the Pair of Lines. 

 (1) The angle   between the pair of lines represented by 02 22  byhxyax is given by 

ba

abh






22
tan  

 (i) The lines are coincident if the angle between them is zero.  
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     Lines are coincident i.e.,  0   0tan     0
2 2






ba

abh
   02  abh   abh 2  

 Hence, the lines represented by 02 22  byhxyax are coincident, abhiff 2  

 (ii) The lines are perpendicular if the angle between them is 2/ . 

  
2


    

2
cotcot


    0cot    0

2 2






abh

ba
  0 ba   coeff. of 2x coeff. of 

02 y   

 Thus, the lines represented by 02 22  byhxyax are perpendicular iff 0 ba i.e., coeff. of 2x coeff. 

of 02 y .    

 (2) The angle between the lines represented by 0222 22  cfygxbyhxyax  is given by 

     
ba

abh

ba

abh









 

2
1

2 2
tan

2
tan    

 (i) The lines are parallel if the angle between them is zero. Thus, the lines are parallel iff  

 0   0tan     0
2 2






ba

abh
 abh 2 . 

 Hence, the lines  represented by 0222 22  cfygxbyhxyax are parallel iff abh 2  and 22 bgaf   or 

f

g

b

h

h

a
 . 

 (ii) The lines are perpendicular if the angle between them is 2/ . 

 Thus, the lines are perpendicular i.e., 2/    0cot    0
2 2






abh

ba
 

                   0 ba   coeff. of 2x coeff. of 02 y    

 Hence, the lines represented by  0222 22  cfygxbyhxyax  are perpendicular iff 

0 ba   

 i.e.,    coeff. of 2x  coeff. of 02 y . 

 (iii) The lines are coincident, if acg 2 .   
 

Example: 4 The angle between the lines 0183176 22  yxyxyx  is     [Karnataka CET 2003] 

 (a) o45  (b) o60  (c) o90  (d) o30  

Solution: (b) Angle between the lines is 
ba

abh




 

2
1 2

tan
)6(1

)6(1
2

1
2

tan

2

1










 

  =
)6(1

6
4

1
2

tan 1






4
)1(tan|1|tan 11 
  , 

o45  

Example: 5 If the angle between the pair of straight lines represented by the equation 

02533 22  yxyxyx  is 








3

1
tan 1 , where  is a non- negative real number, then  is              [Orissa JEE 2002] 

 (a) 2 (b) 0 (c) 3 (d) 1 
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Solution: (a) Given that 
3

1
tan

3

1
tan 1 








    

 Now, since 
ba

abh






22
tan  

3

1
= 

1

2

3
2

2










 





  )49(9)1( 2     080382    

   0802402    0)40(2)40(     0)40)(2(    2  or – 40, but   is a non-

negative real number. Hence 2 .      

Example: 6 The angle between the pair of straight lines represented by 0372 22  yxyx is  

 [Kurukshetra CEE 2002] 

 (a) o60  (b) o45  (c) )6/7(tan 1  (d) o30  

Solution: (b) Angle between the lines is , 
32

)3)(2(
2

7
2

tan
2

tan

2

1
2

1

















 

ba

abh
   )1(tan

2

5
.

5

2
tan 11  








   

o45  

 3.3 Bisectors of the Angles between the Lines.        

 (1) The joint equation of the bisectors of the angles between the lines represented by the 

equation 02 22  byhxyax  is  
h

xy

ba

yx




 22

  .....(i)  

      0)( 22  hyxybahx  

 Here, coefficient of 2x coefficient of 02 y . Hence, the bisectors of the angles between 

the lines are perpendicular to each other. The bisector lines will pass through origin also. 

 Note  :  If ba  , the bisectors are 022  yx  i.e., 0,0  yxyx  

             If 0h , the bisectors are 0xy  i.e., 0,0  yx . 

                     If bisectors of the angles between lines represented by 02 22  byhxyax  and 

0''2' 22  ybxyhxa  are same, then 
ba

ba

h

h






'''
. 

            If the equation 02 22  byhxyax  has one line as the bisector of the angle 

between the coordinate axes, then 22 )(4 bah  . 

 (2) The equation of the bisectors of the angles between the lines represented by 

22 2 byhxyax  + 022  cfygx  are given by 
h

yx

ba

yx ))(()()( 2  




 

, where ,   is the 

point of intersection of the lines represented by the given equation.  
 

Example: 7 The equation of the  bisectors of the angles between the lines represented by 0cot2 22  yxyx   is 

 (a) 022  yx  (b) xyyx  22  (c) xyyx 2cot)( 22    (d) None of these 

Solution: (a) Equation of bisectors is given by 
h

xy

ba

yx




 22

or 
cot0

22 xyyx



  022  yx  
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Example: 8 If the bisectors of the lines 02 22  ypxyx be ,02 22  yqxyx then  

[MP PET 1993; DCE 1999; Rajasthan PET 2003; AIEEE 2003] 

 (a) 01 pq  (b) 01 pq  (c) 0 qp  (d) 0 qp  

Solution: (a) Bisectors of the angle between the lines 02 22  ypxyx is 
pxy

yx






 )1(122

  02 22  pyxypx  

 But it is represented by 02 22  yqxyx . Therefore 011
2

2

1



 pqpq

q

p
   

 3.4 Point of Intersection of Lines represented by  ax2+2hxy+by2+2gx+2fy+c = 0. 

 Let 0222 22  cfygxbyhxyax  

    0222 



ghyax

x


  (Keeping y as constant)    

 and  0222 



fbyhx

y


  (Keeping x as constant) 

 For point of intersection 0




x


 and 0





y


  

 We obtain, 0 ghyax  and 0 fbyhx  

 On solving these equations, we get 
2

1

habafgh

y

bgfh

x








  i.e. 


















abh

ghaf

abh

fhbg
yx

22
,),(  

 Also, since 

cfg

fbh

gha

 ,  from first two rows 

 a   h   g    0 ghyax   and  

 h   b   f    0 fbyhx  and then solve, we get the point of intersection. 

 Note  :   The point of intersection of lines represented by 02 22  byhxyax is (0, 0). 

 

Example: 9 The point of intersection of the lines represented by the equation 08148732 22  yxxyyx  is 

 (a) )2,0(  (b) )2,1(  (c) )0,2(  (d) )1,2(  

Solution: (c) Let 08148732 22  yxxyyx  

    0874 



yx

x


 and 01476 




xy

y


 

 On solving these equations, we get 0,2  yx  

 Trick : If the equation is 0222 22  cfygxbyhxyax   

 The points of intersection are given by  















22

,
hab

afhg

hab

bghf
.  Hence point is (– 2, 0) 

Example: 10  If the pair of straight lines 01  yxxy  and line 032  yax are concurrent, then a =  [EAMCET 2002] 

 (a) – 1 (b) 0 (c) 3 (d) 1 

Solution: (d) Given that equation of pair of straight lines 01  yxxy   
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  0)1)(1(  yx       01 x    or  01 y  

 The intersection point of 01,01  yx is (1,1) 

   Lines 01,01  yx and 032  yax are concurrent. 

  The intersecting points of first two lines satisfy the third line. 

 Hence, 032 a  1a  

 

 3.5 Equation of the Lines joining the Origin to the Points of Intersection of a given Line and a given Curve . 

 The equation of the lines which joins origin to the point of intersection of the line 

0 nmylx and curve 0222 22  cfygxbyhxyax , can be obtained by making the curve 

homogeneous with the help of line 0 nmylx , which is 

0)(22

2

22 


























n

mylx
c

n

mylx
fygxbyhxyax  

 We have 0222 22  cfygxbyhxyax     ......(i) 

 and 0 nmylx       .....(ii) 

 Suppose the line (ii) intersects the curve (i) at two points A and B. We wish to find the 

combined equation of the straight lines OA and OB. Clearly OA and 

OB pass through the origin, so their joint equation is a homogeneous 

equation of second degree in x and y. 

 From equation (ii), 1





n

mylx
nmylx             

......(iii) 

 Now, consider the equation 

 


























n

mylx
fy

n

mylx
gxbyhxyax 222 22 0

2















n

mylx
c .....(i

v) 

 Clearly, this equation is a homogeneous equation of second degree. So, it represents a pair 

of straight lines passing through the origin. Moreover, it is satisfied by the points A and B. 

 Hence (iv) represents a pair of straight lines OA and OB  through the origin O and the 

points A and B which are points of intersection of (i) and (ii). 
 

Example: 11 The lines joining the origin to the point of intersection of the circle 322  yx  and the line 2 yx  

are  

 (a) 0)223(  xy  (b) 0)223(  yx  (c) 0)223(  yx  (d) 0)223(  xy  

Solution: (a,b,c,d) Make homogenous the equation of circle, we get 06 22  yxyx  

   yy
yyyy

x 223
2

246

2

)436(6 2







  

 Hence, the equation are yx )223(  and yx )223(   

 Also after rationalizing these equations becomes 0)223(  xy and 0)223(  xy . 

 lx+my+n=0 

   Y 

Y 

   O 
   X'    X B 

 A 
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Example: 12 The pair of straight lines joining the origin to the points of intersection of the line cxy  22  and 

the circle 222  yx  are at right angles, if              

[MP PET 1996] 

 (a) 042 c  (b) 082 c  (c) 092 c  (d) 0102 c  

Solution: (c) Pair of straight lines joining the origin to the points of intersection of the line cxy  22  and the 

circle 222  yx  are   

  0
22

)2(

2

22 



















c

yx
yx      0248

2 22

2

22  xyyx
c

yx   0
282

1
16

1
22

2

2

2 


















c

xy

c
y

c
x  

 If these lines are perpendicular, 0
2

1
16

1
22


cc
  

   0
182

2

2




c

c
  09

2
c .  

 3.6 Removal of First degree Terms. 

 Let point of intersection of lines represented by  0222 22  cfygxbyhxyax  ......(i) 

is ),(  . 

 Here 

















abh

ghaf

abh

fhbg
22

,),(   

 For removal of first degree terms, shift the origin to ),(   i.e., replacing x by )( X and y 

be )( Y in (i). 

 Alternative Method : Direct equation after removal of first degree terms is  

   0)(2 22  cfgbYhXYaX   

 Where  
abh

fhbg






2
  and 

abh

ghaf






2
  

 3.7 Removal of the Term xy from f (x, y) = ax2 + 2hxy +by2 without changing  the Origin  . 

 Clearly, 0h . Rotating the axes through an angle  , we have,  

  sincos YXx   and   cossin YXy   

    22 2),( byhxyaxyxf   

 After rotation, new equation is 222 ) sinsincos2cos(),( XbhaYXF     

                                                                                     XYhab )sin(cossincos){(2 22    

                     222 )cossincos2sin( Ybha    

Now coefficient of XY = 0. Then we get cot 
h

ba

2
2


  

 Note :  Usually, we use the formula, 
ba

h




2
2tan    for finding the angle of rotation, 

 . However, if ba  , we use 
h

ba

2
2cot


  as in this case 2tan  is not defined.     

 

Example: 13  The new equation of curve 07311712712 22  yxyxyx after removing the first degree terms 

 (a) 012712 22  YXYX    (b) 012712 22  YXYX  
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 (c) 012712 22  YXYX    (d) None of these 

Solution: (c) Let  07311712712 22  yxyxyx   .....(i) 

   017724 



yx

x


 and 031247 




yx

y


 

 Their point of intersection is )1,1(),( yx  

 Here 1,1    

 Shift the origin to (1, –1) then replacing 1 Xx and 1 Yy in (i), the required equation is  

 )1(17)1(12)1)(1(7)1(12 22  XYYXX 07)1(31  Y  i.e., 012712 22  YXYX  

 Alternative Method : Here 1  and 1  and 7,2/31,2/17  cfg  

  071
2

31
1

2

17
 cfg   

  Removed equation is 0)(2 22  cfgbYhXYaX    

 i.e., 0012712 22  YXYX   012712 22  YXYX . 

Example: 14 Mixed term xy is to be removed from the general equation 022222  cfygxhxybyax , one should 

rotate the axes through an angle  given by 2tan =  

 (a) 
h

ba

2


 (b) 

ba

h



2
 (c) 

h

ba

2


 (d) 

ba

h



2
 

Solution: (d) Let )','( yx  be the coordinates on new axes, then put ,sin'cos'  yxx   cos'sin' yxy  in the 

equation, then the coefficient of xy in the transformed equation is 0. 

 So, )(2 ab  02cos2cos.sin   h  
ba

h




2
2tan    

 

 3.8 Distance between the Pair of parallel Straight lines s       

 If 0222 22  cfygxbyhxyax  represent a pair of parallel straight lines, then the 

distance between them is given by 
)(

2
2

baa

acg




or 

)(
2

2

bab

bcf




  

Example: 15  Distance between the pair of lines represented by the equation 049396 22  yxyxyx [Kerala (Engg.) 2002] 

 (a) 
10

15
 (b) 

2

1
 (c) 

2

5
 (d) 

10

1
 

Solution: (c) The distance between the pair of straight lines given by  

 0222 22  cfygxbyhxyax  is 
)(

2
2

baa

acg




, Here 

2

3
,4,9,1  gcba

2

5

10

4

25

2
)91(1

)4(
4

9

2 




   

Example: 16 Distance between the lines represented by the equation 04333332 22  yxyxyx is [Roorkee 1989] 

 (a) 5/2 (b) 5/4 (c) 5 (d) 0 

Solution: (a) First check for parallel lines i.e., 
f

g

b

h

h

a
    

3

1

2

33

2

3

3

3





  

 which is true, hence lines are parallel.   Distance between them  is 
)(

2
2

baa

acg





)31(1

)4(1)2/3(
2

2




  

2/5  

 3.9 Some Important Results 
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 (1) The lines joining the origin to the points of intersection of the curves 

022 22  gxbyhxyax and 0'2''2' 22  xgybxyhxa will be mutually perpendicular, if 

)(')''( bagbag  . 

 (2) If the equation 0 cfygxhxy  represents a pair of straight lines, then chfg  . 

 (3) The pair of lines )3(8)3( 22222 ababxyxba   02 y  with the line 0 cbyax  form an 

equilateral triangle. 

 (4) The area of a triangle formed by the lines 02 22  byhxyax and 0 nmylx is given by 

22

22

2 blhlmam

abhn




 

 (5) The lines joining the origin to the points of intersection of line cmxy   and the circle 
222 ayx  will be mutually perpendicular, if 222 2)1( cma  . 

 (6) If the distance of two lines passing through origin from the point ),( 11 yx is d, then the 

equation of lines is )()( 2222
11 yxdyxxy   

 (7) The lines represented by the equation  0222 22  cfygxbyhxyax will be 

equidistant from the origin, if )( 2244 agbfcgf   

 (8) The product of the perpendiculars drawn from ),( 11 yx on the lines 02 22  byhxyax is 

given by  

        
22

2
111

2
1

4)(

2

hba

byyhxax




 

 (9) The product of the perpendiculars drawn from origin on the lines  

0222 22  cfygxbyhxyax  is  

       
22 4)( hba

c


 

 (10) If the lines represented by the general equation 0222 22  cfygxbyhxyax are 

perpendicular, then the square of distance between the point of intersection and origin is 

22

22

bh

gf




 

 (11) The square of distance between the point of intersection of the lines represented by 

the equation 0222 22  cfygxbyhxyax and origin is 
2

22)(

hab

gfbac




 

Example: 17  The area of the triangle formed by the lines 0994 22  yxyx and 2x is    [Roorkee 2000] 

 (a) 2 (b) 3 (c) 
3

10
 (d) 

3

20
 

Solution: (c) The area of triangle formed by the lines 02 22  byhxyax  and  0 nmylx is given by 

22

22

2 blhlmam

abhn




 

 Here 2,0,1,
2

9
,9,4  nmlhba , then area of triangle  
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 = 
2

2

2

)1(9

2

9
4

2

9
)2(












 


=
9

30

9

2

36

4

81
4








3

10
  

Example: 18 The orthocentre of the triangle formed by the lines 0xy  and 1 yx  is    [IIT 1995] 

 (a) (0, 0) (b) 








2

1
,

2

1
 (c) 









3

1
,

3

1
 (d) 









4

1
,

4

1
 

Solution: (a) Lines represented by 0xy is 0x , 0y . Then the triangle formed is right angled triangle at O(0, 

0), therefore O(0, 0) is its orthocentre. 

   

 

 

 

 

 

Example: 19 If the pair of straight lines given by )(,02 222 ABHByHxyAx  forms an equilateral triangle with 

line 0 cbyax then )3)(3( BABA   is              [EAMCET 2003] 

 (a) 2H  (b) H  (c) 22H  (d) 24 H  

Solution: (d) We know that the pair of lines 0)3(8)3( 222222  yababxyxba with the line 0 cbyax form an 

equilateral triangle. Hence comparing with 02 22  ByHxyAx then ,3 22 baA 
22 3abB  , 

abH 82   

 Now )8)(8()3)(3( 22 baBABA    222 4)2()8( HHab  . 
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