PROBABILITY

Probability formula:

```
P(E) - Number of favourable outcomes
           Total number of outcomes
```

- Outcomes space: A possible nesult of a nandom expeniment is called its outcome.
- Sample space: The set of outcomes is called the sample space of the expeniment.
- Sample point: Each element of the sample space is called a sample point.
- Event: Any subset E of a sample space S is called an event.
- Types of events
- 1. Impossible Events and Sune Events: The empty set of Impossible Events. The whole sample space S Sune Events
- 2. Simple Event: If any event E has only one sample point of a sample space, it is called a Simple event. (Elementany Event)
- 3. Compound Event: If an event has mone than one sample point, it is called a compound event.
- Algebra of events
- 1. Complementary Event of A: The Set A' on S-A
- 2. The Event 'A' on 'B': The set AUB
- 3. The Event 'A' and 'B': The set AAB
- 4. The Event 'A' but not 'B': The set A B
- Mutually exclusive events: A and B are mutually exclusive if AnB = \$\phi\$
 - Note: Simple events of a sample space are always mulually exclusive.
- Exhaustive Events: If E1, E2,...., En ane n events of a sample space S and if
 - E1 UE2 U UEn = UEi = 5 then E1, E2,, En ane called exhaustive events.
- Probability: Number P (wi) associated with sample point wi such that
- (i) $0 \le P(\omega_i) \le 1$ (ii) $\sum P(\omega_i)$ for all $\omega_i \in S = 1$ (iii) $P(A) = \sum P(\omega_i)$ for all $\omega_i \in A$

The no. of $P(\omega_i)$ is called probability of the outcome ω_i .

- Equally likes outcomes: All outcomes with equal probability
- Probability of an event: For a finite sample space with equally likely outcomes.

$$P(A) = \frac{n(A)}{n(S)}$$

number of elements in the set A number of elements in the set

- If A and B are any two events, then P(AUB) = P(A) + P(B) P(A1B)
- If A and B are mutually exclusive, then P(AUB) = P(A) + P(B)
- If A is any event then P(not A) = 1 P(A)
- Conditional Probability: If E and F are two events with the same space of a nandom expeniment, then the conditional

Pnobability of the event E gives that F has occurred i.e.
$$P\left(\frac{E}{F}\right) = \frac{P(E \cap F)}{P(F)}, \text{ pnovided } P(F) \neq 0$$

- Probability of Conditional Probability
- 1. $P\left(\frac{S}{F}\right) P\left(\frac{F}{F}\right) 1$
- 2. If A and B are two events in a sample space s and F is an event of S,
 - such that $P(F) \neq 0$ then; $P(A \cup B) = P(A) + P(B) P(A \cap B)$