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Pair of Straight Lines

3.1 Equation of Pair of Straight lines
Let the equation of two lines be
ax+b'y+c'=0 ... (i) and a'x+b'y+c"=0 ..... (ii)

Hence (@x+b'y+c)@x+b"y+c")=0 is called the joint equation of lines (i) and (ii) and
conversely, if joint equation of two lines be (@x+b'y+c’) (@'x+b"y+c¢")=0 then their separate
equation will be a’x +b'y +¢'=0 and a"x +b"y +c¢"=0.

(1) Equation of a pair of straight lines passing through origin : The equation ax? + 2hxy +by? =0
represents a pair of straight line passing through the origin where a, h, b are constants.

Let the lines represented by ax® +2hxy +by? =0be y-m;x =0and y-m,x =0

~h++vh? -ab —h—+/h*-ab 2h a
where, m; S — and m, = — then, m, +m, =5 and mym, =5

Then, two straight lines represented by ax”® + 2hxy +by? =0 are ax+hy +yvh? —ab = 0 and

ax+hy—yvh? —ab=0.

[Noi;e : O The lines are real and distinct if h? —ab>0

Q The lines are real and coincident if h? —ab=0

Q The lines are imaginary if h? —ab <0

Q If the pair of straight lines ax® +2hxy +by? =0and a'x? +2h'xy +b'y? =0 should
have one line common, then (ab'—a'b)? = 4(ah—a'h)(hb'-h'b).

U The equation of the pair of straight lines passing through origin and
perpendicular to the pair of straight lines represented by ax” + 2hxy +by? =0is
given by bx? —2hxy +ay® =0

Q If the slope of one of the lines represented by the equation ax? + 2hxy +by? =0 be
the square of the other, then a’b +ab® —6abh+8h* =0.

Q If the slope of one of the lines represented by the equation ax? + 2hxy +by? =0 be
Jtimes that of the other, then 44h? =ab(l + 1).

(2) General equation of a pair of straight lines : An equation of the form,
ax? +2hxy +by? +2gx + 2fy+c¢c=0
where a, b, ¢, f, g, h are constants, is said to be a general equation of second degree in x
and y.
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The necessary and sufficient condition for ax? +2hxy +by? + 2gx + 2fy+c =0to represent a
a h g
pair of straight lines is that abc+2fgh—af? —bg? —ch? =0 or [h b f[=0
g f ¢
(3) Separate equations from joint equation: The general equation of second degree be
ax? + 2hxy + by? + 2gx + 2fy+c =0. To find the lines represented by this equation we proceed as
follows :
Step I : Factorize the homogeneous part ax? + 2hxy + by’into two linear factors. Let the
linear factors be a'x +b'y and a"x +b"y.
Step II: Add constants c'and c" in the factors obtained in step I to obtain a'x+b'y +c¢' and
a"x +b"y+c". Let the linesbe a'x+b'y+c'=0 and a"x +b"y +c"=0.
Step III : Obtain the joint equation of the lines in step II and compare the coefficients of x,
y and constant terms to obtain equations in ¢’ and c" .

Step IV : Solve the equations in ¢’ and ¢" to obtain the values of ¢’ and c".
Step V : Substitute the values of ¢’ and c¢” in lines in step II to obtain the required lines.

Example: 1 If the sum of the slopes of the lines given by x? —2cxy —7y? =01is four times their product. Then ¢ has
the value
[AIEEE 2004]
(a) -2 (b) -1 (c) 2 (d)1

Solution: (¢) We know that, m; +m, = —2h and m;m, = %.

. —-2¢C 1
Given, m; +m, =4mm, = - = 4[—7): c=2

Example: 2 If one of the lines represented by the equation ax? + 2hxy +by? =0 be y =mx, then
(a) bm?+2hm+a=0 (b) bm?2+2hm-a=0 (c) am?+2hm+b=0 (d) bm? —2hm +a=0
Solution: (a) Substituting the value of y in the equation ax? +2hxy +by? =0

= ax?+2hx(mx)+b(mx)> =0 = a+2hm +bm? =0

Example: 3 If the equation 12x%—10xy +2y2 +11x —5y + K = 0 represent two straight lines, then the value of K is [MP PET 2

() 1 (b) 2 () o (d) 3
Solution: (b) Condition for pair of lines, abc +2fgh—af2 —bg? —ch? =0, Here
a=12,h=-5b=2 g=11/2, f=-5/2,c=K

-5 11 -5)? 11)?
Then, 12><2><K+2><7><?—12x(7j —2x(7j - K(-5)2 =0 . On solving, we get K= 2.

3.2 Angle between the Pair of Lines

(1) The angle @ between the pair of lines represented by ax®+2hxy+by? =0is given by

2vh? —ab
a+b

tan @ =

(i) The lines are coincident if the angle between them is zero.
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(2
Lines are coincident i.e., =0 = tand=0 = %:o = h’-ab=0 = h*=ab
+

Hence, the lines represented by ax? + 2hxy + by? =0 are coincident, iff h® =ab
(ii) The lines are perpendicular if the angle between them is 7 /2.
a+b

2+vh? —ab

0:% = cot<9=cot% = cotd=0 = =0 = a+b=0 = coeff. of x?+coeff. of

y>=0
Thus, the lines represented by ax? + 2hxy + by? = 0 are perpendicular iff a + b = 0 i.e., coeff. of x* + coeff.
of y2 =0.
(2) The angle between the lines represented by ax? + 2hxy + by? + 2gx + 2fy+c =0 is given by
2Jh? —ab 2Jh? —ab
a+b

a+b

-1

tan @ = = @ =tan

(i) The lines are parallel if the angle between them is zero. Thus, the lines are parallel iff

2+vh? —ab
a+b

=0 = tanfd=0 = =0= h?=ab.

Hence, the lines represented by ax? + 2hxy +by? + 2gx + 2fy + ¢ = 0 are parallel iff h* =ab and af’ =bg? or

a_h_g
h b f°
(ii) The lines are perpendicular if the angle between them is 7/2.
Thus, the lines are perpendicular i.e., 6 =7/2 = cotd =0 = _a+b =0

2vh? —ab

= a+b=0 = coeff. of x? +coeff. of y> =0

Hence, the lines represented by ax®+2hxy+by?+2gx+2fy+c=0 are perpendicular iff
a+b=0
i.e., coeff. of x?+ coeff. of y> =0.

(iii) The lines are coincident, if g2 = ac.

Example: 4  The angle between the lines x? —xy —6y% —7x+31y—18 =0 is [Karnataka CET 2003]
(a) 45° (b) 60° (c) 90° (d) 30°
2
-1 1
Jnz _ 2 (—j ~1x(-6) 2‘/7+6
Solution: (b)  Angle between the lines is 6 = tan ™ 2vh” —ab —tan-! 2 =tant V4| =tan ] 1= tan @) =2,
at+b |~ 1+(-6) 1+(-6) 4

45°
Example: 5 If the angle between the pair of straight lines represented by the equation

x% —3xy +y® +3x -5y +2=01is tan ’{%) , where A1is a non- negative real number, then A is

(a) 2 (b) o (c) 3 (d) 1
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Solution: (a) Given that 6 =tan™ (%) =tand = %

 HET

2
3 A+1

2vh? —ab =

= (A+1)°=909-41) = 12+381-80=0
a+b

Now, since tan @ =

= AP +401-22-80=0= A(A1+40)-2(1+40)=0 = (A-2)(A1+40)=0= A1=2 or - 40, but 1 is a non-
negative real number. Hence 1=2.

Example: 6 The angle between the pair of straight lines represented by 2x2 —7xy +3y? =01is
[Kurukshetra CEE 2002]

(a) 60° (b) 45° (c) tan*(7/6) (d) 30°
7 2
2 [—*j -(2)(3)
vh? - 2
Solution: (b) Angle between the lines is , 49=tan‘1|2 h babIZtan_l = 9=tan’l(§.gjztan’l(l) .
a+

2+3 ‘

0 =45°
3.3 Bisectors of the Angles between the Lines
(1) The joint equation of the bisectors of the angles between the lines represented by the

22
equation ax® + 2hxy +by? =0 is Xa g =% ..... (1)

= hx?—(@a-b)xy-hy?=0
Here, coefficient of x? +coefficient of y> =0. Hence, the bisectors of the angles between
the lines are perpendicular to each other. The bisector lines will pass through origin also.

[Noi;e :Q If a = b, the bisectors are x> -y?*=0 i.e., x-y=0,x+y=0
Q If h=0, the bisectors are xy =0 i.e., x=0,y=0.

Q If bisectors of the angles between lines represented by ax? +2hxy +by? =0 and
a'x?+2h'xy +b'y? =0 are same, then % = a;k:).
a_

Q If the equation ax®?+2hxy+by® =0 has one line as the bisector of the angle

between the coordinate axes, then 4h? =(a+b)?.

(2) The equation of the bisectors of the angles between the lines represented by
(x-a) - -p5)° _(x-a)y-p
a-b h

point of intersection of the lines represented by the given equation.

ax? + 2hxy +by?+ 2gx +2fy+c=0 are given by , where ¢, § is the

Example: 7 The equation of the bisectors of the angles between the lines represented by x% +2xycot@+y? =0 is

(a) x2-y?=0 () x?-y?=xy (€) (x?—y?)cotd =2xy (d) None of these

22 22
Solution: (a) Equation of bisectors is given by XY Wop XV Y

= x?-y?=0
a-b h 0 cot 4
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Example: 8  If the bisectors of the lines x2 —2pxy —y? =0be x? —2qxy —y2 =0, then
[MP PET 1993; DCE 1999; Rajasthan PET 2003; AIEEE 2003]
(a) pg+1=0 (b) pg-1=0 () p+a=0 (d) p-q=0

2oy? _1-(D

Solution: (a) Bisectors of the angle between the lines x2 — 2pxy —y2 =0is > > = px2+2xy —py?=0

But it is represented by x2 —2qgxy —y? = 0. Therefore %:iz: pg=-1=pg+1=0
—<q

3.4 Point of Intersection of Lines represented by ax2+2hxy+by?+2gx+2fy+c = O

Let ¢ =ax® + 2hxy +by? + 2gx + 2fy+¢c =0

% =2ax+2hy+2g=0 (Keeping y as constant)

0¢ .
and E =2hx +2by +2f=0 (Keeping x as constant)
For point of intersection %9 _ 0 and %9 _ 0

OX oy

We obtain, ax +hy +g=0 and hx +by + f=0

) ) X y 1 . bg—fh af - ghj
On solving these equations, we get = = i.e. (X,y)= ,

g e 8t by gh_af ap_nz & &Y [hz—ab h? —ab

a
Also, since A =1|h
g

a h g = ax+hy+g=0 and

-~ O =

g
f|, from first two rows
c

h b f = hx+by+f=0 and then solve, we get the point of intersection.

IN.OIE : O The point of intersection of lines represented by ax® + 2hxy +by? =0 is (0, 0).

Example: 9 The point of intersection of the lines represented by the equation 2x?+3y%+7xy +8x+14y+8=0 is
(a) (0,2) (b) @2 () (2,0 (d) 21)

Solution: (c) Let ¢=2x%>+3y?+7xy +8x+14y+8=0
%:4x+7y+8 =0 and %:6y+7x+14 =0
X oy
On solving these equations, we get x =-2, y =0

Trick : If the equation is ax? +2hxy +by? +2gx + 2fy +c =0

hf —bg hg —af
ab—h?"ab—h?

The points of intersection are given by { } . Hence point is (- 2, 0)

Example: 10 If the pair of straight lines xy - x-y+1=0 and line ax +2y -3 =0 are concurrent, then a =

() -1 (b) o (c) 3 (d) 1

Solution: (d) Given that equation of pair of straight lines xy - x-y+1=0
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= (x-1)(¢y-1)=0 = x-1=0 or y-1=0
The intersection point of x-1=0,y-1=0is (1,1)
Lines x-1=0,y-1=0 and ax +2y -3 =0 are concurrent.

The intersecting points of first two lines satisfy the third line.

Hence, a+2-3=0= a=1

3.5 Equation of the Lines joining the Origin to the Points of Intersection of a given Line and a given Curve

The equation of the lines which joins origin to the point of intersection of the line
Ix+my +n=0and curve ax?+2hxy+by®+2gx+2fy+c=0, can be obtained by making the curve

homogeneous with the help of line IX+my +n=0, which is
2
ax2+2hxy+by2+2(gx+fy)(lx+myj+c(lx+my) =0
- -n
We have ax? +2hxy +by? +2gx+2fy+c=0 ... )
and IX+my +n=0 . (i)

Suppose the line (ii) intersects the curve (i) at two points A and B. We wish to find the
combined equation of the straight lines OA and OB. Clearly OA and

Y
OB pass through the origin, so their joint equation is a homogeneous A
equation of second degree in x and y. S\ Jrmytn=o
/
/ -
From equation (ii), Ix+my =-—n = Ix + my =1 X ol E— x
-n
...... (iii)
Now, consider the equation
2 Y’
IX +m .
ax? + 2hxy +by? +zgx(lx+myj+2w(lx+_myj+c( yj =0.....(d
-n -n -n

v)
Clearly, this equation is a homogeneous equation of second degree. So, it represents a pair
of straight lines passing through the origin. Moreover, it is satisfied by the points A and B.

Hence (iv) represents a pair of straight lines OA and OB through the origin O and the
points A and B which are points of intersection of (i) and (ii).

Example: 11  The lines joining the origin to the point of intersection of the circle x2+y? =3 and the line x+y =2
are
(a) y-(B+2J2)x =0 (b) x-(B+2J2)y=0 (c) x-(3-2V2)y=0 (@ y-(B-2J/2)x =0
Solution: (a,b,c,d) Make homogenous the equation of circle, we get X2 —-6Xxy +y2 =0

+/(36 —4)y?
L _ 5y V(36 —4)y :6yi;‘r\/§y:3yizﬁy

2

Hence, the equation are x =(3 + 2\/§)y and x =(3- 2\/E)y

Also after rationalizing these equations becomes y —(3 + 2\/E)x =0and y-(3- 2\/§)x =0.
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Example: 12 The pair of straight lines joining the origin to the points of intersection of the line y = 2J2x +¢ and

the circle x? +y? =2 are at right angles, if
[MP PET 1996]

(@) c?-4=0 (b) ¢2-8=0 (c) ¢2-9=0 (d) ¢*-10=0
Solution: (c) Pair of straight lines joining the origin to the points of intersection of the line y= 2J2x+c and the

circle x? +y2 =2 are

2
= x2+y2+(—2)[M] =0 = x2+y2—£2(8x2+y2—4«/gxy)=0 = xz[l—E]+y2(1—ij+8‘/§Xy =0
c c

_ c? c? c?
. . 16 2
If these lines are perpendicular, 1—C—2+1—C—2 =0
2
20718 5~ ¢2-9=0.
CZ
3.6 Removal of First degree Terms
Let point of intersection of lines represented by ax? +2hxy +by? + 2gx + 2fy+c=0 ...... (i)
is (a, f).
bg-fh af—gh
Here a, = ]
@h) (hZ —ab ' h? —abj

For removal of first degree terms, shift the origin to (e, §) i.e., replacing x by (X +a)and y
be (Y + B)in (i).
Alternative Method : Direct equation after removal of first degree terms is
axX? +2hXY +bY? +(ga+ff+c)=0

Where azb?_fh and ﬁ:af—gh
h

—ab h? —ab
3.7 Removal of the Term xy from f (x, y) = ax®+ 2hxy +by? without changing the Origin

Clearly, h # 0. Rotating the axes through an angle 0, we have,
Xx=Xcos@-Ysind and y=Xsind+Y cosé
f(x,y) = ax? + 2hxy +by?
After rotation, new equation is F(X,Y) = (acos? @+ 2hcos&sin 8 +bsin? 6)X?
+2{(b —a)cos gsin @ + h(cos® & —sin? G)XY
+(asin? @ — 2hcosdsin @ +bcos? )Y ?
a-b

Now coefficient of XY = 0. Then we get cot 20 = on

|NQE€ : 4 Usually, we use the formula, tan 20 = for finding the angle of rotation,

a—b

6 . However, if a=b, we use cot 20 = az__hb as in this case tan 20 is not defined.

Example: 13 The new equation of curve 12x% +7xy —12y? —17x —31y —7 = 0 after removing the first degree terms

(a) 12X%2-7XY —12Y%2=0 (b) 12X%2+7XY +12Y%2 =0
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(c) 12X2+7XY -12Y2=0 (d) None of these
Solution: (c) Let ¢=12x*>+7xy —-12y?2-17x-31ly-7=0 ... )

%524x+7y—17 =0 and %E7x—24y—31:0
28 %

Their point of intersection is (x,y)=(,-1)
Here a=1,=-1
Shift the origin to (1, -1) then replacing x =X +1and y =Y —1in (i), the required equation is
12(X +1? +7(X +)(Y —=1)—12(Y —1)? —17(X +1) -31(Y -1)-7 =0 i.e., 12X2+7XY —12Y2 =0
Alternative Method : Here ¢« =1 and f=-1 and g=-17/2,f=-31/2,c=-7

ga+ff+c= —%xl—s—zlx—l—7 =0

Removed equation is aX2+2hXY +bY 2 +(ga+fB8+c)=0
ie., 12X2+7XY —~12Y2+0=0 = 12X?+7XY -12Y2=0.
Example: 14 Mixed term xy is to be removed from the general equation ax?+by? + 2hxy +2gx +2fy +¢ =0, one should
rotate the axes through an angle @ given by tan 20 =
a-b 2h a+b 2h
(a) n (b) a+b () n (d a-b
Solution: (d) Let (x',y') be the coordinates on new axes, then put x=x'cos@-y'sing, y=x'sind+y'cosdin the
equation, then the coefficient of xy in the transformed equation is o.

So, 2(b-a) sinf.cos @+ 2hcos 20 =0 = tan 20:2—hb
a_

3.8 Distance between the Pair of parallel Straight lines
If ax?+2hxy +by? +2gx+2fy+c=0 represent a pair of parallel straight lines, then the

2

f— 2 p—
distance between them is given by 2\/u or 2\/ f —be

aa+h) b(a+Db)
Example: 15 Distance between the pair of lines represented by the equation x?—6xy +9y? + 3x —9y —4 =0 [Kerala (Engg.) 2
15 1 5 1
(a) = (®) - (© \/: (d) =
Jio 2 2 J10

Solution: (c) The distance between the pair of straight lines given by

9 25

2 _ ——(-4) —
ax? + 2hxy +by? +2gx + 2fy +c =0 is 2./2 "2  Here a=1,b=9,c:4,g=§:2>< 4 PN I S
a@+b) 2 11+9) V20 V2

Example: 16 Distance between the lines represented by the equation x2 + 2\/§xy + 3y2 —-3x - 3\/§y —4 =0 is [Roorkee 1989]

(a) 5/2 (b) 5/4 () 5 (d) o
-3
Solution: (a) First check for parallel lines i.e., a_ E -9 = 1 = ﬁ -2
h b f 3 3 -3/3
2
2 _ . 2 _a(_
which is true, hence lines are parallel. .. Distance between them is 2 g —a _, (£3/2)° ~1(4)
a@@+hb) 11+3)

=5/2
3.9 Some Important Results
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(1) The lines joining the origin to the points of intersection of the curves
ax? +2hxy +by? +2gx=0and a'x?+2h'xy+b'y?+2g'x =0will be mutually perpendicular, if
g@+b')=g'(a+bh).

(2) If the equation hxy + gx + fy+c =0 represents a pair of straight lines, then fg=ch.

(3) The pair of lines (a® —3b?)x? +8abxy +(b> —3a®) y? =0 with the line ax +by +c =0 form an
equilateral triangle.

(4) The area of a triangle formed by the lines ax® + 2hxy +by? =0and Ix+my +n=0is given by

n?vh? —ab
am? — 2hlm + bl?
(5) The lines joining the origin to the points of intersection of line y =mx +c¢ and the circle

x? +y? = a’will be mutually perpendicular, if a?(m? +1) = 2c?.

(6) If the distance of two lines passing through origin from the point (x,,y,)is d, then the
equation of lines is (xy, —yx;)*> =d?(x* +y?)

(7) The lines represented by the equation ax? +2hxy +by? + 2gx + 2fy+c =0 will be
equidistant from the origin, if f* —g* =c(bf? —ag?)

(8) The product of the perpendiculars drawn from (x,,y,)on the lines ax® + 2hxy +by? =0is
given by

ax2 + 2hx,y, +by?
J(@-Db)? +4h?

(9) The product of the perpendiculars drawn from origin on the lines
ax? +2hxy +by? + 2gx + 2fy+¢c =0 is

c

J@—b)? +4h?

(10) If the lines represented by the general equation ax® +2hxy +by? +2gx +2fy+c=0are
perpendicular, then the square of distance between the point of intersection and origin is
f2+9?

h? +b?

(11) The square of distance between the point of intersection of the lines represented by

c@a+b)—f? —g?
ab —h?

Example: 17  The area of the triangle formed by the lines 4x? -9xy —9y*> =0and x =2 is [Roorkee 2000]

the equation ax? + 2hxy +by? + 2gx + 2fy + ¢ = 0 and origin is

10 20
(a) 2 (b) 3 © = @ —

Solution: (c) The area of triangle formed by the lines ax?+2hxy +by? =0 and IXx+my +n=0is given by

n2vh? —ab

am? — 2him +bl?

Here a:4,b=—9,h:—%,lzl,m =0,n=-2, then area of triangle



Example: 18

Solution: (a)

Example: 19

Solution: (d)
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2
-9 -9 81 36
Y 2 —ax—2 il
2 [2] 2 =‘4V4+2‘|—30|:£
—9x (1)’ ‘ -9 ‘ | 9| 3
The orthocentre of the triangle formed by the lines xy =0 and x+y=1 is [IIT 1995]
11 11 11
a) (o, 0 b) |[=.= o |=.= d) | =, =
(a) (o, 0) ()[sz ()[33j ()[44]
Lines represented by xy =0is x=0, y=0. Then the triangle formed is right angled triangle at O(o,
0), therefore O(0, 0) is its orti v
xX+y=1
x=0
o y=o0 X

If the pair of straight lines given by Ax?+2Hxy +By? =0,(H? > AB)forms an equilateral triangle with
line ax +by +c =0then (A+3B)(8A+B) is [EAMCET 2003]

(2) H? (b) —H (c) 2H? (d) 4H?
We know that the pair of lines (a? —3b?)x? +8abxy +(b? —3a?)y? =0 with the line ax +by + ¢ =0 form an

equilateral triangle. Hence comparing with Ax?+2Hxy +By?=0then A=a®-3b% B=b%-3a?,
2H =8ab

Now (A+3B)(3A+B)=(-8a%)(-8b%) = (8ab)’ =(2H)* =4H".

*%k*
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