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SHORT NOTES HANDBOOK

Vector Algebra
If i, §, k are orthonormal vectors and A = Ayi + Ayf + Ask then |A]® = A2 + A2 + A2 [Orthonormal vectors =
orthogonal unit vectors. ]

Scalar product

A:-B=|A||B|cos@ where 8 is the angle between the vectors

B
EH‘

B,

= ABy + AyBy + A,B, = [AA 4]

Scalar multiplication is commutative: A-B=B - A.

Equation of a line

A pointr = (x, v, z) lies on a line passing through a point a and parallel to vector b if
r=a+ Ab

with A a real number.



Equation of a plane
A point r = (x, i, z) is on a plane if either
{a)r- d = |d|, where d is the normal from the origin to the plane, or

(b} % + % - % = 1 where X, Y, Z are the intercepts on the axes.

Vector product

A% B = n|A| |B|sin 8, where 8 is the angle between the vectors and # is a unit vector normal to the plane containing
A and B in the direction for which A, B, n form a right-handed set of axes.

A ® B in determinant form A ¥ B in matrix form
ik B A A TR
Ay Ay A A, 0 A |8,
B, B, B, —Ay A, O B,

Vector multiplicatinn 15 not commutative: A x B= —RB = A.
Scalar triple product
Ay Ay A
AxB-C=A-BxC=|B, E!,. B.|==-A=xC-B, eic
Gy Cy Cs

Vector triple product

Ax(BxC)=(A-C)B—(A-B)C, (AxB)xC=(A-C)B—(B-C)A

Non-orthogonal basis

A = Ajeq + Azez + Azea

£ X B3
Ai=€-A where ¢ = ———
g1 - (e2 % e3)

Similarly for As and As.

Summation convention

a = @& hﬁplies summation overi=1...3
a-b =aly
{ﬂ ) b:l, = Er'ﬂ:ﬁ_r'bk where g =1; Eijk = —Eikj

Eijitrtm = Biidim — Simd )1



Matrix Algebra

Unit matrices

The unit matrix [ of order n is a square matrix with all diagonal elements equal to one and all off-diagonal elements
ZeTo, 1.e., [I],-J,- = ;. If A is a square matrix of order n, then Al = IA = A Also I = A

I is sometimes written as I, if the order needs to be stated explicitly.

Products

If Aisa (n x I) matrix and B is a (I % m) then the product AB is defined by

!
(AB);i= } AuBy;
k=1

In general AB # BA.

Transpose matrices

If A is a matrix, then transpose matrix AT is such that {AT},-J,- = (A)-

Inverse matrices

If A is a square matrix with non-zero determinant, then its inverse A Vissuchthat AA™ ' = A7tA = |
transpose of cofactor of Ay
|4l
where the cofactor of A;;is (-1 )i*/ times the determinant of the matrix A with the j-th row and i-th column deleted.

{A_] }Jf =

Determinants

If A is a square matrix then the determinant of A, |A| (= det A) is defined by

Al = ¥, eip. Aridzjds ...
ik,

where the number of the suffixes is equal to the order of the matrix.

2x 2 matrices
IfA= (‘T b) then,
¢ d
L T_ [ ®’R € T L d —b
|A| =ad —be A '(b a‘) A "|A|(—-: a)
Product rules
(AB...N)T=NT...BTAT
(AB...N)'=N"1.. .B'A7? {if individual inverses exist)
|AB...N| = |A||B]...|N]| (if individual matrices are square)

Orthogonal matrices

An orthogonal matrix () is a square matrix whose columns g; form a set of orthonormal vectors. For any orthogonal
matrix O,

0 1'=07, |Q|=%£1, QTisalsoorthogonal.



Solving sets of linear simultaneous equations

If A is square then Ax = b has a unique solution x = A7'b if A~ exists, i.e, if |[A| £ 0.
If A is square then Ax = 0 has a non-trivial solution if and only if |A| = 0.

An over-constrained set of equations Ax = b is one in which A has m rows and n columns, where m (the number
of equations) is greater than n (the number of variables). The best solution x {in the sense that it minimizes the

error |Ax — b|) is the solution of the n equations AT Ax = ATb. If the columns of A are orthonormal vectors then
x=A"b.

Hermitian matrices

The Hermitian conjugate of A is at = (A*)T, where A* is a matrix each of whose components is the complex
conjugate of the corresponding components of A. If A = Al then A is called & Hemitian matrix.

Eigenvalues and eigenvectors

The n eigenvalues A; and eigenvectors u; of an n x » matrix A are the solutions of the equation Au = Au. The
eigenvalues are the zeros of the polynomial of degree n, F,(A) = |4 — Al|. If A is Hermitian then the eigenvalues
A; are real and the eigenvectors u; are mutually orthogonal. |4 — Al| = 0 s called the characteristic equation of the
matrix A.

TrA=Y 2, also|A|=]]2
i i
If 5 is a symmetric matrix, A is the diagonal matrix whose diagonal elements are the eigenvalues of 5, and U is the
matrix whose columns are the normalized eigenvectors of A, then
u'su=A and S=uUAU"

If x is an approximation to an eigenvector of A then ITAI}'I[ITJ:}I {Rayleigh’s quotient) is an approximation to the
corresponding eigenvalue.

Commutators
[A,B] =AB-BA
(A.B]  =~[B,A]
(a.B)F (=[pl,al]
[A+ B,C] = [A,C]+ [B,C]
[4B,C] =A[B,C]+[AC)B

[4,[B.C]] + [B.[C. A]] + [C. [A. B]) = 0

Hermitian algebra

bl = (b3,83,...)
Matrix form Operator form Bra-ket form
Hermiticity b*-A-c=(A-B) ¢ flp-crqa = f{ow@ (1]O]d)
Eigenvalues, A real Auj = Agymy Oy = Ay O} = A i)
Orthogonality wi =0 Jf Wiy =0 Gljy=0 (i#j)
Completeness b= Z wi(m; - b) ih= z 1y (fﬂv':"*i’) ih= z Ii) (i)
Rayleigh-Ritz
e YO
Lowest Eigenvalue Ap = w M < ,L (PO

b N WY



Pauli spin matrices

_[o 1 _[o -i _[1 0
=Y gl Ty ogles BT g

00y = 1, 0y = 1y, Tally = icr,., Tely = Oylly = Jz0; = I

Vector Calculus

i~

Notation
¢ is a scalar function of a set of position coordinates. In Cartesian coordinates -
¢ = ¢(x, v, z); in cylindrical polar coordinates ¢ = &ip, @, z); in spherical %
polar coordinates ¢ = o(r, 8, @); in cases with radial symmetry ¢ = (r). B
A is a vector function whose components are scalar functions of the position i
coordinates: in Cartesian coordinates A = i, + jA,+kA;, where A, A, A, I
are independent functions of x, y, z. I
s N T
2 |
< :
: : iy in o0 oo d _ | d ] 1
In Cartesian coordinates ¥V ("del’) = i=— - _ra—y + kE =|a :
A 1
i - B
| 52 7
-

gradp = Vi, divA =V - A, curld =V x A

Identities
grad(dy + d») = grad ¢ + grad ¢2 div{Ad; + Az) =divd; +div A,
grad(1d2) = ¢1 grad ¢ + g2 grad ¢
curl{A; + A=) = curl A1 + curl As
div{gpA) = ¢pdiv A + (grad ) - A, curl{pA) = peurl A + (grad ) x A
diviA; x As) = Ay -curl Ay — Ay - curl A4
curl{A; x As) = Ay div Ay — AsdivAd; 4 (A - grad)A4; — (A, - grad)As
div(curlA) =0, curl{grad ¢) = 0
curl{curl A) = grad(div A) — div(grad A) = grad(divA) — viA

grad(A; - A2) = Ay % (curl As) + (A; - grad)As + As x (curl A1) + (As - grad) Ay



Grad, Div, Curl and the Laplacian

Cartesian Coordinates Cylindrical Coordinates Spherical Coordinates
Conversion to == e — 3
Cartesian x=pcosp y=psing z=z i ::{Js.{pf-.lln_ﬁ' ¥ i REMEDin O
: 5 r=rcosd
Coordinates
Vector A A+ Agj + Ak AP+ Agd + AE AF+ AgB + AP
=% ab. . 3P Add e Ap. 13p= 1 A ..
Gradient ¥ —i+ —i+ —k —p+ ——p+ =z —F + ——8+ —
et Yy :].tz dy 4 dz app+ ,r.:lEl'q:ll"E|I dz arr rad r:-:inﬁaiptp
13(r?A,) 1 AAgsind
Divergence dA, a4, 3, dA, la(pﬂp} i I_Eifl*. 4. A, £ or rsing 2@
T.A o dy  dz g dp o dg dz 1 a4,
rsin@ deg
, , e om 1. 1 1 = 1
i j k -p P =z ¥ —i
St o [ o) .-r-zs--,;'u-l.El'r rsind rtp
Curl ¥ = A E f-i_ .}— d d d q d d
LR {1 A — — — — — SEMRAY
. Af" 4 dp @ oz ar 28 e
S Ay pAg A, A, rdg rA,sing
1 (rzad:)Jr 1 2 ( Bacp)
Laplacian o ¥ Fo | 12 ( a¢) 18 ¥ | P o) Psingod T
Vip axr Pt 3zl pap \"ap ot 9zt 1 ¢
+__
~sin? @ dt

Transformation of integrals

L = the distance along some curve ‘C’ in space and is measured from some fixed point.

5 = a surface area

T = a volume contained by a specified surface

t = the unit tangent to C at the point P

1 = the unit putward pointing normal

A = some vector function

dL = the vector element of curve (= dL)

d 5 = the vector element of surface (= # d5)

Then fCA-FdL=j::A-ctL
and when A = Vb
[(ve)-dL= [ 4o

Gauss's Theorem (Divergence Theorem)

When 5 defines a closed region having a volume 1

f(v-A}.dT=fs{A-ﬁ].:15=_/;A-ds

also

f(vcde:Ld;ds

_[f{?xﬁ]d¢=}£[i}><ﬁjd5




Stokes's Theorem

When C is closed and bounds the open surface 5,

f{?xﬁ}-dS;[ﬂ-dL
5 C
also

L{ﬁx?:p}dﬁ:[:cpdl

Green's Theorem

ﬂﬂ:ﬁcﬁ-dﬂ:[f?-{ﬂ:?dﬁ}df
= [ [V + (V) -(V9)] dr

Green's Second Theorem

f{ﬁ% — $V) dr = j; [W(V) — (V)] - dS

Complex Variables

Complex numbers
The complex number z = ¥ + iy = r(cosf 4 isinf) = rell®2™) ywhere i = —1 and nis an arbitrary integer. The
real quantity r is the modulus of = and the angle @ is the argument of z. The complex conjugateof zisz" = x —iy =

rlcos@ —isind) =re™; zz* = |z|2 =x*+3?

De Moivre's theorem

(cos8 + isin@)" = & = cosnf + isinnd

Power series for complex variables.

2 LAt

Z z
et =l4zrs4+—4--F—=4--- convergent for all finite =
2! !
23 25-
sin =z =z— 3 + R convergent for all finite =
g5 ol i
cosz = 1= = + s convergent for all finite =
22 23
Inf1+z) =2,—E+?—--- principal value of In{1 + z)
This last series converges both on and within the circle |z| = 1 except at the point z = —1.
tan~lz ==z a - A
an =ETNE g

This last series converges both on and within the circle |z] = 1 except at the points z = +i.
nn—1) » n{n—1)(n—2) 4

TR 3l =T
This last series converges both on and within the circle |z| = 1 except at the pointz = —1.

(1+z)" =14+nz+



Trigonometric Formulae

cos® A + sin A =1 sect A —tan® A =1 cosecc A —cotP A =1
2tan A

sin2A = 2sin Acos A cos2A = cos’ A —sin® A tan 24 = ——.
1 —tan~ A

cos(A+ B) + cos(A = B)

sin[A+ B) =sinAcosB +cosAsinB cosAcosB =

2
A—EB)—cos(A+B
cos{A+ B) =cos AcosB FsinAsinB sinAsinB = cos( ) - cos(A + B)
tan A &+ tan B in( A + B sin( A — B
el cin Acos B < Sn{A+ B) + sin( )
lFtanAtanB 2
A+ B A—EB 1 524
sinA+sinB = 2Zsin 4 Ccos cost A = + cos
2 2 5
sinfl —sinf = 2:95A+Hsin‘ﬂ'_5 Eingﬂ=1—ccaﬁzg1
2 2 7
A4+ B A—B 3cos A 234
cos A+ cosB = 2oos ES COS soal A cos A 4+ cos
2 2 1
cos A —cosB = —2sin + sin 5in3,£1 s sn 51N

2 2 4

Relations between sides and angles of any plane triangle

In a plane triangle with angles A, B, and C and sides opposite 4, b, and ¢ respectively,

i ] £

- = — = - = diameter of circumscribed circle.
sind sinB sinC

al =B + 2 —2becos A

i =bcosCH+ccos B

2 2
f{]sﬂ_:ﬂ
2be
L A—B_a—b_C
o — = ot 5
| ; 1 p 1 : ."{ 1
area = Enbsmf_" = Ebcsmﬂ. = Ems-:mE =y s(s—a)(s—=b)(s —c), where s = E[ﬂ'+ b+c)

Relations between sides and angles of any spherical triangle
In a spherical triangle with angles A, B, and C and sides opposite a, b, and ¢ respectively,

sina sin b sin ¢

sind  sinB  sinC

cosd = cosbeose +sinbsineccos A

cos A =—cosBoosC +sinBsinCcosa



Hyperbolic Functions

. 1 X —X xz x‘
cus.hx:E[E + & }=]+E+E+...
. Lo - ) r ¥
‘_-.mhx-.—-El:e —e }=1+¥+E+...
coshir=cosx
sinhix =isinx

sinh x
tanhx =
cosh x
cothx = ET}Sh ™
sinh x
¥ o 2
cosh™x —sinh™x =1
tanh z
= X
sinh x
Relations of the functions
sinhx = —sinh(—x)
coshx = cosh({—x)
tanhx = —tanh(—x)
Gl Etanhhl[zx{ﬂ - tanh x
1 —tanh® (x/2) 1|,,-"Ilr1 _aE
tanhx = 1,|I,-"|11 — sech?x
———
cothx = v cosech® x + 1
feoshxy — 1
sinh{x/2) = | ————
sinh{x/2) ‘p 5
coshx —1 sinh x
tanh{x/2) = =
(x/2) sinh x coshxr + 1

sinh{2x) = 2 sinh xcosh x

cosir = cosh x
sinix = isinhx
1

cosh x
1

sinh x

sechx =

cosechx =

For iarge positive x:
E.I
cosh ¥ = sinh ¥ — -
tanhx — 1

For la rge negative x

—x

2

coshr = —sinhxr —

tanhx — —1

sechx = sech{—x)
cosech ¥ = — cosech(—x)
cothx = —coth{—x)

1+ tanh? (x/2)

1

coshr = = =
1 —tanh” (x/2)

sechy = V11— tanh® x
cosechx = y/ coth®x — 1
T e
cosh(x/2) = '||'|'II coshx+1
2
tanh(2x) = 2 tanh x

1 + tanh® x

cosh(2x) = cosh®x + sinh® x = 2cosh®x — 1 = 1 + 2sinh® x

sinh(3x) = 3sinhx + 4sinh®x

3tanh x + tanh® x
1+ 3tanh” x

tanh(3x) =

7
1,_.-" 1 —tanh® x

cosh3x = 4 cosh® x — 3cosh x

valid for all x

valid for all x



sinh(x + y) = sinh xcosh y + cosh xsinh y

coshix £+ y) = cosh x cosh y + sinh xsinh y
tanh x &+ tanh y
1+ tanhxtanhy

tanh{x £+ y) =

sinhx + sinh y = 2sinh %I:I + y)cosh %{x — )
sinhx — sinh y = 2 cosh %{x + y} sinh %{x — )

1 + tanh (x/2) _ ot
1 ¥ tanh{x/2)
sinh(x £ y)

cosh xcosh i

sinh(x £ y)

sinh x sinh y

sinhx £ coshx =
tanhx + tanhy =

cothxy cothy ==+

Inverse functions

f 2 2
gj;nh_l i =In (M)
i

tanh_1L£ = 11n(a+x
2 a—x
1

coth™? X = ~In (x+a
2 r—a

cosh x + cosh y = 2 cosh ;—{x + y) cosh %{x —)

coshx — coshy = 2sinh %{1 + y} sinh %{x — )

for —oo < x < 0o

forx = a

3
for v < a°

forx? = a*

ford < x<a

2

1 X E | i

cosech E"In(x-l_v-?-l_l) forx 0
Limits

n°x" — 0asn — oo if |x| < 1 (any fixed c)
" fn! — D asn — oo (any fixed x)
(1+x/n)" — e*asn — oo, xlnxy = Qasx — 0
If f(a) = g(a) =0 then lim (5) %) (I'Hépital’s rule)

a—a g(x)  g'(a)



Differentiation

uy'  w'e—uy
(uv)’ = v'v + uv', (;j T i el

=
(up) " = w4 et =Dpl) 4 o =0l oy ) Leibniz Theorem
T L n!
i T An—r)
(sinx) = cos < (sinhx) = cosh
g (sinx) =cosx 7, (sin = cosh x
E{oﬂs x) =—sinx E{cu:-:hx] = sinhx
2 d iy B
E{tanx}l = sec" X E{tanhr] = sech™ x
d
E{secx} =secxtanx E[sechx} = —sechxtanhx
d(u =— % dl[th}—— sech?
=5 (co ) = —cosec =5 (cothx) = —cosech” x
El{ct}sec x) = —cosecxcotx El{cnsech x}) = —cosech x coth x
Integration
Standard forms
. xm+1
_[:r dx=ﬂ+1+c forn #£ —1
[%dx =lnx+c¢ flnxdx =x({lnx—1)+=¢
[E‘“dx =1E"I+r: fxe‘”d.r: e (E—lz)+r
i a i
2
fxlnx dx = % (lnx—%) +c
1 = 1 L X
frzz+xz dx —-atan (,-;J-H:
1 1 afx . 1 a+x 3 3
[mdx —Etanh (EJ_'_E_ﬂln(a—x)-l_r forx® < a
1 ok X 1 x—i 2 '’
fmdx = chth (F)+L_EIH(I+HJ+C forx* >a
x —1 1
f P R TP Vi S R il
x 1 ¥ ¥
fm dx - E!.n[x + } +c

1 —_—
[ﬁdf:—ll‘l(.‘fﬁ-y’xziﬂz)ﬂ-f
i
I JRE—
_——" _____dx= 2iatap
Pogg a=mv@=es

[ v —xidy = % [I‘u"ﬂz—l'z +a*sin™! (%)] +



fm;dt—ﬂcusec T
o (1+x)xP F

Ml.‘:_ﬂ

fum cos(x?)dx = ﬁm sin{x?) dx = %\'-'II

fm exp(—x?/20%) dx = av2n

20 % ; 13 xhx.-
f exp(—x /207 ) dx =
[, i
fsin:rdx = —CosX+o
fcnsxdr =sinx+¢
ftanxdx = —Infcosx) +¢

fcnsecx dx = In(cosecx — cotx) +¢

fs:—:cx dr =In{secx+tanx)+¢c

A(n—1)g" v 2n

[Sinhx dx =coshx+e¢

[cnshx dx =sinhx+¢

[tanh:r dx = Infcoshx)+¢
[cﬂsechx dx = In[tanh(x/2)] + ¢

fsechx dr =2tan '{e') 4

fc-:}tx drx =In(sinx) +¢ f::ﬂthx dr = In(sinhx)+¢
fsinmxsin Ty o sin{m—n)x  sin{m+n)x
2(m —n} 2(m +n)
_ sin{m —mn)x  sin(m+n)x
fcnﬁmxcnsnrdxﬁ 3(m — ) o+ 1) +c
Standard substitutions
If the integrand is a function of: substitute:

(a2 — x?) or Va2 — 2
(x® +a?) or 22 +a?

(¥ —a?) or Va2 —a?

r=gsinforx=adcosd
yr=atanforx = asinhd

yr=asecPorx =acosh@

forp <1

for # = 2 and even

for i = 1 and odd

it m? # n®

ifm® &£ nt

If the integrand is a rational function of sin x or cos x or both, substitute f = tan{x/2) and use the results:

2t 11—

s5iny = —

1+1¢ T+E

If the integrand is of the form:  substitute:

i X+ :
=u

(ex+b)/px+g Al
dx 1
f— ax + b ==
(ax + b)y/px® +qx + 7 -

2dt

COSX = —s dx=ﬁ_

1+t



Integration by parts

B
—fﬂdu
i

Differentiation of an integral

B ]
[ i do = uv
Ly

i

If f(x, ) is a function of x containing a parameter a and the limits of integration a and b are functions of a then

d A db da bia) 3
E ﬂl:ﬂl:l f{xa ﬂ”] dx — f{bfﬂ’}a - f{na W]E + \/I;[a} Ef{r‘,{{} de
Special case,

d r=
= | fwdy=f).

Dirac é-function’
6t — 1) = % Zexp[iw{t — )] dew.

If f(t) is an arbitrary function of ¢ then /:m st — 1) f(t) dt = f(7).

5(1‘]=Diff;é[l,alsnfm S(t) df = 1

Reduction formulae

Factorials

n=nln—-1){n-2)_..1, 0!l =1.

Stirling’s formula forlargen: In(n!)=nlnn —n.

Forany p > =1, ﬂm et dy = pfﬂm o —Ta% dy — pl (=) = ﬁ, (=)= Vs ete.

plg!

1
For any p,q > —L[ﬂ PF(1-—x)fdx= (P+q+1)0

Trigonometrical
If m, nn are integers,

n—1
W+ H

mr—1

2 2 aft i
f sin™@ cos"8df = f sin"~28 cos"@de = f sin™ @ cos"-8 d@
] [i] i

m4+n
and can therefore be reduced eventually to one of the following integrals

2 1 nf2 nf2 nf2 =
f sinf cos8 df = —, f sindde =1, [ cosfdé=1, f di = —.
i 2 0 Jo [i 2

Other

L o _(n=1) —l-
IfJ',!v.-fu exp{—ax‘)dx then I, = T L s, I'I:l""'zv



Differential Equations

Diffusion (conduction) equation

dp _

2
at KV o

Wave equation

13y
v -
P = 1' =
Legendre’s equation

dzy dy
{I_I]dx —2x d—+f{!+1}y--l]

1

I
solutions of which are Legendre polynomials Fi{x), where Fi(x) = e ( d ) |:x — ‘lj Rodrigues’ formula so

1
Po(x) =1, Pi(x) = 1, Pa(x) = E{3x—” — 1) etc.
Becursion relation

P(x) = (21~ DxPia(x) — (1~ 1) Pia(x))

Orthogonality

dyp

f_t P(x)Po(x) dx = 57—

Bessel's equation

dy dy i
EFJF = +(x* —m?)y =0,

solutions of which are Bessel functions [, (x) of order m.

Series form of Bessel functions of the first kind

—1)(x /2 mrE
E{ x/2)

Jn(x) = K (m + k)1

(integer m).

The same general form holds for non-integer m = 0.



Laplace’s equation

Vie=0

If expressed in two-dimensional polar coordinates (see section 4), a solution is

ulp, )= [Ap” — EP_"] [l:'_" expling) + D exp( —imp]]
where A, B, C, D are constants and n is a real integer.

If expressed in three-dimensional polar coordinates (see section 4) a solution is

ulr, 8, p) = [rd.]"I - Br_'“"'n] m [Csin nig + D cos mq_:l]
where | and m are integers with | = |m| = 0; A, B, C, D are constants;
d [m]
PM(cos@) = sin™ g [m] Prlcos8)
is the associated Legendre polynomial.
F(1) =
If expressed in cylindrical polar coordinates (see section 4), a solution is

ulp,w,z2) = [u(np) [A cos nig + Bsin rmp] [C' explnz) + D Expl{—nz}]

where m and n are integers; A, B, C, D are constants.

Spherical harmonics

The normalized solutions Y{"(8, q:l} of the equation

1 9 d
[51115‘@ (SHEE’E) +51n Eatp" P11 =0

are called spherical harmonics, and have values given by

.21+1 — |ml) - (—1)" form =0
Y6, ) = 4 : P(cos6) e x =
r(6.¢) 1.' dr {I+ |m |}' (oosky ¢ {1 form < 0

= /_ Y= —cusﬂ ¥; I*ZFVC&.mS eT? etc.

Owthogonality

YI'meTr d2 = Spdpm
At

Calculus of Variations

]
The condition for [ = f F(y,y', x) dx to have a stationary value is g—F =
@ ¥

Euler-La grange equation.

d
dx

dF

b

) , where 1/

ﬂ. This is the
dx



Functions of Several Variables

Ifd=f(x,vz...) then G implies differentiation with respect to x keeping v, z, .. . constant.

el
dq[:—a—{bd +g—¢d . S < ]—‘i’a +a—d’ay+a¢’5 s
¥ d= dy dz

when the variables kept

M.

where x, 1, z, ... are independent variables. 53;1; is also written as a—¢ or H_d;
dhx dx dx

constant need to be stated explicitly.

2
If ¢ 15 a well-behaved function then — s ﬁ etc
-]'If-hj' diy dx
It = f(x, )
@) @66
E}xy(_x) nyay¢fid:x
dep i

Taylor series for two variables

If ¢( x, v) is well-behaved in the vicinity of x = a, y = b then it has a Taylor series

B dip L P P L¢P
Pl y) = (a+u,b+v}|v¢{nb}+ua—+ E"L ( FHm} 7o +”a_f)+'"

where x = a + u, ¥y = b 4 v and the differential coefficients are evaluatedatx =a, y==5

Stationary points
e g _ I e P PP _ .
A function ¢ = f(x, y) has a stationary point when G ﬂ_y = (). Unless F = ?— e 37 = 0, the following
conditions determine whether it is a minimum, a maximum or a saddle point.
.. Fo P
Minimum: = ? =, o O P 2
P W ap \ ooy

. ¢
Maximum: —_— 0, or < 1),
dx d

: _ Pede (PN
Saddle point: FE ( dx Ely)
i

If = () the character of the turmning point is determined by the next higher derivative.

a9y oxdy

Changing variables: the chain rule

If ¢ = f(x,v,...) and the variables x, y, ... are functions of independent variables u, v, ... then

gff  dirdx A dy
il v i v

dp _ dpax Ay

dvr dx dv  dy dv

etc.



Changing variables in surface and volume integrals — Jacobians

If an area A in the x, y plane maps into an area A’ in the u, v plane then

Lf{x,ﬁdﬁ;,:Lf{u,ta}jdudu wheie: =

- _ d(x,y)
The Jacobian | is also written as d(u, v)

dx  dx
du av
dy dy
du  dr

Lf{x,y,z} drdydz= fv flou, v, w)] du do dw where now

I =

Fourier Series and Transforms

Fourier series

If y(x) is a function defined in the range —m < x < 7 then

M M
y(x) = oo+ Z C COS Y + E S SiT X
m=1 mi=1

where the coefficients are

1 n d
cg=Ef_ﬁy|[x} x

1 it
Cic —f yi{x) cos mx dx
ELE B

1 T
Sy = — y(x) sinmx dx
TS —m

dx  dx
du
dy dy
du v
dz  d:z
du oo

with convergence to y(x) as M, M" — oo for all points where y(x) is continuous.

Fourier series for other ranges

Variable t, range 0 < t < T, (i.e., a periodic function of time with period T, frequency w = 2m/T).

y(t) = cp + E Cop COS MWE + Zsm sin micet

where

w T w [T w T .
Cn:ﬂﬁ y(t) dt, c,,T:;L () cos mewt dt, bm=;£ y(t) sinmowt dt.

Variable v, range0 < x < L,

2 2
y(x) = co+ E Ciy COS ] + E S 5101 =
where
1 gt 2 5t 2
cp = —f wWxldx, cp= —f y(x) cos b dx,
L il Lfg ~

. The corresponding formula for volume integrals is

dx
w
dy
dw
oz
dw

(m=1,...

{]'r!=1,...



Fourier series for odd and even functions
If y(x) is an add (anti-symmetric) function [ie., y(—x) = —y(x])] defined in the range —7t < x < 7, then only
7
sines are required in the Fourier series and s, = Ef y({x)sinmx dx.  If, in addition, y(x) is symmetric about
o C :
2
x = m/2, then the coefficients s,, are given by 5, = 0 (for m even), 5, = i [ y(x)sinmx dx (for m odd). If
L i}
y(x) is an even (symmetric) function [ie., y(—x) = y(x)] defined in the range —t < x < m, then only constant
Tt T
and cosine terms are required in the Fourier series and ¢ = %f y(x) dx, cm = %f y{x)cosmx dx. If, in
L] 0
addition, y(x) is anti-symmetric about x = ;—I, then cy = 0 and the coefficienis c,, are given by ¢, = 0 (for m even),
a2
i — i : w(x) cosmx dx (for m odd).
[These results also apply to Fourier series with more general ranges provided appropriate changes are made to the
limits of integration. ]
Complex form of Fourier series

If y(x) is a function defined in the range —m < x < m then
M : 1 2 .
yix) = Z Cue™, Cu= f y(x)e ™ dx
—-M 2t x

with m taking all integer values in the range £M. This approximation converges to y(x) as M — = under the same
conditions as the real form.

For other ranges the formulae are:
Variable t, range 0 < ¢ < T, frequency w = 2n/T,

- Lo Lot ¥ — L
y(t) = _‘écmew Tl Hﬁ y(t) emimet gy,
Variable ', range 0 < x' < L,

— i = AL
y(x') = Z C, ezl = I,/n. y{xr}e_aum L 4y,

—oD

Discrete Fourier series

If ¥(x) is a function defined in the range —m = x < m which is sampled in the 2N equally spaced points x» =
nx/N [n=—(N-—1)...N]|, then

Y(xy) =co+cicosxy, +oacos2x, + - -+ onogcos(N — 1)x, 3 oy cos N,
+ s 8inx, + s sin2x, + -+ sy sin(N = 1)x, + sy sin Nx,
where the coefficients are

1
g = mzy{xn]
1
cn,=ﬁzy{xn]cnsmxn (m=1,..., N—1)
1
N = ﬁZy{xﬂj cos Ny
1
5m=52y{xﬂjsinmx.¢ (m=1,....N-1)

1 .
8N = o Zy{xﬂj sin Nx,

each summation being over the 2N sampling points x,,.



Fourier transforms

If y(x) is a function defined in the range —oc < x < oo then the Fourier transform j{w) is defined by the equations

y(t) = % L:?I[w} et duw, iw) = fj:e y(f) e dt.

If w is replaced by 27tf, where f is the frequency, this relationship becomes
vty = [T g = [ e a

If y(t) is symmetric about { = 0 then

y(t) = = fm Wl w) cos wt daw, Ww) = Efm y(t) cosewt dt.
o 0

If y(t) is anti-symmetric about { = 0 then

yit) = ?1_1!; ¥lw) sinwt daw, Vlw) = 2[“‘ yit) sincwt dt.

Specific cases
Y ¥
M M
&
" s A
—r T Al § =
yit)=a, Jt|<T i . - _ g SinwT _ B
=0 =7 {“Top Hat'), ew) = 2a — = 2at sinc{wT)
where sinc(x) = 51[';[1'}
Y y
M M
= ]
-r +r
¥(t) Z g“ = ltl/7), I;I E :} {“Saw-tooth’), w) = %(1 — cos wT) = at sinc? (%)
Y ¥
M M
> > w
y(t) = exp(—t3/8) (Gaussian), Tw) = tgy/mexp [—w’fﬁj-i]
y(t) = f(t) e (modulated function), Ww) = ',?l[w — wy)
y(t)= ¥ 8(t—mt) (sampling function) Yw)= ¥ &w—2mn/fT)

Hr=—oo R=—ma



Convolution theorem

If 2(t) = fm x()y(t — ) dr = [m x(t—T)y(r)dr = x(t)+ y(H) then F(w) = F(w) Fw).
Conversely, Xy = X * 1.
Parseval’s theorem
f:: y*(t) y(t) dt = 21—?_[ ./:G:;fl}‘[w} ) dw (if 7 is normalised as on page 21)

Fourier transforms in two dimensions
(k) =f1f[.-;|e-””d2r

= fxl 2V (r) Jolkr) dr if azimuthally symmetric
il

X f . A Examples
Fourier transforms in three dimensions —
- . Vir) Vik)
(k) = [Viretrads - 1
oo 2 i
= ol [ Vir) rsinkr dr if spherically symmetric i k
k Jo e 1
Ve s s [ Vet ok drr K+ a2
(2m)° VV(r) ikV(k)
VIvir) | —KEV(k)




Laplace Transforms

If y(t) is a function defined for t > 0, the Laplace transform 7(s) is defined by the equation

Vo) = Loy} = [ eyle) de
0
Function y(t) (t = 0} Transform ¥(s)
&(t) 1 Delta function
8(t) % Unit step function
m!
" gr+1
s 1 fr
: 2\ §3
i ."IE
5
1
—ai
¢ G +a)
sin wi ot -
(52 + w?
5
cos ot m
. £
sinh cwi m
E
cosh at m
0 Tls +a)
ylt=1) et 1) e "  7(s)
dy
ty(t) =
d =
= s7(s) = ()
iE H— n—1 -2 ﬂ dn_l“
qr s"y(s) — " y(0) — & dt |, de=t |,
! .
is)
L y(T)dr S
|
f xft) y(t — 1) d7
! T(s) W(s) Convolution theorem

ffx[t — 1) yt) dt
LI}

[Note that if y(t) = 0 for < 0 then the Fourier transform of y(f) is y(w) = Fliw).]



Numerical Analysis

Finding the zeros of equations

If the equation is ¥ = f(x) and x, is an approximation to the root then either

flxa)
fr{xnj‘

Iy — Xn—1
]f{In}'

f[xm]' = f[xru—l

are, in general, better approximations.

Xpti = Xy —

O Xp41 = Ay —

Numerical integration of differential equations

dy _
If = f(x,y) then

Vsl = Vn +hf(x0, yn) whereh =x,.1 — %,

Putting  wu41 = ¥a + hf(x0, ya)

. hlf(a, y) +if{xn+1. V1))

then Yo+1 = Wn

Central difference notation

(Mewton)

(Linear interpolation)

{Euler method)

{(improved Euler method)

If y(x) is tabulated at equal intervals of x, where h is the interval, then 8y, /2 = Yn1 — ¥ and

525& = EI1|"n+:|,-'2 o= 51!-1—1,-':

Approximating to derivatives

djf = Wn+1 — Wa s Wi — Wn—1 i 5Fn+’é + B3y Iy
5 2h

dx h z
ﬂ o Yntd — 2w + Y1 L 1521,!'-1
de? } h? h?

Interpolation: Everett's formula

5 ¥iivia 1
y(x) = y(xo + 8h) = By + OBys + EE‘{E —1)8%yp + iﬂ{ﬂz e+

where §h = xy41 — x4

where @ is the fraction of the interval h (= x,441 — x,) between the sampling points and 8 = 1 — 8. The first two

terms represent linear interpolation.

Numerical evaluation of definite integrals

Trapezoidal rule

The interval of integration is divided into n equal sub-intervals, each of width h; then

h
fi flx) dx = h [c%j{a] + )+ flg) -+ %f{b}
where h = (b —a)/nand x; = a + jh.

Simpson's rule

The interval of integration is divided into an even number (say 2n) of equal sub-intervals, each of width h =

(b — @) /2n; then

b 1
'/I; Flx) dx == %Lfl{ﬂ':l +4f{x1) +2f(x2) +4f{x3) + - -+ 2f (x2m—2) + 4f(x20—1) +f{b}]



Gauss's integration formudae

1 "
These have the general fﬂrmf wix) dx = ¥ cqy(x)
~1 3

Form=2: x;=20-5773; ¢;=1,1 (exactforany cubic).
Forn=3: x;=—07746,0-0,0-7746; c; =0-555,60-888,0-555 (exact for any quintic).

Treatment of Random Errors

1
Sample mean T= ;{_1-] AN S
Residual: d=x—X%
Standard deviation of sample: 5= L{d% +d3 4 d) T

v
Standard deviation of distribution: o = V"'HITJ T P 2

— o 1 a 2,142
Standard deviation of mean: TSR, WS . (VR (AR, L
v Wufn—1)

1 . 4

2 Lo
- -1 (Ex)

'I|..

Result of n measurements is quoted as T + oy,

Range method

A quick but crude method of estimating o is to find the range r of a set of n readings, i.e., the difference between
the largest and smallest values, then
r

i o —

N

This is usually adequate for n less than about 12.

Combination of errors

If Z=Z(A,B,...) (with A, B, etc. independent) then

2 {3z N\, (9z \?
(oz)" = HJA + EJB S R

So if

(i) Z=A£B=xC, (02)% = (ga)’ + (08) + (0c)’
() Z=ABorA/B, G—E]z = (%")2 + (”_;)2
(i) Z=A", % s m%ﬂ
(iv) Z=InaA, az=‘%‘

(v) Z=expA, % =



Statistics

Mean and Variance

A random variable X has a distribution over some subset x of the real numbers. When the distribution of X is
discrete, the probability that X = x;is F;. When the distribution is continuous, the probability that X kes in an
interval &x is f(x)bx, where f{x) is the probability density function.

Mean p = E(X) = ZP,‘I,‘ or fx flx) dx.

Variance 0@ = V(X) = E[(X — pn)*] = ¥ Fi(x; — p)? or fl:t — u)? f(x) dx.

Probability distributions

Error function:  erf(x) = ?z-fr e ¥ dy
oo E

Binomial: flx) = (”)p:‘qﬁ_x whereg = (1 —p), p=np, o’ = npg, p < 1.
¥
x
Poisson: flx) = % e™*, and o® = u
1 (x— F]z]
N I: = EE s AL
Orma fix) i exp 52

Weighted sums of random variables

If W = aX + bY then E(W) = aE(X) + BE(Y). If X and Y are independent then V(W) = a*V(X) + PPV (Y).
Statistics of a data sample xq, ..., 1y
Sampl f—lz-
amp e medan = - Xy

Sample variance s* = %Z{x; -3 = (3_1 zx;t) — T =E(2) - [J‘Ef{Jf]I]2

Regression (least squares fitting)

To fit a straight line by least squares to n pairs of points (x;, y;), model the observationsby yi = a 4+ B(x — ) + &,

where the g; are independent samples of a random variable with zero mean and variance al.

Sample statistics: 52 = —E{xl =Ty = —E o = —Z i —X) (i — ).

s
Estimators: ot = fﬁ:—_ E(Yatx)=& [—_},3‘2_

Sy

2 (residual variance),

" A
where residual variance = —E{ W — & — f}}z “x:'r
i !

=%

52
Estimates for the variances of & and i are — and —
n Hsy

Correlation coefficient: = r =
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