
Fluid Kinematics and Dynamics

Fluid DynaMic Flow
The description of the motion of fl uids (or fl uid fl ows) with-
out necessarily considering the forces and moments that 
cause the motion is called fl uid kinematics. The fl ow of fl uid 
can be described by two ways: (a) Lagrangian description 
and (b) Eulerian description.

Lagrangian Description of Fluid Flow
Here, individual fl uid particles are identifi ed (usually by 
specifying their initial spatial position of a given time) and 
the motion of each particle is observed as a function of time. 
Let the position of a fl uid particle identifi ed by 

�
r0 ,  the posi-

tion vector at any time ‘t’ shall be 
� �
r r r t= ( , ),0

Where 
�
r  is the position vector of the fl uid particle with 

respect to a fi xed reference point at time t. Considering 
Cartesian coordinates,

We have

       
�
r x i y j z k0 0 0 0= + +ˆ ˆ ˆ

        ˆ ( , )ˆ ( , ) ˆ ( , ) ˆa r x r t i y r t j z r t k
�

= + +0 0 0    = + +xi yj zkˆ ˆ ˆ

Here, ˆ, ˆ ˆi j k and  are unit vectors along the x, y, z direc-
tions respectively and r0 denotes the point (x0, y0, z0).

The velocity vector 
�
v  having the scalar components u, 

v and w in the x, y and z directions respectively are given as 
follows:
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The acceleration vector a  having the scalar components 
ax, ay and az in the x, y and z directions respectively are 
given as follows:
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Eulerian Description of Fluid Flow
Control Volume

Energy in Control surface
(bouyndary) 

Mass in

Energy 

Mass out

Surroundings

A control volume is an open system with a boundary called 
the control surface. Transfer of mass and energy takes place 
across the control surface. A deforming control volume has 
a changing volume while the volume of a non-deforming 
control volume is fixed.

If 
� �
v vcv csand  are the velocities of a control volume 

and its control surface respectively, then for a fixed non-
deforming control volume: 

� �
v vcv cs= = 0  and for a mov-

ing non-deforming control volume:
� �
v vcv cs= .  A deforming 

control volume not only involves a changing volume but 
also involves control surface movement.

For a deforming control volume, 
�
vcs  need not necessar-

ily be uniform and if the control volume is also moving, 
then 

�
vcs  need not necessarily be identical to

�
vcv .

In this flow description, a control volume (flow domain) 
is defined within the fluid flow region where the flow prop-
erties of interest are described as fields within the control 
volume. For each field, a field variable that is a function of 
space and time is defined.

Scalar, Vector and Flow Fields
A scalar field is a region where at every point, a scalar func-
tion (scalar field variable) has a defined value e.g., pressure 
field of a fluid flow. A vector field  is a region where at every 
point, a vector function (vector field variable) has a defined 
value, e.g., velocity field of a fluid in motion.

A flow field is a region in which the flow properties, i.e., 
velocity, pressure, etc., are defined at each and every point 
at any time instant. Two basic and important vector field 
variables of a flow are the velocity and acceleration fields.

Velocity Field
For a general three dimensional fluid flow in Cartesian coor-
dinates, the velocity vector is given by:

 
� �
v v x y z t= ( , , , )

 
ˆ ˆ ˆu(x, y, z, t)i v(x, y, z, t) j w(x, y, z, t)k+ +

The speed of the fluid,

 v v u v w= = + +� 2 2 2  
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A point in the fluid flow field where the velocity vector 
is zero is called a stagnation point.

Fluid Acceleration
Acceleration Field
For a general three dimensional fluid flow in Cartesian coor-
dinates, if 

�
v  is the velocity field, then the acceleration field 

is given by:

 �
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The scalar components of the acceleration vector are:
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Magnitude of the acceleration vector,

�
a a a ax y z= + +2 2 2

Equation (1) can be rewritten as

      �
�
� � �
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The components of the acceleration vector in cylindrical 
coordinates are:
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Local and convective derivative

In equation (2), the operator D

Dt
=

∂
∂

+ ⋅∇
t

v( )
� �  is called as 

the total (of material or substantial derivative. The operator 
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∂
∂t

 is called the local (or temporal or unsteady) derivative, 

while the operator ( )
� �
v ⋅∇ is called the convective deriva-

tive. The local derivative represents the effect of unsteadi-
ness while the convective derivative represents the variation 
due to the change in position of the fluid particle as it moves 
through a field with gradient (spatial change).

Local, Convective and Total Acceleration

In equation (2), the term 
∂
∂

�
v

t  
is called the local (or tem-

poral or unsteady) acceleration whereas the term ( )
� � �
v v⋅∇  

is called the convective (advective) acceleration. Equation 
(2) elucidates that fluid particles experience acceleration 
due to (a) change in velocity with time (local acceleration) 
(b) change in velocity with space (convective acceleration). 
The acceleration vector 

�
a  is called as the total (or material) 

acceleration.

Total acceleration = Local acceleration + convective 
acceleration

Solved Example

Example 1: The velocity field of a two dimensional flow 

is given by 
�
v xti ytj= +2 2ˆ ˆ,  where t is in seconds. At t = 1 

second, if the local and convective accelerations at any point 
(x, y) are denoted by

� �
a al cand respectively, then:

(A) � �
�a ac= 2  (B) 

� �
�a ac =

(C) � �
�a ac = = 0  (D) � �

�a ac = 2

Solution:
From the velocity field description
u = 2xt
v = 2yt

x - component of the local acceleration, a
u

t
xx�, =

∂
∂

= 2

y - component of the local acceleration,

a
v

t
yy�, =

∂
∂

= 2

,
ˆ ˆa a xi a , yj= +� � �

�

= +2 2xi yiˆ ˆ  (1)

x - component of the convective acceleration,

a
u u

x

v u

y
c x, =

∂
∂

+
∂
∂

= 2xt × 2t + 2yt × 0
= 4xt2

y - component of the convective acceleration,

a u
v

x
v

v

y
c y, =

∂
∂

+
∂
∂

= 2xt × 0 + 2yt × 2t
= 4yt2

c c, c
ˆ ˆa a xi a , yj= +�

= +4 2xt i yt jˆ ˆ4 2

At t = 1 second,
       �a xi yjc = +4 4ˆ ˆ  (2)

From equations (1) and (2), we have
� �
a ac l= 2 .

Example 2: A two-dimensional velocity field is given by
�
v xyi xtj= +ˆ ˆ,3  where x and y are in metres, t is in seconds 

and 
�
v  is in metres per second. The magnitude of the 

acceleration at x = 1 m, y = 0.5 m and t = 2 secs is 
(A) 6.25 m/s2 (B) 8.663 m/s2

(C) 12.25 m/s2 (D) 6 m/s2

Solution:
From the velocity field description,
u = xy
v = 3xt

Now, a
u

t
u

u

x
v

u

y
x =

∂
∂

+
∂
∂

+
∂
∂

= 0 + xy × y + 3xt + x

= xy2 + 3x2t

Now, a
v

t
u

v

x
v

v

y
y =

∂
∂

+
∂
∂

+
∂
∂

= 3x + xy × 3t + 3xt × 0
= 3x + 3xyt

At x = 1 m, y = 0.5 m and t = 2 sec,
ax = 1 × (0.5)2 + 3 × 1 × 2

= 6.25 m/s2

ay = 3 × 1 + 3 × 1 × 0.5 × 2 = 6

Magnitude of the acceleration,
�
a a ax y= +2 2

    = + =( . ) . .6 25 62 2 28 663 /m s

Tangential and Normal Acceleration
Consider a fluid particle moving along a path as shown in 
the following figure.

•

r

P′

P
Path

Fluid particle

S

c

Let S denote the distance travelled by the particle along the 
path line relative to the reference point P’, t denote time and 
v (= f (s, t) denote the speed of the particle. Let t̂  be a unit 
vector tangential to the path at point P and let n̂  be a unit 
vector normal to the path at point P and pointing inward 
towards the centre pf curvature C. Let r denote the radius of 
curvature at point P.
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The acceleration vector,
�
a a t a nt n= +ˆ ˆ
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∂
∂
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∂
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The tangential component of the acceleration vector, 

a v
v

s

v

t
t =

∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

 and the normal component, a
v

r
n =

2

.

The component an is also called as the centripetal 
 acceleration. The component an will be present anytime a 
fluid particle is moving on a curved path (velocity direction 
is changing) while the component at will be present when-
ever the fluid particle is changing speed (velocity magni-
tude is changing)

Table 1 Translation, deformation and rotation of a fluid element

Fluid flow Scenario 
(only steady

flows

Tangential 
acceleration or 

deceleration

Normal 
Acceleration or 

deceleration

Flow in a straight 
constant diameter 
pipe

Not present Not present

Flow in a straight 
non-constant 
diameter pipe

Present Not present

Flow in a curved 
constant diameter 
pipe

Not present Present

Flow in a curved 
non-constant 
diameter pipe

Present  Present

When a fluid element moves in space, several things may 
happen to it. Surely the moving fluid element undergoes 
translation, i.e., and a linear displacement from one location 
to another. The fluid element in addition may undergo rota-
tion, linear deformation or angular deformation.

y

x

a

b
b′

a′

c

d

d′

c ′

Translation

y

x

a

b

a′ c

d

d ′

c′

Rotation

y
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c

d d′

c′

Linear deformation
y

x

a

b

c

d

d′

a′

c′

Angular deformation

In a two-dimensional flow field in Cartesian coordinates, 
translation without deformation and rotation is possible if 
the velocity components u and v are neither a function of x 
nor of y. When a velocity component is a function of only 
one space coordinate along which that velocity component 
is defined, e.g., u = u(x) and v = v(y), then translation with 
linear deformation is possible.

When u = u(x, y) and v = v(x, y), translation with angular and 
linear deformations is possible. It is also observed that when 
u = u(x, y) and v = v(x, y), rotation and angular deformation 

of a fluid element exists simultaneously. When
∂
∂

=
−∂
∂

v

x

u

y
,  no 

angular deformation takes place and the situation is known as 

pure rotation. When
∂
∂

=
∂
∂

v

x

u

y
,  the fluid element has angular 

deformation but no rotation about the z- axis.

Types of Fluid Flow
Steady and Unsteady Flow
In a steady fluid flow, fluid properties (such as density, pres-
sure, etc.) and the flow characteristics (such as velocity, 
acceleration, etc.) at any point in the flow do not change 
with time. In a steady flow, the local derivative of the fluid 

property or fluid characteristic ϕ is zero, i.e.,
∂
∂

=
ϕ
t

0.

Local acceleration is zero for steady flows

Fluid flow through a pipe at a constant rate of discharge 
is a steady flow.
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In an unsteady fluid flow, some of the fluid properties 
or flow characteristics at any point in the flow change with 
time. Fluid flow through a pipe at a varying rate of discharge 
is an unsteady flow.

Uniform and Non-uniform Flows
In a uniform fluid flow, the fluid properties or flow char-
acteristics of any given time do not change with respect to 
space, i.e., from one point to another in the flow. Since for a 
uniform flow, there is no gradient (spatial change) the con-
vective derivative of any fluid property of flow characteris-
tic ϕ is zero, i e.,. ( . ) .

� �
v ∇ =ϕ 0

Convective acceleration is zero for uniform flows.

In uniform flows, the streamlines are straight and parallel.

Fluid flow through a straight pipe of constant diameter 
is a uniform flow. 

In a non-uniform fluid flow, some of the fluid proper-
ties or flow characteristics at any given time changes with 
respect to space. Flow through a straight pipe pf varying 
diameter is a non-uniform flow.

Total acceleration is zero for steady uniform flows.

Flow combinations

Type Example

Steady uniform flow Flow at a constant rate through a 
constant diameter pipe

Steady non-uniform flow Flow at a constant rate through a 
non-constant diameter pipe

Unsteady uniform flow Flow at a varying rate through a 
constant diameter pipe

Unsteady non-uniform 
flow

Flow at a varying rate through a 
pipe of varying cross-section

One-, Two- and Three-dimensional Flows
A flows is said to be one, two- or three-dimensional. If one, 
two or three spatial dimensional are required to describe the 
velocity field.

Inviscid and Viscous Flow
A fluid flow in which the effects of viscosity (frictional 
effects) are absent is called as inviscid (nonviscous) fluid 
flow, whereas if the viscosity effects are present, then the 
fluid flow is called a viscous fluid flow. Flow of ideal fluids 
is inviscid flows while flow of real fluids are viscous flows.

Rotational and Irrotational Flows
A fluid flow is said to be rotational if the fluid particles 
while moving in the direction of flow rotate about their mass 
centres. If the fluid particle does not rotate, then the fluid 
flow is called as irrational fluid flow. Fluid flow in a rotating 

tank is a rotational flow while fluid flow above a wash basin 
or drain hole of a stationary tank is an irrotational flow.

For an irrotational flow, the curl of the velocity vector is 
zero, i.e., 

� � �∇ × = =v v0 0or curl( )

Compressible and Incompressible Flows
If for a fluid flow, the density remains constant throughout 

the flow, i.e.,
∂
∂

=
ρ
t

0  then the fluid flow is an incompress-

ible fluid flow else it is a compressible fluid flow.

Example 3: The velocity field of a two dimensional irro-

tational flow is represented by �v
x y

x my i=
−

+ −
⎛
⎝⎜

⎞
⎠⎟

+
2 3

3
2 ˆ

px y
x y

j− −
⎛
⎝⎜

⎞
⎠⎟

2
3

3 2
ˆ,  where P and m are constants. If 

the value of P is equal to one, then the value of m for a 
streamline passing through the point (1, 2) is

(A) −2

3
 (B) 0 (C) 3 (D) –1

Solution:
From the velocity field relationship,

u
x y

x=
−

+ −
2 3

3
2 my

v Px y
x

y= − −2
3

2
3

Since the flow is irrotational

   
� �∇ × =v 0

i.e., ∂
∂

=
∂
∂

v

x

u

y
or P - x2y2 = -x2 y2 - m
or m = -P = -1.

Streamline
A streamline is a curve that is everywhere tangent to the 
instantaneous local velocity vector. At a given instant of 
time, the tangent to a streamline at a particular point gives 
the direction of the velocity at that point. The fluid flow 
will always be along the streamlines and never cross it. At 
non-stagnation points, a streamline cannot interest itself 
nor can two streamlines cross each other. However, the two 
scenarios can be present at stagnation points. The differen-
tial equation of a streamline in a three-dimensional flow 

ˆ ( ˆ ˆ ˆ)a v ui vj wk
�

= + +  is:

dx

u

dy

v

dz

w
= =

For a two – dimensional flow ˆ ( ˆ ˆ),a v ui vj
�

= +  the slope of 
the streamline is given as:
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dy

dx

v

u
=

The pattern of streamline will be fixed in space for steady 
flows but need not be in the case of unsteady flows.

Streamtube
An imaginary passage through which fluid flows and which 
is bounded by a bundle of streamline is called a streamtube. 
Fluid can enter or leave a streamline only through its ends 
but never across the streamtube’s surface. At any instant in 
tube, the mass flow rate passing through any cross-sectional 
cut of a given stream tube will always be the same.

Stream tube 

P
Streamline

V (ins tan tan eous
velocity at
point P)

→

On steady flows, the shape and position of a stream tube 
does not change.

Streakline
It is the locus of the fluid particles that have passed sequen-
tially through a chosen point in the flow. It is also the curve 
generated by a tracer fluid, such as a dye, continuously 
injected in the flow field at the chosen point. An example of 
a streakline is the continuous smoke emitted by a chimney.

Pathline
It is the path followed by a fluid particle in motion. A path-
line can intersect with itself or two pathlines can intersect 
with each other.

Streamline indicates the motion of bulk mass of fluid 
whereas the path line indicates the motion of a single 
fluid particle. A streakline indicates the motion of the 
entire fluid particle along its length.

In a steady flow, the streamline, streakline and path-
line coincide if they pass through the same point.

Example 4: For a three dimensional flow, if the velocity 

field is given by 
�
v xi yj zk= + −4 6 10ˆ ˆ ˆ,  and then an equation 

for a streamline passing through the point (1, 4, and 5) is:

(A) xyz =
5

4
 (B) xyz =

1

20

(C) xyz =
4

5
 (D) xyz = 20

Solution:
From the velocity field representation, we have: 
u = 4x
v = 6y
w = –10z
For a streamline,

dx

u

dy

v

dz

w
= =

Taking 
dx

u

dy

v
= ,  we have: 

  
dx

x

dy

y4 6
=

Integrating, we get 

x y C
6

4
1= × , where C1 is an integration constant.

Considering the point (1, 4, 5), we get: 

     ( )1 4
6

4
1= × C

i.e., C1
1

4
=

∴ =x
y6

4
4

 (1)

Taking 
d

u

d

w
x z= ,  we have:

dx

x

dz

z4 10
=

−
Integrating, we get 

zx C
10

4
2= ,  where C2 is an integration constant.

Considering the point (1, 4, 5), we get 5 1
10

4
2× =( ) C

i.e., C2 = 5

∴ =zx
10

4 5  (2)

Substituting equation (1) in equation (2), we get zxy = 20 as 
the equation of the streamline.

Circulation

Closed
curve

ds

vt

C
a

Stream line

V
→

Circulation Γ is defined as the counterclockwise line inte-
gral, around a closed curve C, of arc length ds times the 
velocity component tangent to the curve (vt) in the flow 
field.

i.e., Γ = =∫ ∫v ds v dstC C� � cosα
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or Γ = ⋅ = + +∫∫ �
���
�� v ds udx vdy wdz

CC
( )

For a three-dimensional flow in Cartesian coordinates:

Vorticity
The vorticity vector 

�
ζ  is defined as:

� � � �ζ = ∇ × =v vcurl( )

i.e., for a three-dimensional flow in Cartesian coordinates,

�
ζ =

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

+
∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

+
∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

w

y

v

z
i

u

z

w

x
j

v

x

u

y
kˆ ˆ ˆ

In terms of circulation, vorticity is defined as the circula-
tion per unit of the enclosed area

i.e., ζ =
Γ
A

Vorticity vector is equal to twice the rate of rotation (or 
just rotation) of angular velocity vector 

�
ω,

i.e.,
� �
ζ ω= 2

Vorticity is a measure of the rotation of a fluid. In a fluid 
flow field, points occupied by rotating or non-rotating fluid 
particles have respectively non-zero or zero (negligibly 
small) vorticities.

Vorticity is zero (negligibly small) everywhere for an 
irrotational flow and non-zero everywhere for a rotational 
flow.

Example 5: A two-dimensional irrotational flow has the 
velocity filed: 
�
v ayi bxj= +ˆ ˆ.  The angle made by the velocity vector at the 

point (1, 1) with the horizontal is
(A) 0° (B) 45° (C) 30° (D) 60°

Solution:
From the velocity field representation, we have 

u = ay, v = bx

Since the flow is irrotational,

∂
∂

=
∂
∂

v

x

u

y

           i.e., b = a  (1)

Let the angle made by a velocity vector at point (x, y) is the 
flow field be q.

∴ =tanθ v

u
 (from slope of streamline)

=
bx

ay
 (2)

Equation (1) in equation (2) gives tanθ =
x

y

At point ( , ), tan1 1
1

1
1θ = =

\                      q = 45°.

Control Volume Analysis of Mass, 
Momentum and Energy
Discharge (flow Rate) and Mass Flow Rate
Discharge (flow rate) is the amount of a fluid passing a 
cross-section of a stream in unit time. If A is the area of the 
cross-section and vavg is the average fluid velocity over the 
cross-section, then:

Q = A × Vavg

Where Q is the discharge (flow rate) or volumetric (or 
volume) flow rate over the cross-section.

Mass flow rate is the amount of mass flowing through a 
cross section of a stream per unit time. If m

�
is the mass flow 

rate over the cross-section, then:

m
�

= r × Q

Where r is the bulk average density of the fluid over the 
cross-section.

Control Volume Analysis of Mass
Conservation of Mass Principle
The conservation of mass principle states that the net mass 
transfer to or from a control volume during a given finite 
time interval is equal to the net change of the total mass 
within the control volume during that time interval.

Conservation of Mass Relation or  
Continuity Equation 
Consider a differential area dA on the control surface (CS) 
of a control volume (CV) through which mass flow into or 
out of the control volume. Let 

�
n  be the outward unit vector 

of dA normal to dA and let r be the density of the fluid. If �
vr  is a relative fluid velocity at dA, then the conservation of 
mass relation for a control volume can be written as:

                    
∂
∂

+ ⋅ =∫ ∫t
dv v n dA

CV rCS
ρ ρ( )

� �
0  (1)

Where dv is a differential volume within the control 
 volume. Equation (1) is called as the continuity equation.
Case A: Control volume is fixed� �

v vr = ,  where 
�
v  is the fluid’s absolute velocity, i.e, the 

fluid velocity relative to a fixed point outside the control 
volume.
Case B: Control volume is moving but not deforming.

r cvv v v= −� � �
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Case C: Control volume is deforming.
� � �
v v vr cs= −

Equation (1) can be rewritten using mass flow rates as: 
(assuming well-defined inlets and outlets)

∂
∂

= − ∑∑m

t
m mw � �

outin
,  (2)

Where the total mass within the control volume at any instant 
in time t, m dvw CV

= ∫ ρ  and the net mass flow rate through 

the control surface, m m v n dArcsout in∑ ∑ ∫− = ⋅ρ( ) .
� �

 Here 

Σoutm
°  and Σinm

°  correspond to the sum of the mass flow rates 
of all the respective outlet and inlet fluid streams of the con-
trol volume.

Mass Conservation for Steady 
incompressible Flows
For a steady fluid flow, conservation of mass relation 
( equation (2)) becomes

  m m
in out

� �∑ ∑−  (3)

If a simple stream of a specific fluid is considered and if the 
subscripts 1 and 2 denote the inlet and outlet states respec-
tively, then equation (3) becomes:

m m1 2
� �

=

or         r1v1A1 = r2v2A2 (4)

If the flow is incompressible, then r1 = r2 and hence for a 
steady and in compressible fluid flow, equation (4) becomes

V1A1 = V2A2

or                       Q1 = Q2 (Q = VA)

Control Volume Analysis of Momentum
Principle of Conservation of Momentum
The net force acting on a mass of fluid (or a body) is equal 
to the change of momentum of flow (or the body) per unit 
time in that direction.

Forces Acting on a Control Volume
Forces acting on a control volume are classified into:

Body force These are forces that act throughout the entire 
body of the control volume. For example, gravity, electric 
and magnetic forces.

Surface forces These are forces that act on the control sur-
face of a control volume. For example, pressure and viscous 
forces and reaction forces at contact points.

It should be noted that in the control volume analysis 
of momentum, only forces external to the control volume 
are considered. If ΣinF

→

 
denotes the sum of all the external 

forces acting on a control volume at particular instant of 
time,

� � �
F F F∑ ∑∑= +body surface

Linear Momentum Equation
The general form of the linear momentum (or simply 
momentum) equation that applies to a fixed, moving or 
deforming control volume is

� � � � �
F

t
vdv v v n dArcscv

=
∂
∂

+ ⋅∫∫∑ ρ ρ ( )

Here the term 
∂
∂ ∫t

vdv
cv

ρ� represents the time rate of 

change of the linear momentum of the contents of the con-

trol volume and the term ρ� � �v v n dArcs
( )⋅∫ represents the net 

flow rate of linear momentum through the control surface 
by mass flow.

For a fixed and non-deforming control volume, the linear 
momentum equation is

 
� � � � �
F

t
vdv v v n dA

cs∑ ∫ ∫=
∂
∂

+ ⋅ρ ρ ( )  (1)

The algebraic form of equation (1) can be written as 

   
� � � �� �
F

t
vdv m v m vavgoutcv avgin∑ ∑∫ ∑=

∂
∂

+ −ρ β β  (2)

Where 
�
vavg  is the average velocity across the inlet or out-

let and b is the momentum flux correction factor. Here, 
β m vavg
� � =

ρ� � ��v v nv dA
cs∫ ⋅( )

For a steady flow, equation (2) reduces to:

                 
� � �� �
F m v m vavg∑ ∑ ∑= −β βavgout in

 (3)

If only a single stream of a single fluid is considered and if 
subscripts 1 and 2 denote respectively the inlet and outlet 
states, then equation (3) can be written as:

� � ��
F m v vavg avg∑ = −( ), ,β β2 2 1 1

Force Exerted by Flowing Fluid on a Pipe 
Bend
As per Impulse-momentum theorem, the impulse of a 
force on a body is equal to the change in linear momentum 
of the body in the duration of time for which the force acts.

i.e.,      Fdt dp d mv= = ( )
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This can also be applied to forces acting on fluids. 
Consequently,

F
dp

dt

d

dt
mv= = =( )  rate of change of linear momentum.

For fluids, rate of change of linear momentum,
dp

dt

d

dt
mv m dv= =( ) ( )�

= (mass per second) × (change of velocity)
= (density × discharge) × change of velocity

= =ρ ρQ dv F Qdv( );

This equation can be used to determine the net force 
exerted by a flowing fluid on a pipe bend.

q
O

Y

FX

Fy

(1)

(2)

XV1, A1

V2, A2

V2 sin q

V2 cos qp2A2

p1A1

Consider a reducing elbow as shown in figure. At the inlet 
section (1), pressure intensity = p1, velocity of flow = V1, 
along x-direction, area of cross-section = A1. At the exit sec-
tion (2), pressure intensity = p2, velocity of flow = V2 at an 
angle q with x-axis and area of cross-section A2. Let F  be 
the force exerted by the flowing fluid on the bend, which 
can be resolved as F Fx yand  along the x and y directions 
respectively. As per Newton’s third law of motion, the bend 
exerts an equal and opposite force −F  on the fluid, which 
can be resolved as − −F Fx yand  in the x and y directions. 
The minus (-) sign shows that the direction of force exerted 
by the bend on fluid is opposite to corresponding force 
exerted by fluid on bend.

Along the x and y-directions, the forces on the fluid due to 
pressure of fluid and force exerted by bend, can be equated 
to the rate of change of momentum in that direction.

q

O

y

Fy (due to bend)

Fx (due to bend)

x

p2A2

p1A1

Figure 1 Forces on fluid due to pressures and due to bend

Net force on fluid is x direction is (let us call this Px)

P p A p A Fx x= − −1 1 2 2 cosθ

Net force on fluid in y-direction (let us call this Py)

P p A Fy y= − −2 2 sinθ

q

C

y

x

mV2

mV1

Figure 2 Linear momentum of fluid at inlet and outlet

Time rate of change of linear momentum of fluid along 
x-axis

= −mV mV
• •

cos2 1θ

= −m V V
•
( cos )2 1θ

   = rQ(V2 cos q - V1) [Q = discharge in m3/s
          r = density in kg/m3)

Time rate of change of linear momentum of fluid along 
y-axis,

   = −mV
•

sin2 0θ

= mV
•

sin2 θ

= rQ V2 sin q

Equate the net force on fluid in the x direction to the time 
rate of change of linear momentum in the x direction 

\ Px = p1A1 - p2A2 cos q - Fx= rQ(V2 cos q - V1)

⇒ Fx = p1 A1 - p2A2 cos r - rQ (V2 cos q - V1)

⇒ Fx = p1A1 - p2A2cosq - rQ (V1 - V2 cos q)  is the 

X-component of the force exerted by fluid on bend. Similarly, 
equating the net force on fluid is the y direction to the time 
rate of change of linear momentum is the y direction,

Py = -p2A2 sin q - Fy = rQ V2 sin q
\ Fy = - p2 A2 sin q - rQ V2 sin q
        = -(p2A2 + rQV2) sin q

\ Fy = -(p2A2 + rQV2) sinq  is the y-component of the 

force exerted by fluid on bend.
The net force (F) exerted by fluid on bend is given by 

F F Fx y= +2 2

The angle (a) mode by the net force exerted by fluid on 
bend is given by 

tanα =
F

F
y

x

M04_TRIS7308_C03.indd   443 27/06/2017   19:37:52



3.444 |  Part III  •  Unit 4  •  Fluid Mechanics

Direction for questions 6 and 7: The volumetric flow rate 
of a liquid of density 900 kg/ m3, flowing through a bent 
pipe, as shown in the following figure, is 400  litres per sec-
ond at the inlet of the pipe. The pipe which is bending by 
an angle q has a constant diameter of 500 mm. The liquid is 
flowing in the pipe with a constant pressure of 500 kn/m2. 
The horizontal component of the resultant force on the bend 
has a magnitude of 148325.358 N.

Example 6: The value of the angle q is approximately:
(A) 60° (B) 120°
(C) 30° (D) 45°

Solution:
Let the subscripts 1 and 2 denote the inlet and outlet of the 
pipe respectively.

q

y

Fixed
control
volume

Control
volume

x

v1

v2

P1A1

P2A2

RV

RH

R

180° − q 

Diameter of the pipe, d = 0.5 m
Density of the fluid, r = 900 kg/m3

Cross-sectional areas of the pipe,

A A
d

1 2

2 2

4

0 5

4
= = =

×π π ( . )

= 0.1963 m3

Given, pressures p1 = p2

     = 500 × 103 N/m2

Let 
�
R  be the reaction force exerted by the bend on the 

control volume.

Now 
�
R  would be equal and opposite in direction to the 

resultant force exerted in the bend. Let RH and Rr be the 
magnitude of the respective horizontal and vertical compo-
nents of 

�
R

Given, RH = 148325.358 N
Now, mass flow rate:

m Q
�

.= = × =ρ 1 900 0 4 360  kg/s

The flow is assumed to be steady flow. Also the weight of 
the pipe and the water in it is neglected. From the continuity 
equation, we can write:

A1V1 = A2V2

Where v1 and v2 are the (incompressible) liquid average 
velocities assuming uniform flow at inlet and outlet. Given, 
volumetric flow rate:

Q1 = A1V1 = 0.4 m3/s

∴ = = =v v
m

s
1 2

0 4

0 1963
2 0377

.

.
.

The change in momentum in the direction of flow can be 
equated to: 

P1A1 + P2A2 cos (180° – q) – RH
\ Therefore it becomes

P1A1 + P2A2 cos (180° –q) – RH

= (–v2cos (180° –q) –v1) 
�
m

\ Cos (180°– q) =  (148325.358 – 360 × 2.0377 – 500 
× 103 × 0.1763)

∴ ° −

=
( − × − × ×

×

cos( )

. . .

(

180

148325 358 360 2 0377 500 10 0 1963

500 10

3

3

θ

×× + ×0 1963 360 2 0377. . )

i.e.,                           cos (180° – q) = 0.5
or                                cos 180° – q = 60°
                                                      q = 120°.

Example 7: The magnitude of the resultant force on the 
bend is: 
(A) 148325.358 N (B) 85633. 17 N
(C) 0 N (D) 171270.11 N

q

Solution:
Now cos (180° –q) = 0.5

sin ( ) cos ( )180 1 1802° − = − ° −θ θ

  = 0.8660

The linear momentum equation in the y-direction

  
∑ = −F m v v yy y

�
( , , )2 1  (2)

Here, v1, y = 0

   v2, y = v2sin (180° –q)

F P A Ry v= ° +∑ – sin ( – )2 2 180 θ

\ Equation (2) becomes:

Rv - P2A2 sin (180°–q)

   = ° −m v� 2 180sin ( ) θ
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or R  v = 360 × 2.0377 × 0.8660 
             + 500 × 103 × 0.1963 × 0.8660
         = 85633.17 N

\ Magnitude of the resultant force:
�
R R RH V= +2 2

      = +148325 358 85633 172 2. .

      = 171270.11 N.

Example 8: A 3.57 m diameter jet of liquid (density = 1100 
kg/m3 from a nozzle steadily strikes a flat plate, inclined at 
an angle of 30° to the horizontal, as shown in the following 
figure.

If a horizontal force of 275.27 kN is applied on the plate to 
hold it stationary than the velocity of the liquid jet is
(A) 9.52 m/s (B) 3.37 m/s
(C) 90.63 m/s (D) 4.76 m/s

Plate

30°

Liquid jet

Solution:
Let F be the force applied normally on the plate to hold 
it stationary. Let Fx be the horizontal component of the 
force F.

Given Fx = 275.27 × 103 N
Linear momentum equation in the 

y

F

q

Control
volume

Plate

Fx

x

v

Direction normal to the plate yields:

− = − −F m v
�

( cos( ))0 90 θ

          or F m v= �
sinθ

      = rAv2sin q  (1)
Now here,

               Fx = F cos (90 - q) = F sinq  (2)

Comparing equations (1) and (2), we get

Fx = rAv2sin2q

So 275 27 10 1100
4

3 753 2. ( . )× = × ×
π

 × v2 × (sin 30°)2

\ v = 9.52 m/s .

Moment of Momentum Principle
The resulting torque acting on a rotating fluid is equal to the 
rate of change of moment of momentum.

Angular Momentum Equation
The general form of the angular momentum (or moment 
of momentum) equation that applies to a fluid, moving or 
deforming control volume is

      � � � � � � �
m

t
r v dv r v v n dA

cv cs r=
∂
∂

× + × ⋅∑ ∫ ∫( ) ( ) ( )ρ ρ  (1)

Here, 
� � ��
m r F∑ ∑= ×( ) is the vector sum of the moment of 

all the forces acting on the control volume.

The term 
∂
∂

×∫
t

cv
r v dv( )
� ρ represents the time rate of 

change of the angular momentum of the contents of the 

control volume and the term ( ) ( )
� � � �
r v v n dA

cs
× ⋅∫ ρ represents 

the net flow rate of angular momentum out of the control 
surface by mass flow

For a fixed and non-deforming control volume, the angu-
lar momentum equation is

� � � � � � �
m

t
r v dv r v v n dArcscv

=
∂
∂

× + × ⋅∑ ∫∫ ( ) ( ) ( )ρ ρ

An approximate form the angular momentum equation 
written in terms of average properties becomes

       

� � � � �

� �

�

�

m
t

r v dv r m v

r m v

avgoutcv

avgin

=
∂
∂

× + ×

− ×

∑∫∑

∑

( ) ( )

( )

ρ

 (2)

For a steady flow, equation (2) reduces to

         
� � � � ��
m r mv r m vavgout avgin

= × − ×∑∑ ∑( ) ( )  (3)

Note that the term �
m∑  

also represents the net torque 

acting on the control volume.
If the significant forces and momentum flows are in the 

same plane, then they would give rise to moments in the 
same plane. For such cases, equation (3) can be expressed 
in a scalar form as:

m r mv r mv= −∑∑ ∑� �

out in

∑
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Where r represents the average normal distance between 
the point about which moments are taken and the line 
of action of the force or velocity provided that the same 
convention is followed for the moments. Moments in the 
counter clockwise position are positive and moments in the 
clockwise direction are negative.

Example 9: The sprinkler, shown in the following figure, has 
a frictionless shaft with equal flow in both the nozzles. If the 
water jets from the nozzles have a velocity of 10 m/s relative 
to the nozzles then the sprinkler rotates at an r. p. m of:

(A) 32.19 (B) 318.31
(C) 139.48 (D) 73.46

0.5 m 0.8 m

Solution:

A

A

w

B

rB

Given rA = 0.5 m
            rB = 0.8 m
Relative velocities, vr, A = 10 m/s and

Vr, B = 10 m/s

Let w be the angular velocity of the sprinkler.
Absolute fluid velocity of A,

va, A = vr, A + wrA
       = 10 + 0.5w

Absolute fluid velocity of B,

va, B = vr, B - wrB
       = 10 - 0.8w

The jets of water coming out from the nozzle will exert a 
force in the opposite direction. So torque at B will be in 
the anticlockwise direction and torque at A will be in the 
clockwise direction. Since torque at B is greater than the 
torque at A, hence the sprinkler, if free, will rotate in the 
anticlockwise direction.

NOTE

Since there is no friction and no external torque is applied 
on the sprinkler, m =∑ 0

Since the moment of momentum of the water entering 
the sprinkler is zero,

r mv
in

�∑ = 0

\ Equation (1) becomes

r mv
out

�∑ = 0

or − + =⋅m r v m r vA A a A B B a B
� �

, 0

Given m mA B
� �

=

\ –0.5 (10 + 0.5 w) + 0.8 (10 – 0.8w) = 0
or w = 3.3708 rad/sec
If N is the speed of rotation of the sprinkler in rpm, then

2

60
10

π N
=

or                  N rpm=
×

×
=

60 3 3708

2
32 19

.
. .

π

Bernoulli’s Equation
Bernoulli’s equation is stated as follows:

P v
gz C

ρ
+ + =

2

2

Where C is a constant. This equation is applicable only for 
a steady incompressible flow along a streamline and only 
in the inviscid regions (regions where viscous or frictional 
effects are negligibly small compared to inertial, gravita-
tional and pressure effects) of flow. For point 1 and 2 along 
the same streamline, Bernoulli’s equation can be written as:

p v
gz

p v
gz1 1

2

1
2 2

2

2
2 2ρ ρ

+ + = + +

Bernoulli’s equation is not applicable in a flow section that 
involves a pump, turbine, from or any other machine or 
impeller since these devices destroy streamlines and trans-
fer or extract energy to or from the fluid particles. This 
equation should also not be used for flow sections where 
significant temperature changes occur through heating or 
cooling sections.

For a fluid flow, in general, the value of the constant C 
is different for different streamlines. However, if the flow 
is irrotational, constant C has the same value for all the 
streamlines in the flow. In other words, for irrotational 
flows, Bernoulli’s equation becomes applicable across 
streamlines, i.e. between any two points in the flow region.

NOTE

Bernoulli’s equation and conservation of mechanical 
energy

The mechanical energy of a flowing fluid expressed on a 
unit-mass basis is

e
P v

gzmeh = + +
ρ

2

2

M04_TRIS7308_C03.indd   446 27/06/2017   19:37:58



Chapter 3  •  Fluid Kinematics and Dynamics  | 3.447

Where 
P

ρ
is the flow or pressure energy 

v2

2
is the kinetic 

energy and gz is the potential energy of the fluid, all per unit 
mass.

From Bernoulli’s equation the following equation can be 
written

Emech constant=

Where, Emech is the mechanical energy (sum of the 
kinetic, potential and flow energies) of a fluid particle is 
constant along a streamline in a steady, incompressible and 
inviscid flow. Hence Bernoulli’s equation can be taken as a 
“conservation of mechanical energy principle”.

It is to be noted that the mechanical energy remains con-
stant in an irrotational flow field.

Liquid discharge from a large tank

A large tank open to the atmosphere is filled with a liquid 
to a height of h metres from the nozzle as shown in the fol-
lowing figure.

∇ (1)

(2)

h

The flow is assumed to be incompressible and irrota-
tional. The draining of the water is slow enough that the flow 
can be assumed to be steady (quasi- steady). Any losses in 
the nozzle are neglected. Point 1 is taken to be at the free 
surface of water and so p1 = patm and point 2 is taken to be 
at the centre of the outlet area of the nozzle and so P2 = Patm

If A1 and A2 are the cross- sectional areas of the tank and 
nozzle respectively, then from the continuity equation, we 
have:

          A1V1 = A2V2  (1)

Since the tank is very large compared to the nozzle, we 
have A1>>>>A2. Hence from equation (1), we have 

V1 ≈ 0

From the Bernoulli’s equation, We have

P V
gz

P V
gz1 1

2

1
2 2

2

2
2 2ρ ρ

+ + = + +

or                              V2
2 = 2g (z1 – z2)

or                              V gh2 2=   (2)

Equation (2) is called the Torricelli equation.

Example 10: Section A of the pipeline, shown in the figure 
below, has a diameter of 20 cm and a gauge pressure (pA) 
of 40 kPa. The section is at an elevation of 120 m. The 
section B of the pipeline has a diameter of 40 cm and is at 
an elevation of 125 m. The volumetric flow rate of the liquid 
(density = 1100 kg/m3) through the pipeline is 70 litre/sec. 
If the frictional losses in the pipeline can be neglected and 
if pB denotes the pressure of section B, then,
(A) Flow is from B to A and pA – pB = 51.395 kPa
(B) Flow is from A to B and pA – pB = 51.395 kP
(C) Flow is from A to B and pA – pB = 28.605 kPa
(D) Flow is from B to A and pA – pB = 28.605 kPa

Section B

Section A

Pipeline

Solution:
At section A, velocity of flow,

v
Q

A
A

A

=

                  
=

× ⎛
⎝⎜

⎞
⎠⎟

70

1000

4

20

100

2π

                     = 2.228 m/s

At section B, velocity of flow,

V
Q

A
B

B

= =

× ⎛
⎝⎜

⎞
⎠⎟

70

1000

4

40

100

2π

             = 0.557 m/s

Assuming the flow to be steady, Bernoulli’s equation 
application between the two sections gives:

                 p v
gz

p v
gzA A

A
B B

Bρ ρ
+ + = + +

2 2

2 2
 (1)

Here PA = 40 × 103 Pa (gauge pressure)

    zA = 120 m

    zB = 125 m

     r = 1100 kg/m3

Hence equation (1) gives

40 10

1100

2 228

2
9 81 120

3 2×
+ + ×

( . )
.
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= + + ×
PB

1100

0 557

2
9 81 125

2( . )
.

or PB = –11.395 kPa (gauge pressure)
Since pA > pB, flow is from A to B and pA – pB = 40 – 
(–11.395) = 51.395 kPa.

Example 11: A vertical jet of liquid (density = 850 kg/m3) 
is issuing upward from nozzle of exit diameter 70 mm at a 
velocity of 15 m/s. A flat plate weighing 250 N is supported 
only by the jets impact. If all losses are neglected then the 
equilibrium height h of the plate above the nozzle exit is:
(A) 11.468 m (B) 6.434 m
(C) 9.682 m (D) 10.145 m

h
Liquide
jet

Plate

Nozzle

Solution:
Mass flow rate,

m Av
� = ρ

     = × × ⎛
⎝⎜

⎞
⎠⎟

×850
4

70

1000
15

2π
 = 49.068 kg/s

h

(1)

(2)

Applying Bernoulli’s equation between points (1) and (2), 
we get:

p v
gz

p v
gz1 1

2

1
2 2

2

2
2 2ρ ρ

+ + = + +

Here p1 = p2 = patm

          z2 – z1 = h

∴ = −v v gh2 1
2 2

          = − × ×( ) .15 2 9 812 h

Control
volume

Applying the linear momentum balance equation for the 
control volume shown above, we get – ( )250 0 2= −m v

�

(momentum correction factor is assumed to be unity)

= × − × ×– . ( ) .49 068 15 2 9 812 h

    h = 10.145 m.

Different Types of Head of a Fluid in Motion
The Bernoulli’s equation can be rewritten as:

p

g

v

g
z

ρ
+ + =

2

2
constant

Each term on the LHS of the above equation has the dimen-
sion of length and represents some kind of head of a flowing 
fluid.

Pressure Head It is the term p

gρ
 and it represents the height 

of a fluid column that is needed to produce the pressure p.

Velocity Head It is the term 
v

g

2

2
and it represents the elevation 

needed for the fluid to reach the velocity v from rest during a 
frictionless free fall.

Elevation Head It is term z and it represents the potential 
energy of the fluid. The sum of the pressure head and the 

elevation head, i.e., 
p

g
z

ρ
+ , is known as the piezometric 

head.

Static, Dynamic, Hydrostatic, Total 
and Stagnation Pressures
The Bernoulli’s equation can be rewritten as:

p
v

gz+ + =
ρ ρ

2

2
constant

Each term on the LHS of the above equation has the units 
of pressure and represents some kind of pressure.

Static pressure It is the term p and it represents the actual 
thermodynamic pressure of the fluid as it flows.

Dynamic pressure  It is the term 
ρv2

2
 and it repre-

sents the pressure rise when the fluid is brought to a stop 
isentropically.

Hydrostatic pressure: It is the term rgz. It is actually not 
a pressure although it does represent the pressure change 
possible due the potential energy variation of the fluid as a 
result of elevation changes.
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Total pressure = Static + dynamic + hydrostatic pressures

Stagnation pressure = Static + dynamic pressure

Stagnation pressure (pstag) represents the pressure at a point 
where the fluid is brought to a complete stop isentropically.

p p
v

stag = +
ρ 2

2

Static pressure, P

Dynamic pressure
Piezometer

Pitot tube

Stagnation pressure pstag

2
rv2

Stagnation point

Control Volume Analysis of Energy
Conservation of Energy Principle
The conservation of energy principle states that energy can 
neither be created nor destroyed during a process but it can 
be converted from one form to another.

Energy equation The general form of the energy equation 
that applies to a fixed, mass or deforming control volume is

           

Q W
t

e dv

p
e v n dA

cv

rcs

� �

� �

net in shaft,net in+ =
∂
∂

+ +
⎛
⎝⎜

⎞
⎠⎟

⋅

∫

∫

ρ

ρ
ρ( )  (1)

Where the total energy, e = u + ke + re

= + +u
v

gz
2

2
 with u, ke and re being the internal (u), 

kinetic (kc) and potential (pc) energies all being per unit 
mass.

The term 
ρ
ρ

 
represents the flow work, i.e, work asso-

ciated with passing a fluid into or out of a control vol-

ume, per unit mass. The term Q Q Q
� � �

net in in out= −
is the net rate of heat transfer to the system. The term 
W W W
� � �

shaft ,net in shaft,in shaft,out= − is the net power input 
to the system. Wshaft is the work transfer associated with 
the devices such as pumps, turbines, fans or compressors 
whose shaft protrudes through the control surface. Instead 
of � �W W, shaft  is used, since in most cases work is transferred 
across the control surface by a moving shaft.

The LHS of the equation (1) represents the net rate of 
energy transfer into a control volume by heat and work 

transfer. The first term on the RHS of equation (1) repre-
sents the time rate of change of the energy content of the 
control volume while the second term represents the net 
flow rate of energy out of the control surface by mass flow.

For a fixed control volume ( ),
� �
v vr =  the energy equation 

is:

 

Q W

t
e dv

p
e v n dA

shaft net in

cscv

� �

� �

net in +

=
∂
∂

+ +
⎛
⎝⎜

⎞
⎠⎟

⋅∫∫

,

( )ρ
ρ

ρ  (2)

Assuming that the term 
p

e
ρ

+
⎛
⎝⎜

⎞
⎠⎟

is nearly uniform across 

an inlet or outlet and using the relation m v n dA
� � �= ⋅∫ ρ( ) ,

 
the 

energy equation (2) becomes: 

Q W

t
e dv m

p
e m

p
cv

� �

� �

net in shaft,net in

out in

+

=
∂
∂

+ +
⎛
⎝⎜

⎞
⎠⎟

− +∑∫ ∑ρ
ρ ρ

ee
⎛
⎝⎜

⎞
⎠⎟

If the flow is steady and considering a single inlet and 
single outlet scenario, the above equation becomes:

Q W m
p p� � �

net in shaft,net in+ = −
⎡

⎣
⎢

⎤

⎦
⎥

2

2

1

1ρ ρ

                                
+ − + − + −u u

v v
g z z2 1

2
2

1
2

2 1
2 2

( )

If we consider W
�

shaft,net in

= −W W
� �

pump turbine  and E m u u Q
� � �

mech loss net in= − −( )2 1

Then the above equation can be written as:

m
p v

gz W
� �1

1

1
2

1
2ρ

+ +
⎛
⎝⎜

⎞
⎠⎟

+ pump

            = + +
⎛
⎝⎜

⎞
⎠⎟

+m
p v

gz W
� �2

2

2
2

2
2ρ

turbine + E
�

mech loss  (3)

Where W
�

pump is the shaft power input through the pump’s 

shaft, W
�

turbine is the shaft power output through the turbine’s 

shaft and E
�

mech loss  is the total mechanical power loss con-
sisting of the pump and turbine losses and also including the 
frictional losses in the piping system, i.e., 

E E
� �

mech loss mech loss, pump= +

E E
� �

mech loss turbine mech loss piping, ,+
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In terms of heads, the energy equation (3) can be written as:

          p

g

v

g
z h

p

g

v

g
p

1

1

1
2

1
2

2

2
2

2 2ρ ρ
+ + + = + + z2 + ht + hL  (4)

Where, h
W

m g
p

=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

ηpump pump
�

�
is the useful head delivered 

to the fluid by the pump, ht =
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

W

m g

�

�

turbine

turbineη
 is the extracted 

head removed from the fluid flow in the piping system.

Direction for questions 12 and 13: The velocity profile for 
flow in a circular pipe is given as: 

v v
r

R
= − ⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

max 1
2

where v is the velocity of any radius 

r, vmax is the velocity of the pipe axis and R is the radius of 
the pipe.

Example 12: The average velocity of flow is given by:

(A) vmax (B) 
3

4
vmax

(C) 
vmax

4
 (D) 

vmax

2

Solution:
In a cross-section of the circular pipe, consider an elemen-
tary area dA in the form of a ring at a radius r and of thick-
ness dr.

R

rs Elementary
areadr

Then, dA =2prdr
Flow rate through the ring

= dQ = elemental area × local velocity

         = 2prdr × v

Total flow, Q rdr v
R

= ⋅∫ 2
0

π

                      = − ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫ 2 1
2

0
πrv

r

R
dr

R

max

     Q pv
R

=
⎛
⎝⎜

⎞
⎠⎟max

2

2
 (1)

Let vavg be the average velocity,

Then Q = pR2 × vavg

From equation (1) we have 

π πv
R

R vavgmax

2
2

2

⎛
⎝⎜

⎞
⎠⎟

=

  V
v

avg = max .
2

Example 13: The value of the kinetic energy correction 
factor is: 
(A) 2 (B) 1.11
(C) 1.04 (D) 1

Solution:

α =
⎛

⎝⎜
⎞

⎠⎟∫
1

3

A

v

v
dA

avg

                    
= ∫

1 8
2

2 3
3

π
π

R V
V rdr

O

R

( )max

                

= − ⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟∫

16
1

2

2 3

R

r

R
rdr

O

R

    
= ×

⎛
⎝⎜

⎞
⎠⎟

=
16

8
2

2

2

R

R
.

Example 14: If the head losses in the pipe shown in the 
figure is h2 metres, then the discharge velocity at the pipe 
exit is:

H

h

Large tank

(A) 2g h hL( )−
(B)  0

(C) 2 2g H h( )−

(D) 2g LH h h( )+ −

Solution:
Let the height of the water surface from the bottom of the 
tank (chosen as the datum level) be L.
Consider point 1 to be the water surface of the  tank and 
point 2 to be at the pipe exit.
Now, P1 = P2 = Patm
The tank is considered to be very large such that V1 ≈ 0
Assuming the flow to be steady applying the energy equa-
tion between the two points we have:

      
P

g

V

g
Z h

P

g

V

g
P

1
1

1
2

1
2 2 2

2

2 2ρ
α

ρ
α

+ + + = + + Z2 + ht + hL (1)
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Since no pump and turbin is involved,

hp = ht = 0

The kinetic correction factor are considered to be unity, i.e., 
a1 = a2 = 1
The equation (1) can be written now as:

L
V

g
L h hL= + − +2

2

2
( )

              V g h hL2 2= −( ).

Example 15: A  hydrautic turbine is supplied with 5 M3/s 
water at 420 kPa (guage). A vacumm gauge fitted in the 
turbine discharge 4 on below the turbine inlet centre line 
shows a readingof 200 mm Hg. If the turbine shaft output  
power is 1200 kW and if the internal diameters of the supply 
and discharge pipe are identically 100 mm, then the power 
loss through the turbine is:
(A) 2429.62 kW (B) 962.78 kW
(C) 1229.62 kW (D) 2162.78 kW

Solution:
Let the subscripts S and D denote points in the suction and 
the discharge pipe respectively. 
Given Ps = 420 kPa
Zs = 4 m
ZD = 0 m ( discharge pipe taken at the dotum plane.)

Wturbine  = 1200 × 10 3 W

The energy equation applied between the points S and D is 
as follows.

M
Ps V

s gZ Ws sρ
α+ +

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

+

2

2
pump

        = + +
⎛
⎝⎜

⎞
⎠⎟

+ +M
P V

gZ WD
D

D
Dρ

α
2

2
turbine Emech loss  (1)

Since no pump is involved, Wpump = 0. The kinetic energy 
correction factors are assumed to be unity, i.e., aS = aD = 1

Here Q = 5 m3/S

∴ = = × =m Q kg s
�

ρ 1000 5 5000 /

Now PD = –200 mm kg

=
−

× ×
200

1000
13600 9 81.

   = – 26.6832 kPa

Since the supplies are discharge pipe have identical internal 
diameters, we have: 

VS = V0

\ Equation (1) becomes

                 5000
420 10

1000
9 81 4

3

×
×

+ ×
⎛
⎝⎜

⎞
⎠⎟

.

       =
− ×⎛

⎝⎜
⎞
⎠⎟

+ ×5000
26 6832 10

1000
1200 10

3
3. + Emech loss

= Emech loss = 1229.62 kW.

Differential Analysis of Mass and 
Momentum
Continuity Equation
The general differential equation for conservation of mass 
or the continuity equation is

∂
∂

+ ∇⋅ =
ρ ρ
t

V
�� ��

( ) 0

or                              1
0

ρ
ρD

Dt
V+ ∇⋅ =

�� ��

or                        ∂
∂

+
∂
∂

+
∂
∂

ρ ρ ρ
t x

u
y

v( ) ( )

+
∂
∂

=
z

w( )ρ 0

The continuity equation in cylindrical coordinates is

∂
∂

+
∂
∂

+
∂

∂
+

∂
∂

=
ρ ρ

θ
ρ ρθ

t r r
r V

r
V

z
Vr z

1 1
0( ) ( ) ( )

Special Cases of the Continuity Equation
 (a) For steady compressible flow, the continuity equation 

reduces to

∇⋅ =
�� ��

( )ρV 0

or                
∂
∂

+
∂
∂

+
∂

∂
=

r
u

y
v w( ) ( ) ( )ρ ρ ρ

2
0

 (b) For incompressible (steady or unsteady) flow, 
continuity equation reduces to

∇⋅ =
�� ��

V 0

or                       
∂
∂

+
∂
∂

+
∂
∂

=
u

x

v

y

w

z
0

Since ∇⋅ =
�� ��

V 0,  velocity field V
��

 is said to be a divergence 
free or divergence less field in this case. 

Stream Function
For an incompressible two dimensional planar flow, the con-
tinuity equation reduces to

      ∂
∂

+
∂
∂

=
u

x

v

y
0  (1)
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A function ψ ( , ),x y  called the stream function can be 
defined such that whenever the velocity components are 
defined in terms of the stream function as shown below, the 
continuity equation (1) will always satisfied. 

  u
y

v
x

=
∂
∂

=
−∂
∂

ψ ψ
,  (2)

Equation (2) holds for rotational and irrotational regions 
of flow.

The volume rate of flow, Q, between two streamlines 
such as ψ ψ1 2and  is given by

Q = −ψ ψ2 1

The relative value of ψ 2 with respect to ψ1  will deter-
mine the flow direction as shown below.

y2 > y1

y2 < y1

y1

y2

← Q

→ Q

Flow stream lines are curves of constant ψ

Navier Stokes Equation
The Navier stokes equation is obtained when the conserva-
tion relation is applied to momentum. For an incompress-
ible and isothermal flow, the equation is

ρ ρ ρ μDV

Dt
g V

��
� ��� �� ��

= −∇ + + ∇2

The above equation is valid only for Newtonium fluids 
with constant properties such as viscocity, thermal conduc-
tivity etc.

The scalar operator = ∇ = = ∇⋅∇2 ( )
� �

 is called as the 

Laplacian operator and is equal to ∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

2

2x y z

Navier Stokes Equation (approximation)  
for Creeping Flow
A creeping flow is a flow in which the Reynolds number 
is very low (Re <<1). Reynolds number is defined as Re  

=
ρ

μ
VL

where V and L are the characteristic speed and length. The 
approximate equation for creeping flow, assuming negligi-
ble gravitational effects and steady or oscillating flow is

∇ ≅ ∇p V
� ��� ��

μ 2

Navier Stokes Equation (approximation)  
for Inviscid Regions of Flow 
The inviscid regions of flow or regions of flow with negligi-
ble net viscous forces are regions of high Reynolds number. 
In such a region, the Navier Stokes equation reduces to 

ρ ρ ρDV

Dt
g

��
� ��� ��

= −∇ +

The above equation is called the Euler equation which 
is the Navier stokes equation without the viscous term. 
Euler equation is approximate only in regions of flow 
with large Reynolds numbers and where the net viscous 
forces are negligible compared to the inertial and /or 
pressure forces.

An irrotational region of flow is a region where net vis-
cous forces are negligible compared to inertial and for 
pressure forces because of the irrotational approximation. 
All irrotational regions of flow are also inviscid but all 
inviscid regions of flow need not be irrotational. A uni-
form flow field is an example of an irrotational flow.

NOTE

Velocity Potential Function
If the curl of a vector is zero the vector can be expressed as 
the gradient of a scaler function ϕ called the potential func-
tion. This is possible since the unit of the gradient of any 
scalar function (as long as ϕ is a smooth function) is zero.

For an irrotational flow, we have ∇ × =
�� ��

V 0  and therefore 
the velocity vector V

��
 can be expressed as the gradient of a 

scalar function ϕ, called the velocity potential function (or 
just velocity potential) as follows:

V
�� ��

= ∇ϕ

Therefore the existence of a velocity potential implies 
that the fluid is irrotational.

Regions of irrotational flow are also called regions 
of potential flow. Sometimes a potential flow specifically 
refers to an inviscid incompressible and irrotational flow.

Substituting equation (1) in the incompressible continu-
ity equation, we obtain for irrotational flows the following 
equation.

∇ =2 0ϕ  

The above equation is called the Laplace equation.
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Thus for incompressible, irrotational planar regions of 
flow, the following are applicable

 (a) ∇ =2 0ϕ
 (b) ∇ =2 0ψ

 (c) u
x y

=
∂
∂

=
∂
∂

ϕ ψ

 (d) V
y x

=
∂
∂

=
−∂
∂

ϕ ψ

The equation u
x y

v
y x

=
∂
∂

=
∂
∂

=
∂
∂

= −
∂
∂

ϕ ψ ϕ ψ
and  are 

called Cauchy Riemann equation. These equations give the 
relations between velocity potential function and stream 
function.

Curves having constant values of ϕ are called as equipo-

tential lines. The slope of an equipotential line, 
dy

dx

u

v
=

−

Potential function exists for irrotational flow only. The 
stream function applies to both the rotational and irrota-
tional flows.

In a flow field streamlines intersect equipotential lines 
at right angles or orthogonally at all points of intersection 
except at stagnation points where the components vanish 
simultaneously.

Example 16: The velocity potential function of a two 
dimensional incompressible and irrotational flow is ϕ = ax3y 
– y3x. The value of a is: 
(A) 0 (B) 1 (C) 1/6 (D) 6

Solution:
For an incompressible and irrotational flow, we have ∇2 ϕ = 0

or
∂
∂

+
∂
∂

=
2

2

2

2
0

ϕ ϕ
x y

ϕ = ax3y – y3x (1)

∂
∂

= −
ϕ
x

ax y y3 2 3

∂
∂

=
2

2
6

ϕ
x

axy  (2)

∂
∂

= −
ϕ
y

ax y x3 23

∂
∂

= −
2

2
6

ϕ
y

yx  (3)

Substituting equations (2) and (3) in equation (1) we get:
6axy – 6yx = 0
or a = 1.

Example 17: A steady threedimensional velocity field is 

given by: V axy i b cy j x y k
��

= + − +3 4 2 210 3ˆ ( ) ˆ ˆ.  The condi-
tion under which the flow field will be incompressible is: 
(A) a = 4 c (B) a = 0
(C) a = 12 c (D) b = c

Solution:
If the field is incompressible, then from the continuity 
equation we have:

∂
∂

+
∂
∂

+
∂
∂

=
u

x

v

y

w

z
0  (1)

From the velocity field description,

u = axy3

v = 10b – 3cy 4

w = x2 y2

Substituting the above three equations in equation (1) we 
have:

ay3 – 12cy3 + 0 = 0
Or                                                   a = 12 c.

Example 18: An incompressible flow is represented by the 
velocity potential function ϕ = 4x2 + 4y2 +17t. For the flow, 
which one of the combinations of the following statement 
holds true?
 (i) Flow is physically possible
 (ii) Flow is physically not possible.
 (iii) Flow satisfies the continuity equation
 (iv) Flow does not satisfy the continuity equation
(A) (i) and (iv) (B) (i) and (iii)
(C) (ii) and (iii) (D) (ii) and (iv)

Solution:
ϕ = 4x2 + 4y2 + 17t

                                
u

x
x=

∂
∂

=
ϕ

8

                               
V

y
y=

∂
∂

=
ϕ

8

The incompressible equation is:

∂
∂

+
∂
∂

=
u

n

v

y
0

Here 
∂
∂

+
∂
∂

= + = ≠
u

x

v

y
8 8 16 0

Hence the continuity equation is not satisfied and this 
implies that the flow is physically not possible.

Example 19: Persons A, B and C claim that the functions  
ϕ = 5x2 – 5y2, ϕ = 10 sin x and ϕ = 27 xy respectively are valid 
potential functions. Which one of the following statements 
is ONLY correct regarding the claims?
(A) The claims of persons A and B are true. 
(B) The claims of persons B and C are true
(C) The claims of persons A and C are true.
(D) The claims of person A are false.
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Solution:
For ϕ to be a valid potential function.

∂
∂

+
∂
∂

2

2

2

2

ϕ ϕ
x y

 should be equal to zero.

For ϕ = 5x2 - 5y2

∂
∂

+
∂
∂

= − =
2

2

2

2
10 10 0

ϕ ϕ
x y

Person A’s claim is true.
For ϕ = 10 sin x

∂
∂

+
∂
∂

= − +
2

2

2

2
10 0

ϕ ϕ
x y

xsin

                    = -10sin x ≠ 0
Person B’s claim is not true.
For ϕ = 27 xy

∂
∂

+
∂
∂

= + =
2

2

2

2
0 0 0

ϕ ϕ
x y

Person C’s claim is true.

Example 20: The stream function representing a two 

dimensional flow is given by: ψ = − − −
ax y

xy
ax y2 2 4 4

2
2

12 6

If the flow is irrotational then the value of a is 
(A) 0 (B) 2 (C) 0.5 (D) 12

Solution:
If the flow is irrotational,

Then ∂
+

∂
∂

=
2

2

2

2
0

ψ ψ
ax y

 (1)

∂
∂

= − −
ψ
x

axy
y

x a2

2
2

4

12

2 3

    
∂
∂

= −
2

2
2 2ψ

x
ay x a  (2)

∂
∂

= − −
ψ
y

ax y
x

y2

2
2

4

6

2 3

    
∂
∂

= −
2

2
2 22

ψ
y

ax y  (3)

Substituting equations (2) and (3) in equation (1) we get

ay2 – ax2 + ax2 – 2y2 = 0

Or a = 2.

Flow Nets
A flow net is a grid obtained by drawing a set of streamlines 
and equipotential lines.

Y1

f1 f3f2

Y2

Y3

Flow nets are used to study 2-dimensional irrotational 
flow especially in cases where the stream and velocity func-
tions are unavailable or difficult to solve.

Flow Through Orifices
A small opening of any cross-section, made on the bottom 
or sidewall of a tank through which a fluid can flow, is called 
an orifice.

Classification of orifices The various bases for classifica-
tion of orifices are

 1. Based on size of orifice as
  (i)  Small orifice, if the head of liquid from the 

centre of orifice is more than five times the depth 
of orifice.

 (ii)  Large orifice, if the head of liquid from the 
centre of orifice is less than five times the depth 
of orifice.

 2. Based on shape of cross-sectional area as
  (i) Circular orifice
 (ii) Triangle orifice
(iii) Square orifice
(iv) Rectangular orifice

 3. Based on shape of upstream edge of orifice as
  (i) Sharp edged orifice
(ii) Bell-mouthed orifice

 4. Based on nature of discharge as
 (i) Free discharging orifices
(ii)  Drowned or submerged orifices, which are 

further classified as fully submerged orifices and 
partially submerged orifices.

When a jet of fluid flows out of a circular orifice, the area 
of cross-section of the jet keeps on decreasing and becomes 
a minimum at the vena contracta and beyond that the jet 
diverges. The location of minimum cross-sectional area (i.e. 
Vena-contracta) is approximately at a distance of half the 
diameter of the orifice from the tank. If the flow through 
the orifice is steady at a constant head H and the cross- 
sectional area of the tank is very large when compared to 
the cross-sectional area of the jet, it can be shown using 
Bernoulli’s theorem that the theortical velocity of flow at 
the vena contracta 
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V gHT = 2 ,  where g = acceleration due to gravity. The 

actual velocity of flow (V) at the vena contracta is less than 
this theoretical value, i.e., V < VT

The ratio V

V
C

T
V= = coefficient of velocity  

Hence coefficient of velocity (CV) is defined as the ratio of 
the actual velocity of flow at the vena contracta to the theo-
retical velocity of flow at the same location.

∴ = =C
V

V

V

gH
V

T 2

The value of CV varies from 0.95 to 0.99 for various ori-
fices ad this value depends on:

 (i) Shape of orifice 
 (ii) Size of orifice and
 (iii) On the head under which the flow takes place.

\ CV < 1

Coefficient of contraction (CC) is defined as the ratio of 
area of cross-section of the jet at the vena contracta (ac) to 
the cross-sectional area of orifice (a)

∴ = <C
a

a
C

C 1

The value of CC varies from 0.61 to 0.69 for various 
orifices and depends upon the same factors on which CV 
depends.

Coefficient of discharges (Cd) is defined as the ratio of 
actual discharge from an orifice to the theoretically possible 
discharge through the orifice.

∴ =C
Q

Q
d

actual

theoretical

=
×Actual cross-sectional area actual velocity

Theoretical crooss-sectional area theoretical velocity×

   
=

×
×

= ×
a V

a V
C CC

T
C V

∴ = ×C C Cd C V

The value of Cd varies from 0.61 to 0.65 for different ori-
fices and depends on shape and size of orifice and the head 
under which the flow occurs.

Tank of cross-
sectional area A

Orifice of area 

H

Figure 3 Time for emptying a tank of uniform cross-sectional area 
through an orifice at its bottom

At time t = 0, the height of liquid above orifice is H.
Using Bernoulli’s equations, it can be shown that the 

theoretical time required for completely emptying the tank 

is T
A

a

H

g
= ⎛

⎝⎜
⎞
⎠⎟

2
. It may be noted that 

2H

g
is the time 

needed for free fall from rest from a height of H.
If Cd is the coefficient of discharge through the nozzle, 

T
A

a C

H

gd
ACTUAL = ⎛

⎝⎜
⎞
⎠⎟

⋅
1 2

is the actual time taken for 

emptying the tank.
Also, the time needed for emptying the same tank from 

an initial height of liquid H1 above orifice to a final height 
of liquid H2 above orifice is given by:

T
A

a C g
H H

d

= ⎛
⎝⎜

⎞
⎠⎟

⋅ −
1 2

1 2( )

Hemispherical tank of radius R

H = initial height of 
liquid above orifice 

Orifice if cross -
sectional area a 

R

Figure 4 Time for emptying a hemispherical tank through an 
orifice at the bottom

If Cd is the coefficient of discharge through the orifice, it 
can be shown that the actual time needed for emptying the 
hemispherical tank is:

T
C a g

RH H
d

actual = −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

π
2

4

3

2

5

3

2

5

2

Where R = radius of hemispherical tank and
   H = initial height of liquid above orifice
    a = cross-sectional area of orifice and
    g = acceleration due to gravity 
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If initial height of liquid above orifice is H1 and final 
height of liquid above orifice is H2, then time needed for 
emptying the hemispherical tank is:

T
C a g

R H H H H
d

actual = −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

− −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

π
2

4

3

2

51

3

2
2

3

2
1

5

2
2

5

2
⎤⎤

⎦
⎥
⎥

H

Orifice of cross-
sectional area a

R

R

L
Cylindrical tank of
radius R and length L

H = initial length
of liquid above
orifice

Figure 5 Time for emptying a circular horizontal tank through an 
orifice at its bottom

A horizontal cylindrical tank of radius R and length L is 
fitted with an orifice of cross-sectional area an at its bottom. 
The height of liquid above the nozzle is H. The coefficient 
of discharge through the nozzle is Cd.

Time for emptying the horizontal cylindrical tank is:

T
L

C a g
R R H

d

= − −
4

3 2
2 2

3

2

3

2[( ) ( ) ]

If initial height of liquid above orifice is H1 and final 
height of liquid above orifice is H2, time required for 
decreasing the liquid level from H1 to H2 (ie emptying 
through orifice) is:

T
L

C a g
R H R H

d

= − − −
4

3 2
2 22

3

2
1

3

2[( ) ( ) ]

Discharge through large rectangular orifice In a large rec-
tangular orifice, there is a considerable variation of effective 
pressure head over the height of the orifice. Hence the veloc-
ity of liquid particles through the orifice is not constant.

h

d

b

dh

H1H H2

Consider a large rectangular orifice of with b and height 
d, fitted to one vertical side of a large tank, discharging freely 
into atmosphere, under a constant H as shown in figure.

We have H1 = height of liquid above top edge of orifice
H2 = height of liquid above bottom edge of orifice
\ Height of orifice, d = H2 - H1

b = width of orifice
Cd = coefficient of discharge of orifice
Area of a strip of orifice of height dh at a depth h below 

the free surface of liquid in the tank is
dA = bdh

V = Theoretical velocity of flow through this strip = 2gh
\ Discharge through the strip, dQ
= Cd × area of strip × velocity

= C bdh ghd ( ) 2 = C b ghdhd 2

\ Total discharge through orifice,

Q dQ C b gh dhd

H

H

= = ∫∫ 2
1

2

⇒ = −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Q C b g H Hd
2

3
2 2

3

2
1

3

2 is the actual discharg-

ing through the large orifice 

Velocity of approach is the velocity with which the 
 liquid approaches the orifice. In the above expression 
for discharge Q over the rectangular orifice, veloc-
ity of approach Va is taken as zero. If Va ≠ 0, then 

H H
V

g
H H

V

g
a a

1 1

2

2 2

2

2 2
eff effand= +

⎛
⎝⎜

⎞
⎠⎟

= +
⎛
⎝⎜

⎞
⎠⎟

.  In the 

expression for Q, H1 and H2 will get replaced to H1 eff 
and H2 eff.

NOTE

Practical Applications of Bernoulli’s Equation
Venturimeter It consists of two conical parts, the conver-
gent part and the divergent part, with a small portion of 
uniform cross-section (with the minimum area), called the 
throat, in between the parts. The venturimeter is always used 
so that the upstream part of the flow takes place through the 
convergent part while the downstream part of the flow takes 
place through the divergent part.

In the convergent part, the velocity increases in the flow 
direction while the pressure decreases, with the velocity being 
maximum and pressure being is minimum at the throat. In the 
divergent part, velocity decreases while pressure increases.

∆h Z2

Z1

1

2T
hr

oa
t D
iv

er
ge

nt
pa

rt

C
on

ve
rg

en
t

pa
rt

•

•
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From the Bernoulli equation and the continuity equation, 
the velocity at the throat is obtained as follows.

V
A

A A
g h h2

1

1
2

2
2

1 22=
−

−( * *

Where h h1 2
* * and  are the piezometric heads at section 1 

and 2 respectively and are given by:

h
p

g
z h

p

g
z1

1
1 2

2
2

* *= + = +
ρ ρ

The theoretical discharge or flow rate is given by:

Q A V
A A

A A
g h h= =

−
−2 2

1 2

1
2

2
2

1 22 ( )* *

Here, h h h m
1 2 1* *− = −

⎛
⎝⎜

⎞
⎠⎟

Δ
ρ
ρ

where rm is the density of the 

manometric fluid. The actual discharge or flow rate is given 
by:

Q actual = CD × Q

              

= ×
−

−
⎛
⎝⎜

⎞
⎠⎟

C
A A

A A
g hD

m1 2

1
2

2
2

2 1Δ
ρ
ρ

Where CD is the coefficient of discharge or coefficient of 
venturimeter. CD is always less than unity and lies between 
0.95 to 0.98. The coefficient of discharge is introduced to 
account for the fact that the measured values of Dh for a real 
fluid will always be greater than that assumed for an ideal 
fluid due to frictional losses.

Example 21: A venturimeter with a throat diameter of 50 
mm is used to measure the velocity of water in a horizontal 
pipe of 200 mm diameter. The pressure at the inlet of the 
venturimeter is 20 kPa and the vacuum pressure at the throat 
is 10 kPa. If frictional losses are neglected, then the flow 
velocity is:
(A) 28 cm/s (B) 24.2 cm/s
(C) 14 cm/s (D) 48.5 cm/s

Solution:
Given p1 = 20 × 103 Pa

p2 = – 10 × 103 Pa

Since the venturimeter would be horizontal, z1 = z2

Now h h
p

g
z

p

g
Z1 2 1

2
2

* *− = + − −
ρ ρ

=
× + ×

×
20 10 10 10

1000

3 3

g

                              
=

30

g

The flow velocity, V
A V

A
1

2 2

1

=

                     

=
−

× −
A

A A
g h h2

1
2

2
2

1 22 ( )* *

Here, A1

2

4

200

1000
= ⎛

⎝⎜
⎞
⎠⎟

π

A2

2

4

50

1000
= ⎛

⎝⎜
⎞
⎠⎟

π

                            
∴ =

−
×V1

2

4 4

50

200 50
60

     = 48.5 cm/s.

Orificemeter An orifice meter is a thin circular plate with a 
sharp edged concentric circular hole in it.

1 2• •

Vena contracta

∆h

The flow through the orificemeter from an upstream sec-
tion contracts until a section downstream, where the vena 
contracta is formed, and then expands to fill the whole 
pipe. One of the pressure tapings is usually provided at the 
upstream of the orifice plate where the flow is uniform and 
the other is provided at the vena contracta. At the vena con-
tracta, streamlines converge to a minimum cross section.

The velocity of flow at the vena contracta,

V Cv

g h

A

A

m

2
2
2

1
2

2 1

1

=
−

⎛
⎝⎜

⎞
⎠⎟

−

ρ ρ
ρ

Δ

Where rm is the density of the manometric liquid and CV 
is the coefficient of velocity.

CV is always less than unity. The coefficient of velocity is 
introduced to account for the fact that the pressure drop for 
a real fluid is always more due to friction that assumed for 
an inviscid flow.
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The volumetric flow rate is given by Q = A2 V2
If the coefficient of contraction, Cc, is defined as 

C
A

A
c = 2

0
where A0 is the area of the orifice, 

Then Q C A

g h

C
A

A

d

m

c

=
−

⎛
⎝⎜

⎞
⎠⎟

−
0

2 0
2

1
2

2 1

1

ρ
ρ

Δ

Where the coefficient of discharge, Cd = Cc
The coefficient of discharge of an orificemeter lies 

between 0.6 to 0.65

Pitot tube It works on the principle that if the velocity of 
flow at a point becomes zero, the increase in the pressure at 
the point is due to conversion of kinetic energy into pres-
sure energy. A pilot tube provides one of the most accurate 
methods for measuring the fluid velocity.

2g
V2

Liquid flow

Pipe

Pitot tubePiezometer

SP

hs

h0

••

Point S is a stagnation point while point P is a point in the 
undisturbed flow both being at the same horizontal plane.

h
p

g
0

0=
ρ

h
p

g
s

s=
ρ

Where p0 is the pressure at point P, i.e., static pressure 
and ps is the stagnation pressure at point S.

p

g

V

g

p

g
s0

2

2ρ ρ
+ =

h
V

g
hs0

2

2
+ =

V g h h g hs= − =2 20( ) Δ

Where Dh is the dynamic pressure head which is equal to 
the velocity head. It is to be noted that the pitot tube measures 
only the stagnation pressure and so the static pressure must 
be measured separately by using a piezometer. A pitot static 
tube however measures both static and stagnation pressures.

Example 22: Water is flowing through a pipe a pipe that 
contracts from a diameter of 0.15 m to d meters as shown in 
the following figure. The difference in manometer levels is 
0.4 m. If the flow rate Q in the pipe is expressed in terms of 
the variable d as Q = kdn, then 
(A) k = 0.0495 and n = 0
(B) k = 0.0495 and n = 2
(C) k = 7.848 and n = 0
(D) k = 6.164 and n = 2

0.4 m

d m••
1

2
h

Solution:
From Bernoulli’s equation we have

p

g

V

g
z

p

g

V

g
Z1 1

2

1
2 2

2

2
2 2ρ ρ

+ + = + +

Here Z1 = Z2
V2 = 0 (stagnation point)

∴ + =
p

g

V

g

p

g
1 1

2
2

2ρ ρ
 (1)

But p

g
h1

ρ
=

p

g
h2 0 4

ρ
= + .

∴ − =
p

g

p

g
2 1 0 4

ρ ρ
.  (2)

Substituting equation (2) in (1),
We have:

V

g
1
2

2
0 4= .

                                         V1 0 4 2 9 81= × ×. .

                                               = 2.801 m/s

                                           Q = A1 × V1

                                              
= × ×

π
4

0 15 2 8012( . ) .

                                               = 0.0495 m3 /s

\ In the relationship

Q = kdn

k = 0.0495 and n = 0.
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Free Liquid Jet
A jet of liquid issuing from a nozzle in to the atmosphere is 
termed as a free liquid jet. The path traversed by a liquid jet 
under the action of gravity is called as its trajectory which 
would be a parabolic path.

•

R

x

y

u

H
q

Here u is the velocity of the liquid jet and q is the angle 
made by the jet with the horizontal. The equation of the jet 
is:

y = x tan q – gx2 sec2 q/2u2

 1. Maximum height attained by the jet (H)

H
u

g
=

2 2

2

sin θ

 2. Time of flight (T)

T
u

g
=

2 sinθ

  Time taken to reach the highest point is: 

=
u

g

sinθ

 3. Horizontal range of the jet (R)

R
u

g
=

2 2sin θ

Range is maximum when q = 45° and its value is u

g

2

.
Example 23: The flow rate of a liquid through a nozzle 
of diameter 50 mm is 18.62 L/s. The nozzle is situated at 
a distance of 1.5 m from the ground and is inclined at an 
angle of 30° to the horizontal. The jet of liquid from the 
nozzle strikes the ground at a horizontal distance of
(A) 1.04 m (B) 1.5 m
(C) 10 m (D) 5 m

A

B

Nozzle

x m

1.5 m

Liquid jet

30°

Solution:

Area of the nozzle, A m= × ⎛
⎝⎜

⎞
⎠⎟

π
4

50

1000

2
2

Flow rate Q = 0.01862 m3/s

∴ = =u
Q

A

m

s
9 483.

Let the horizontal distance at which the jet strikes the 
ground be x.

If the co-ordinates of point A is set to (0, 0). Then the 
co-ordinates of point B will be (x, -1.5)

The equation of the jet is 

y x
gx

u
= −tan

secθ θ2 2

22

i.e., –1.5 = x × tan 30° – 
9 81 30

2 9 483

2 2

2

. sec

.

× × °
×
x

= 0.07273 x2 – 0.5774x – 1.5 = 0

\ x = 10 m.

Vortex Flow
It is defined as the fluid flow along a curved path or the flow 
of a mass of fluid rotating about an axis

Plane Circular Vortex Flows
These are flows with streamlines that are concentric circles. 
Considering a polar coordinate system, the velocity field of 
such a flow is defined as

Vq ≠ 0 and Vr = 0

Where Vq and Vr are the tangential and radial compo-
nents of the velocity respectively. For such flows Vq is a 
function of r only and not q

Vortex flows can be mainly classified into two types:

 1. Forced vortex flow
 2. Free vortex flow

It is to be noted that a plane circular free vortex flow or a 
plane circular forced vortex flow will be simply referred 
to as respectively a free vertex flow or a forced vertex 
flow. Hence all the characteristics of a plane circular vor-
tex flow will be attributed sometimes to a free or forced 
vortex flow.

Forced Vortex Flow
It is defined as the vortex flow in which some external 
torque is employed to rotate the fluid mass. The tangential 
velocity of a fluid particle is given by

Vq = r w
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Where r is the distance of the fluid particle from the axis 
of rotation and w is the angular velocity of the fluid parti-
cle. In a forced vortex flow all fluid particles rotate with the 
same angular velocity like a solid body and hence this flow 
is termed as a solid body rotation. A forced vortex is also 
called as a flywheel vortex or rotational vortex.

A forced vortex flow is a rotational flow (vorticity = 2w). 
To maintain a forced vortex flow, mechanical energy has 
to be spent from outside and the total mechanical energy 
per unit mass is not constant. In such a flow, shear stress is 
zero at all points in the flow field since there is no relative 
motion. A forced vortex flow can be generated by rotating 
a vessel containing a fluid so that the angular velocity is the 
same at all points. That is,

     1. Rotation of a liquid in a centrifugal pump.
  2. Rotation of a gas in a centrifugal compressor
  3. Rotation of water through the turbines runner

Consider two points 1 and 2 in a fluid having a forced vortex 
flow as shown in the following figure.

2

Free surface

Z2

Z1

r1

r2

1
•

•

For the two points, the following equation is applicable.

 p p V V g Z Z2 1 2
2

1
2

2 1
2

− = − − −
ρ ρ( ) ( )  (1)

Where V r V r1 1 2 2= =ω ω and 

If the two points lie on the free surface of the liquid then 
p1 = p2 and equation (1) becomes

Z Z
g

V V2 1 2
2

1
21

2
– (= −

If additionally to the above case, point 1 lies on the axis 
of rotation.

(i.e., v1 = r1 × w = 0 × w = 0), then 

Z Z
V

g
2 1

2
2

2
− =

or                 Z
r

g
=

ω2
2
2

2
 (2)

Where Z = Z2 – Z1

Since Z varies with the square of r, equation (1) is an equa-
tion of a parabola consequently the free surface of the liquid 
is a paraboloid.

Cylindrical Forced Vortex
It can be generated by rotating a cylindrical vessel contain-
ing a fluid. At any horizontal plane, the tangential velocity, 
Vq = r w

Spiral Forced Vortex
The superimposition of a purely radial flow with a plane 
circular forced vortex results in a spiral forced vertex flow.

Example 24: A cylindrical tank of diameter 1 m and height 
3 m, which is open at the top, is filled with a liquid up to a 
certain depth. When the cylinder is rotated at 100 rpm. The 
liquid level is raised to be even with the brim. The depth of 
the liquid in the tank is:
(A) 1.39 m (B) 2.3 m
(C) 3 m (D) 0.5 m

Solution:

w

h

Z = Z2 − Z1

1

2

3 m

r2

Let h be the depth of the liquid in the tank.
The points 1 and 2 are chosen as shown in the above 

figure.

Hence, Z Z
w r

g
2 1

2
2
2

2
− =

                         
ω π π

= =
×2

60

2 100

60

N

                                       r2 = 0.5 m

∴ = − =

×⎛
⎝⎜

⎞
⎠⎟

×

×
Z Z Z2 1

2
22 100

60
0 5

2 9 81

π
( . )

.

        = 1.3973 m

When the vessel is rotated a paraboloid is formed.Volume 
of air before rotation = volume of air after rotation

⇒ × − ×π πr r h2
2

2
23
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= × × ×
1

2 2
2π r Z

Or h
Z

= − = −3
2

3
1 3973

2

.

                     = 2.3 m.

Pressure Forces on the Top and Bottom 
of a Cylinder
Consider a cylinder of radius R and height H which is com-
pletely filled with a liquid. The cylinder is rotated about its 
vertical axis at a speed of w radians/sec.

Total pressure on the top of the cylinder,

F RT = ×
ρω π

2
4

4

Total pressure force on the bottom of the cylinder (FB) = 
weight of the liquid in the cylinder + total pressure force on 
the top of the cylinder : (FT)

That is, F g R H FB T= +ρ π 2

Free Vortex Flow
A vortex flow in which no external torque is required to 
rotate the fluid mass is called a free vortex flow. The veloc-
ity field in a free vortex flow is described by

V
c

r
θ =

Where c (called as the strength of the vortex) is a con-
stant in the entire flow field. The above equation is derived 
from the fact that in a free vortex flow, as the external torque 
is zero, the time rate of change of angular momentum, i.e., 
the moment of momentum is zero.

A free vortex is also called as a potential vortex or irro-
tational vortex.

A free vortex flow is irrotational (zero vorticity). In this 
type of flow, the total mechanical energy per unit mass is 
constant in the entire flow field with no addition or destruc-
tion of mechanical energy in the flow field. In a free vortex 
flow, the fluid rotates due to either some previously imparted 
rotation or some internal action. That is,

     1. Whirlpool in a river
  2. Flow around a circular bend
  3.  Flow of liquid through an outlet provided At the 

bottom of a shallow vessel. (e.g. wash tub etc.)

It is to be noted that Bernoulli’s equation is applicable in 
the case of a free vortex flow.

Consider two points 1 and 2 in the fluid having radii 
r1 and r2 respectively from the axis of rotation and with 

heights Z1 and Z2 respectively from the bottom of the vessel 
as shown in the figure.

Axis of
rotation

Vessel

Fluid

r2

r1

Z2

2

1

Z1

Since Bernoulli’s equation is applicable for free vortex 
flow, we can write:

p

g

V

g
Z

P

g

V

g
Z1 1

2

1
2 2

2

2
2 2ρ ρ

+ + = + +

Example 25: In  a free cylindrical vortex flow of air (density 
= 1.2 kg/m3), point A is located at a radius of 350 mm from 
the axis of rotation and at a height of 200 mm from the 
vessel bottom. Point B is however located at a radius of 500 
mm and height 300 mm. If the velocity at point A is 20 m/s 
then the pressure difference between the points A and B is:
(A) 121.22 Pa (B) 10.29 Pa
(C) 12.35 Pa (D) 25.62 Pa

Solution:
Given          rA = 0.35 m
       ZA = 0.2 m
        VA = 20 m/s
       VB = 0.5 m
       ZB = 0.3 m
For a free vortex flow
Vr = constant
\ VA rA = VBrB.

Or V
m

s
B =

×
=

20 0 35

0 5
14

.

.
From Bernoulli’s equation we have:

p

g

V

g
Z

p

g

V

g
ZA A

A
B B

Bρ ρ
+ + = + +

2 2

2 2

p

g

p

g
A B

ρ ρ
+

×
+ = +

×
+

20

2 9 61
0 2

14

2 9 81
0 3

2 2

.
.

.
.

p

g

p

g
B A

ρ ρ
− = 10 2975.

Or pB – pA = 10.2976 × 9.81 × 1.2

= 121.22 Pa.
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Cylindrical Free Vortex
A cylindrical free vortex in a cylindrical coordinate system 
has the Z axis directly vertically upwards where at each hor-
izontal plane, there exists a planar free vortex motion with 
tangential velocity given by

V
C

r
θ =

Spiral Free Vortex
For a plane spiral free vortex two dimensional flow, the tan-
gential and radial velocity components at any point with 
respect to a polar coordinate system is inversely propor-
tional to the radial coordinate at that point.

\ In the flow field,

V
C

r

V
C

r
r

θ =

=

1

2

Such a flow can be said to be the superimposition of a 

radial flow described by equation Vr
C

r
= 2 with a free vor-

tex flow.
If a is the angle between the velocity vector V and the 

tangential component of the velocity vector Vq at any point 
then:

tan α
θ

= =
V

V

C

C
r 2

1

Now, V

V

dr

dt
rw

dr

dt

r
d

dt

dr

rd
r

θ θ θ
= = =

∴ =
dr

rdθ
αtan

This is the equation of the streamline in this flow. 
Integrating the above equation, it can be shown that:

r r e r ex

c

c= =0 0

2

1θ α
θ

tan

Where r0 is the radius at q = 0. The above equation shows 
that the patterns of streamlines are logarithmic – spiral.

Example 26: An object, caught in a whirlpool, at a given 
instant is at a distance of 100 cm from the centre of the 
whirlpool.
 The two dimensional velocity field of the whirlpool can 
be described by the tangential and radial components of the 
velocity such as Vq  and Vr respectively, where Vq = –3Vr. 
If after a certain period of time, the object is found to be at 
a distance of 4.32 m from the centre of the whirlpool, then 
the number of revolutions completed by the object from its 
original position is:
(A) 3 (B) 1.5 (C) 4.5 (D) 1

Solution:
The motion in a whirlpool can be simulated as a free vortex 
flow. Since Vq ≠ 0 and Vr ≠ 0 (for some finite radial location) 
the flow can be considered to a spiral free vortex flow.
Given r0 = 100 m

r = 4.32 m

Now for a spiral free vortex flow,

r r e c c= 0
2 1θ /

= r e Vr V
0

θ θ/

i.e., 4 32 100
1

3. = ×
×

−
⎛
⎝⎜

⎞
⎠⎟e

θ

Or q = 9.425744 radians
Now, 1 revolution = 2p radians
\ No. of revolution completed by the object 

=
9 425744

2

.

π
= 1.5.

Exercises

 (A) -9 m/s2 (B) 9 m/s2

 (C) 8 m/s2 (D) 0 m/s2

 2. A flow field is represented by the velocity field�
V xti y tj= − + −ˆ ( ) ˆ,6  where t is time. The equation of 
a streamline passing through (1, 3) is:

 (A) y + 3 x = 6
 (B) y = 3 x
 (C) 6 x - x y = 3
 (D) Not possible to determine

Practice Problems 1
Direction for questions 1 to 20: Select the correct alterna-
tive from the given choices.

 1. A two-dimensional velocity field is given by�
V xti myj= −ˆ ˆ,  where x and y are in meters, t is in sec-

onds, 
�
v is in m/s and m is a constant. If at t = 2 secs, x = 

2 m and y = 1 m, the fluid speed is 5 m/s, then the con-
vective acceleration along the y-direction at the same 
values of t, x and y is:
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 3. For a three-dimensional flow, the velocity components 
are given as:

  u = ax + dy + cz, v = dx + ey + hz and w = - cx + hy + l 
z. If for this flow, the vorticity vector is (c + 4x + 6y) î , 
then the value of c at the point (1, 1, 1) in the flow field 
is:

 (A) -10 (B) zero
 (C) 5 (D) 10

 4. A horizontal jet of liquid (density = 800 kg/m3) strikes 
a flat plate kept in the vertical position, with a velocity 
of 10m/s. The liquid then splashes off the sides in the 
vertical plane. A horizontal force F is applied to hold the 
plate stationary. If the volumetric flow rate of the liquid 
jet is 100 litre/sec, then the valve of F (in Newtons) is: 

 (A) 800 (B) 8000
 (C) -8000 (D) -800

 5. A 0.1 m diameter jet of concrete flows steadily at a 
velocity of 2 m/s into a cart which is attached to a wall 
by a cable as shown in the figure below.

  The density of the concrete is 2200 kg/m3. If at instant 
shown in the figure, the cart and the concrete in it 
together weighs 3560 Newtons and the reaction force 
exerted by the ground on the cart is 3620 Newtons, then 
the tension in the cable is:

 (A) 48.92 N (B) 34.31 N
 (C) 11.65 N (D) 20.53 N

Cart

Jet of concrete

Cable

q

 6. An incompressible fluid flows steadily through a con-
vergent horizontal nozzle of length 100 m. where the 
velocities of the inlet and outlet are 10 m/s and 20 m/s 
respectively. If along the length of the nozzle, a one 
dimensional flow and a linear velocity distribution are 
assumed, then the fluid acceleration at a distance of 
25 m from the inlet is:

 (A) 0.1 m/s2 (B) 25 m/s2

 (C) 1.25 m/s2 (D) 12.5 m/s2

 7. The nozzles of the sprinkler shown in the following fig-
ure have diameter of 7 mm. The total discharge of water 
from the nozzle is 4 × 10-4 m3/s. If the friction in the 
sprinkler is neglected, then the torque (in Nm) required 
to hold the sprinkler stationary is:

 (A) 1.663 (B) 4.157
 (C) 1.039 (D) 0.416

0.7 m0.3 m

O

 8. A large tank with nozzle attached contains three immis-
cible, inviscid  liquids as shown in the following figure. 
If the changes in the heights of the liquids in the tank 
can be assumed to be negligible and that the instanta-
neous discharge velocity is 12.95 m/s, then the height h 
in meters is equal to:

 (A) 5 (B) 1
 (C) 4 (D) 9

h

r = 900 kg/m3

r = 1000 kg/m3

r = 1100 kg/m3

3 m

1 m

 9. A duct in a horizontal plane, with a 450 bend as shown 
in the figure below, has a cross-sectional area of 2 
m2 at section 1 gradually reduced to 1.5 m2 at sec-
tion 2. The velocity of flow of the liquid (density 
 = 950 kg/m3) of section 1 is 15 m/s whereas the pres-
sure at the section 1 is 90 kN/m2. The horizontal compo-
nent of the force required to hold the duct in position is:

 (A) 258642.9 N (B) 459827.4 N
 (C) 117158.1 N (D) 197157.1 N

Section 2

Section 1

45°

 10. A 7 m long pipe is inclined at an angle 30° with the 
horizontal as shown in the following figure. The diame-
ters of the inlet and outlet sections are 150 mm and 300 
mm respectively. The pipe is uniformly tapering. If the 
velocity of the liquid flowing in the pipe 0.5 m/s at the 
outlet section and if the differences in pressure between 
the inlet and outlet is 30837 N/m2, then the density of 
the liquid is:
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 (A) 462 kg/m3 (B) 950 kg/m3

 (C) 535 kg/m3 (D) 602 kg/m3

30°

outlet

inlet
7 m

 11. A closed tank is partly filled with water where air is 
present above the water surface. A 5 cm diameter pipe 
connected to the bottom of the tank discharges to an 
elevation of 3 m above the present level of water in the 
tank. If frictional losses are assumed to be absent and a 
discharge of 30 litre/s to be achieved, then the air in the 
tank is to be pressurized to a gauge pressure of:

 (A) 146.2 kN/m2 (B) 87.34 kN/m2

 (C) 116.77 kN/m2 (D) 119.77 kN/m2

 12. A circular pipe carrying oil with specific gravity of 0.8 
increases in diameter from 150 mm at section A to 450 mm 
at section B. The section A is 3 meters lower than section 
B, and the pressures at sections A and B are 50 kPa and 20 
kPa respectively. If the discharge is 100 litre /sec, then:

 (A) Flow is from A to B and head loss is 5.435 m
 (B) Flow is from B to A and head loss is 5.435 m
 (C) Flow is from B to A one head loss is 2.435 m
 (D) Flow is from A to B and head loss is 2.435 m

 13. If the velocity potential function for a two-dimensional 
flow field is given by ϕ = 10 xy, then the discharge 
between the streamlines passing through the points 
(2, 3) and (1, 2) is: 

 (A) 10 (B) 80 (C) -40 (D) 40

 14. A two - dimensional flow is described by the stream 
function ψ = xy. The point in the flow field at which the 
velocity vector will have a magnitude of 10 units and 
will make an angle of 120° with the x-axis is:

 (A) ( , )5 3 5  (B) (0, 0)

 (C) ( , )5 3 5 3  (D) ( , )5 5 3

 15. A venturimeter of throat diameter 150 mm is used to 
measure the velocity of water flowing in a horizontal 
pipe of diameter 350 mm. The difference of pressures 
at the inlet and the throat of the venturimeter is 177 
kPa. If 4% of the head is lost between the inlet and the 
throat, then the flow rate of water through the pipe is:

 (A) 0.3382 m3/s (B) 0.0012 m3/s
 (C) 0.3247 m3/s (D) 0.2198 m3/s

 16. In a horizontal pipe of diameter 250 mm, water is flow-
ing at a rate of 0.02 m3/s through a 150 mm diameter 
orifice. If the coefficients Cc and Cv are 0.62 and 1.0 

respectively, then the difference in pressures at the 
upstream section and the vena contracta section is:

 (A) 1583.38 Pa (B) 1642.93 Pa
 (C) 3412.84 Pa (D) 2242.36 Pa

 17. A liquid of density r is slowing in a horizontal pipe 
of constant diameter D as shown in the following fig-
ure. The manometer liquid has a density of rm and the 
manometer reading is h. The volumetric flow rate of the 
liquid in the pipe is:

 (A) 
π ρ
4

22D hg m

s

×

 (B) 
π ρ ρ

ρ4
22D hg m×

−( )

 (C) 
π ρ

ρ4
22D hg

m

×

 (D) 
π ρ ρ

ρ4
22D hg

m

m

×
+( )

1
2

h1

h

D

 18. A nozzle of diameter 50 mm is inclined at an angle of 
450 with the horizontal. The jet issuing from the noz-
zle strikes a point, on the ground, that is 2 m vertically 
beneath the nozzle and 5 m horizontally from it. If the 
velocity coefficient of the nozzle is 0.96, then the pres-
sure head at the nozzle is:

 (A) 1.936 m (B) 1.834 m
 (C) 1.629 m (D) 2.104 m

 19. A cylinder has a height 2 m and contains water upto 
a height of 1.5 m. When the cylinder is rotated about 
its vertical axis at 100 r.p.m, the actual depth becomes 
zero. The diameter of the cylinder is:

 (A) 1.94 m (B) 1.2 m (C) 3.88 m (D) 0.6 m

 20. In a tornado, the velocity and pressure of air (density 
= 1.2 kg/m3) at a radius of 3 m from its axis are 100 m/s 
and 94.66 kPa. If the outer edge of the tornado is at a 
radius of 20 meters from its axis, then the pressure at 
the outer edge is:

 (A) 88.795 kPa (B) 94.66 kPa
 (C) 100.525 kPa (D) 101.325 kPa
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Practice Problems 2
Direction for questions 1 to 30: Select the correct alterna-
tive from the given choices.
 1. A two-dimensional velocity field is given by 

ˆ ( )ˆ ( ) ˆ,a v x y m i x y j
� = + − + + −5 2 3 where x and y are 
in metres and m is a constant. If a stagnation point is 
found at x = 2 m, then the convective acceleration in the 
x – direction at x = 2 m and y = 3 m is

 (A) 0 m/s2 (B) 25 m/s2

 (C) 5 m/s2 (D) -5 m/s2

 2. A two-dimensional velocity field is given by 
�
v  = 

t (m - 3) î +2(n – 4y + x) î , where t is in seconds and 

x and y are in meters. If the velocity field corresponds 
to a steady uniform flow, then the values of m and n, at  
t = 1 secs, x = 2 m and y = 3 m, are respectively:

 (A) 3 and –10 (B) 0 and 10
 (C) 3 and 10 (D) 0 and –10

 3. If the velocity field for an irrotational flow is repre-
sented by 

�
v ui vj wk= + +ˆ ˆ ˆ.  Then which one of the fol-

lowing relationships need not necessarily be true?

 (A) ∂
∂

=
∂
∂

u

z

w

x
 (B) ∂

∂
=

∂
∂

w

y

v

z

 (C) ∂
∂

=
∂
∂

v

x

u

y
 (D) ∂

∂
=

∂
∂

w

z

v

y

 4. The equation of streamlines in a two-dimensional field 
is given by yx3 = c, where c is a constant. If the velocity 
of the flow field in the x-direction is given by u = -2x3, 
then the velocity in the y-direction is:

 (A) v = x
 (B) v = 6x2y
 (C) v = -3y
 (D) Not possible to determine

 5. Fluid particle A is present at the point (2, 2) in 
a two-dimensional flow with the velocity field: �
v xy i x yj= +3 3ˆ ˆ, while fluid particle B is present at the 
point (2, 2) in another two-dimensional flow which 
velocity filed: 

�
V y i x j= +4 32 2ˆ ˆ  Which one of the fol-

lowing statements is ONLY correct?
 (A) Fluid particles A and B are rotating.
 (B) Fluid particles A and B are not rotating.
 (C) Fluid particle B is not rotating.
 (D) Fluid particle A is not rotating.

 6. A liquid of density 800 kg/m3 is flowing steadily 
through a 90° reducing elbow as shown in the follow-
ing figure. A pressure:

Outlet

Inlet

  gauge fitted at the inlet reads 200 KN/m2 where the 
cross-sectional area is 0.05 m2. The liquid flows into 
the atmosphere through the outlet, of cross-sectional 
area 0.01 m2, at a velocity of 10 m/s. With respect to 
the horizontal, the force required to hold the elbow in 
place acts at an angle of:

 (A) 4.5° (B) 7.25° 
 (C) 0.34° (D) 10.01°
 7. A 10 cm diameter horizontal jet of water having a 

velocity of 15 m/s impinges on a flat vertical plate and 
splashes at the sides in the vertical plane. If a horizontal 
force F is applied to hold the plate stationary then the 
force required to move the plate at a velocity of 10 m/s 
towards the water jet is:

 (A) F (B) 
3

5

F

 (C) 
5

3

F
 (D) 

F

3
 8. A jet of liquid (density = 900 kg/m3), having a diameter 

of 0.2 m and speed 3 m/s, is steadily filling a tank as 
shown in the figure. The coefficient of friction between 
the tank and the ground is 0.227. If at the instant shown 
in the figure, a horizontal force of 100N is exerted on 
the stop block by the tank, and then the weight of the 
tank and its contents (neglecting the friction between 
the stop block and the ground) is: 

 (A) 780.656 N (B) 1001.033 N
 (C) 340.352 N  (D) 220.376 N

Stop block

Liquid jet

60°

 9. An incompressible fluid flows steadily through a con-
vergent horizontal nozzle with a velocity of 2.5 m/s at 
the inlet. Assume a one-dimensional flow and a linear 
velocity distribution along the length of the nozzle. The 
outlet cross-sectional area is one-tenth the inlet cross-
sectional area. If the difference between the fluid accel-
erations at distances of 30 m and 10 m from the inlet of 
the nozzle is 4.05 m/s2, then the length of the nozzle is: 

 (A) 50 m (B) 70 m
 (C) 11.8 m (D) 100.62 m

 10. A sprinkler with equal arm lengths of 0.5 m, as shown 
in the following figure, discharges water at equal rela-
tive velocities through nozzles of equal diameters of 
5 cm. The sprinkler freely rotates with no friction at a 
speed of 95.493 r.p.m. The torque (in Nm) required to 
hold the sprinkler stationary is:

 (A) 98.175 (B) 49.087
 (C) 61.235 (D) 22.602
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0.5 m 0.5 m
60°

60°

 11. A large closed tank with a nozzle attached contains two 
immiscible inviscid liquids as shown in the following 
figure. The air space in the tank is pressurized to 2 atm. 
If the changes in the heights of the liquids in the tank 
are assumed to be negligible, then the instantaneous 
discharge velocity is: 

 (A) 9.9 m/s (B) 7.1 m/s
 (C) 16.04 m/s (D) 9.63 m/s

3 m

2 m

Air space

r = 900 kg/m3

r = 1200 kg/m3

 12. A duct in a horizontal plane, with a 45° bend as shown 
in the figure below, has a cross-sectional area of 2 m2 
at section 1 gradually reduced to 1.5 m2 at section 2. 
The velocity of flow of the liquid at section 1 is 10 
m/s. The pressures at section 1 and 2 are 95 kN/m2 and 
52271.105 N/m2 respectively. The vertical component 
of the force required to hold the duct in position is:

 (A) 262808 N (B) 312456 N
 (C) 101333 N (D) 200654 N

Section 1

Section 2

45°

 13. A liquid is flowing upwards a vertical pipe which uni-
formly tapers from an inlet section of diameter 600 mm 
to an inlet section of diameter 400 mm. The manometer 
fitted to the pipe, reads the pressure difference between 
the inlet and outlet to be 8 m in terms of the head of 
the liquid flowing in the pipe. If the outlet section lies 
above the inlet section by a height of 2 m, then the volu-
metric rate of flow of the liquid in the pipe is:

 (A) 3.424 m3/s (B) 0.676 m3/s
 (C) 1.522 m3/s (D) 5.383 m3/s

 14. From a large tank of water, water is drawn steadily 
using a siphon as shown in the figure below. If the point 
1 denotes a point at the siphon discharge exit, then the 
lowest pressure occurring in the siphon is given by:

 (A) Patm + rg (L + H)
 (B) Patm - rg (L + H)
 (C) Patm - rg (L - H)
 (D) Patm + rg (L - H)

1

H

L

 15. For a flow to which the Bernoulli’s equation can be 
applied, which one of the following quantities is defi-
nitely constant along a streamline?

 (A) Sum of static and dynamic pressures
 (B) Sum of dynamic and hydrostatic pressures
 (C) Sum of hydrostatic and static pressures
 (D) Sum of stagnation and hydrostatic pressures.

Direction for questions 16 and 17: The velocity profile for 

flow in a circular pipe is given as V V
r

R
= ⎛

⎝⎜
⎞
⎠⎟max

1

7
where V is 

the local velocity of flow at a distance r from the pipe wall, 
Vmax is the maximum velocity at the center line of the pipe 
and R is the pipe radius.

 16. The average velocity of the flow is given by:

 (A) Vmax

 (B) 49

60
Vmax

 (C) 
Vmax

2

 (D) 32

49
Vmax

 17. The value of the momentum flux correction factor is:
 (A) 1.01 (B) 1.02
 (C) 1 (D) 1.04

 18. An incompressible liquid flows steadily along a cir-
cular pipe of constant diameter 600 mm. If the length 
between the sections A and B is 6 m, then between the 
sections, the:

 (A) Flow is from A to B and head loss is 1 m.
 (B) Flow is from B to A and head loss is 2 m.
 (C) Flow is from B to A and head loss is 1 m.
 (D) Flow is from A to B and head loss is 2 m.
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A

B

3 m 3.5 m

2.5 m

 19. Water is pumped from a large tank as shown in the fig-

ure below. The head loss is known to be equal to 
6

2

2V

g
,  

where V is the discharge velocity, and the pump head 
is equal to 20 5 2– ,Q  where Q is the discharge. If the 
discharge pipe has a diameter 100 mm and if only SI 
units are considered, then the discharge Q is equal to:

 (A) 0.0914 m3/s (B) 0.0124 m3/s
 (B) 0.0831 m3/s (D) 0.0064 m3/s

20 m

Pump

 20. A two dimensional flow with the velocity field given 
by: ˆ ( )ˆ ( ) ˆa V x i y jy

�
= + + +6 7  is

 (A) Incompressible and rotational
 (B) Compressible and rotational
 (C) Incompressible and irrotational
 (D) Compressible and irrotational
Direction for questions 21 and 22: In a two dimensional 
flow field, the point (5, 8) has been marked as point P. 
The velocity potential function for this flow is given by 
ϕ = 72 48xy x– .

21. The respective velocity components in the x and y 
diameters are

 (A) 48 - 72y and 72x 
 (B) 48 - 72y and -72x
 (C) 72y - 48 and 72x
 (D) 72y - 48 and -72x

 22. The value in units of the stream function at point P is:
 (A) 2820 (B) 1020
 (C) -1020 (D) -2820

 23. Water is flowing with a velocity of 5 m/s through a 0.15 
meter internal diameter horizontal pipe. The veloc-
ity of the water flowing has been determined using a 
venturimeter, of throat diameter 0.1 m, fitted into the 
pipeline. The differential manometer fitted into the 
venturimeter shows a reading of 1.2 meter. If the ven-
turimeter coefficient is 0.96, then the density if the 
manometric liquid is:

 (A) 5313.73 kg/m3 (B) 13600 kg/m3

 (C) 7000 kg/m3 (D) 4329.67 kg/m3

 24. An orificemeter having an orifice of diameter d is pre-
sent in a pipe of diameter D. Generally, the coefficient 
of discharge of the orificemeter:

 (A)  Is independent of d/D and Reynolds number of 
flow.

 (B) Depends on d/D and Reynolds number of flow
 (C) Depends only on d/D
 (D) Depends only on Reynolds number of flow

 25. In an open stream of flowing liquid, a pitot tube is 
immersed as shown in the figure below. Point 2 is a 
stagnation point while point 1 is located upstream of 
point 2. The velocity at point 1 is: 

 (A) 2 1gh  (B) 2 1 2g h h( )+

 (C) 2 1
2

2

g
h

h

⎛
⎝⎜

⎞
⎠⎟

 (D) 2 2gh

•

Pitot tubeh2

h1

21

•

 26. In a horizontal pipe converging from a diameter of 200 
mm to 100 mm, air (density = 1.2 kg/m3) is flowing at 
a volumetric flow rate of 1004 L/S as shown in the fol-
lowing figure. If the specific gravity of the manometric 
liquid is 0.85, then the value of the manometer reading 
h is

 (A) 0.1 m (B) 0.0736 m
 (C) 1.177 m (D) 0.00625 m

•• 21

h

x

D = 200 mm

D = 100 mm

 27. Water is flowing out from a tank, through an orifice at 
the side of the tank, as a jet. The jet strikes the ground 
at a horizontal distance of x metres from the tank. 
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The height of the water in the tank is 1.5 m and the 
orifice is situated at a distance of h metres from the free 
liquid surface. The value of x will be maximum is

 (A) 1.33 m (B) 1.5 m
 (C) 0.66 m (D) 0.75 m

 28. A cylindrical vessel of diameter 0.2 m and 0.5 m height 
is filled with a liquid completely upto the top. The vol-
ume of the liquid that will be left in the vessel after it is 
rotated with a speed of 250 r.p.m. is

 (A) 0.0157 m3 (B) 0.00548 m3

 (C) 0 m3 (D) 0.01022 m3

 29. A cylindrical vessel is closed at the top and the bottom 
and has a diameter of 0.4 m and height 0.5 m. The ves-
sel is completely filled with a liquid. When the vessel 
is rotated about its vertical axis with an angular speed 

of wrad/s, the total pressure exerted by the liquid on the 
bottom is twice that exerted by the liquid on the top the 
vessel. The value of w is 

 (A) 22.14 rad/s (B) 14 rad/s
 (C) 44.29 rad/s (D) 28 rad/s

 30. In a free vortex flow of a fluid, at a radial location of 
r = 1 m, the tangential velocity is 2 m/s. At two radial 
locations in the same horizontal plane r1 and r2 (r2 > r1) 
in the free vortex flow, the pressure difference is deter-
mined to be P1 – P2. If for a forced vortex flow of the 
same fluid, having an angular velocity of 5 rad/s for 
the same radial locations, the pressure difference is the 
same, then the value of r1 when r2 = 2 m is

 (A) 0.4 m (B) 0.1 m 
 (C) 0.5 m (D) 0.2 m

Previous Years’ Questions

 1. A fluid flow is represented by the velocity field 
V axi ayj= + ,  where a is a constant. The equation 
of streamline passing through a point (1, 2) is [2004]

 (A) x - 2y = 0 (B) 2x + y = 0
 (C) 2x - y = 0 (D) x + 2y = 0

 2. For a fluid flow through a divergent pipe of length L 
having inlet and outlet radii and R1 and R2 respec-
tively and a constant flow rate of Q, assuming the 
velocity to be axial and uniform at any cross section, 
the acceleration at the exit is [2004]

 (A) 
2 1 2

2
3

Q R R

LR

( )−
π

 (B) 
2

1 2
3

2

2 ( )Q R R

LRπ
−

 (C) 
2 2

1 2
2

2
5

Q R R

LR

( )−
π

 (D) 2 2
2 1

2
2

5

Q R R

LR

( )−
π

 3. A closed cylinder having a radius R and height H is 
filled with oil of densityr. If the cylinder is rotated 
about its axis at an angular velocity of w, the thrust at 
the bottom of the cylinder is:  [2004]

 (A) pR2rgH

 (B) π ρϖ
R

R2
2 2

4
 (C) pR2 (rw2R2 + rgH)

 (D) π ρω ρR
R

gH2
2 2

4
+

⎛
⎝⎜

⎞
⎠⎟

 4. The velocity components in the x and y directions of 
a two dimensional potential flow are u and v, respec-

tively, then 
∂
∂
u

x
 is equal to: [2005]

 (A) ∂
∂
v

x
 (B) −

∂
∂
v

x

 (C) ∂
∂
v

y
 (D) −

∂
∂
v

y

 5. A venturimeter of 20 mm throat diameter is used to 
measure the velocity of water in a horizontal pipe of 
40 mm diameter. If the pressure difference between the 
pipe and throat sections is found to be 30 kPa then, 
neglecting frictional losses, the flow velocity is: [2005]

 (A) 0.2 m/s (B) 1.0 m/s
 (C) 1.4 m/s (D) 2.0 m/s

 6. A leaf is caught in a whiripool. At a given instant, the 
leaf is at a distance of 120 m from the centre of the whirl-
pool. The whirlpool can be described by the following 

velocity distribution: V
r

m

s
Vr = −

×⎛
⎝⎜

⎞
⎠⎟

60 10

2

3

π θand

  =
×300 10

2

3

πr

m

s
,  where r (in meters) is the distance 

from the centre of the whirlpool. What will be the dis-
tance of the leaf from the centre when it has moved 
through half a revolution? [2005]

 (A) 48 m (B) 64 m
 (C) 120 m (D) 142 m

 7. In a two-dimensional velocity field with velocities u 
and v along the x and y directions respectively, the 
convective an acceleration along the x-direction is 
given by: [2006]

 (A) u
u

x
v

u

y

∂
∂

+
∂
∂

 (B) u
u

x
v

v

y

∂
∂

+
∂
∂

 (C) u
v

x
v

u

y

∂
∂

+
∂
∂

 (D) v
u

x
u

u

y

∂
∂

+
∂
∂

 8. A two-dimensional flow field has velocities along 
the x and y directions given by u = x2t and v =-2xyt 
respectively, where t is time. The equation of stream-
lines is: [2006]

 (A) x2y = constant
 (B) xy2 = constant
 (C) xy = constant
 (D) Not possible to determine
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 9. In a steady flow through a nozzle, the flow velocity on 
the nozzle axis is given by v = uo (1 + 3x/L)i, where 
x is the distance along the axis of the nozzle from its 
inlet plane and L is the length of the nozzle. The time 
required for a fluid particle on the axis to travel from 
the inlet to the exit plane of the nozzle is: [2007]

 (A) 
L

uo

 (B) 
L

u
in

o3
4

 (C) 
L

uo4
 (D) 

L

uo2 5.

 10. Which combination of the following statements about 
steady incompressible forced vortex flow is correct?

 P: Shear stress is zero at all points in the flow.
 Q: Vorticity is zero at all points in the flow.
  R:  Velocity is directly proportional to the radius from 

the centre of the vortex.
  S:  Total mechanical energy per unit mass is constant 

in the entire flow field.
 Select the correct answer using the codes given below.
 [2007]
 (A) P and Q (B) R and S
 (C) P and R (D) P and S

 11. For the continuity equation given by 
� �
∇⋅V = 0 to be 

valid, where 
�

V  is the velocity vector, which one of 

the following is a necessary condition? [2008]
 (A) Steady flow  (B) irrotational flow 
 (C) In viscid flow (D) incompressible flow

Direction for questions 12 and 13: The gap between a 
moving circular plate and a stationary surface is being 
continuously reduced, as the circular plate comes down at 
a uniform speed V towards the stationary bottom surface, 
as shown in the figure. In the process, the fluid contained 
between the two plates flows out radially. The fluid is 
assumed to be incompressible and inviscid.

Moving
circular plate

Stationary
surface

Vh

R
r

 12. The radial velocity Vr at any radius r, when the gap 
width is h, is: [2008]

 (A) v
Vr

h
r =

2
 (B) v

Vr

h
r =

 (C) v
Vh

r
r =

2
 (D) v

Vh

r
r =

 13. The radial component of the fluid acceleration at 
r = R is: [2008]

 (A) 3

4

2

2

V R

h
 (B) V R

h

2

24
 

 (C) V R

h

2

22
 (D) V h

R

2

22

 14. Consider steady, incompressible and irrotational 
flow through a reducer in a horizontal pipe where the 
diameter is reduced from 20 cm to 10 cm. The pres-
sure in the 20 cm pipe just upstream of the reducer is 
150 kPa. The fluid has a vapour pressure of 50 kPa 
and a specific weight of 5 kN/m3. Neglecting fric-
tional effects, the maximum discharge (in m3/s) that 
can pass through the reducer without causing cavita-
tion is: [2009]

 (A) 0.05 (B) 0.16
 (C) 0.27 (D) 0.38

 15. You are asked to evaluate assorted fluid flows for their 
suitability in a given laboratory application. The fol-
lowing three flow choices, expressed in terms of the 
two-dimensional velocity fields in the xy-plane, are 
made available.

 P. u = 2y, v = –3x
 Q. u = 3xy, v = 0
 R. u = –2x, v = 2y
  Which flow(s) should be recommended when the ap-

plication requires the flow to be incompressible and 
irrotational? [2009]

 (A) P and R (B) Q
 (C) Q and R (D) R

 16. Velocity vector of a flow field is given as

V xyi x zj
��

= −2 2ˆ ˆ.  The vorticity vector at (1, 1, and 1) 
is: [2010]

 (A) 4ˆ ˆi j−  (B) 4i k� �−

 (C) î j− 4�  (D) i k� �− 4

 17. A streamline and an equipotential line in a flow field.
 [2011]

 (A) Are parallel to each other
 (B) Are perpendicular to each other
 (C) Intersect at an acute angle
 (D) Are identical

 18. Figure shows the schematic for the measurement of 
velocity of air (density = 1.2 kg/m3) through a con-
stant area duct using a pitot tube and a water-tube 
manometer. The differential head of water (density = 
1000 kg/m3) in the two columns of the manometer is 
10 mm. Take acceleration due to gravity as 9.8 m/s2. 
The velocity of air in m/s is [2011]
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10 mm

Flow

 (A) 6.4 (B) 9.0
 (C) 12.8 (D) 25.6

 19. A large tank with a nozzle attached contains three 
immiscible, inviscid fluids as shown. Assuming that 
the changes in h1, h2 and h3 are negligible, the instan-
taneous discharge velocity is: [2012]

h2

h3

h1
r1

r2

r3

 (A) 2 13
1

3

1

3

2

3

2

3

gh
h

h

h

h
+ +

⎛
⎝⎜

⎞
⎠⎟

ρ
ρ

ρ
ρ

 (B) 2 1 2 3g h h h( )+ +

 (C) 2 1 1 2 2 3 3

1 2 3

g
h h hρ ρ ρ
ρ ρ ρ

+ +
+ +

⎛
⎝⎜

⎞
⎠⎟

 (D) 2 1 2 3 2 3 1 3 1 2

1 1 2 2 3 3

g
h h h h h h

h h h

ρ ρ ρ
ρ ρ ρ

+ +
+ +

⎛
⎝⎜

⎞
⎠⎟

 20. Water is coming out from a tap and falls vertically 
downwards. At the tap opening, the stream diameter 
is 20 mm with uniform velocity of 2 m/s. Acceleration 
due to gravity is 9.81 m/s2. Assuming steady, invis-
cid flow, constant atmospheric pressure everywhere 
and neglecting curvature and surface tension effects, 
the diameter in mm of stream 0.5 m below the tap is 
approximately [2013]

 (A) 10 (B) 15
 (C) 20 (D) 25

 21. For an incompressible flow field, V
��

,which one of the 
following conditions must be satisfied? [2014]

 (A) ∇⋅ =V
��

0  (B) ∇ × =V
��

0

 (C) ( )V V
�� ��

⋅∇ = 0  (D) ∂
∂

+ ⋅∇ =
V

t
V V

��
�� ��

( ) 0

 22. Consider the following statements regarding stream-
line (s):

 (i)  It is a continuous line such that the tangent at any 
point on it shows the velocity vector at that point

 (ii) There is no flow across streamlines

 (iii)  dx

u

dy

y

dz

w
= = is the differential equation of a 

streamline, where u, v and w are velocities in di-
rections x, y and z respectively

 (iv)  In an unsteady flow, the path of a particle is a 
streamline

   Which one of the following combinations of the 
statements is true? [2014]

 (A) (i), (ii), (iv)
 (B) (ii), (iii), (iv)
 (C) (i), (iii), (iv)
 (D) (i), (ii), (iii)

 23. Consider a velocity field ˆ ˆV K(yi xk),= +
��

 where K is 
a constant. The vorticity, Wz, is [2014]

 (A) –K (B) K
 (C) –K/2 (D) K/2

 24. Match the following pairs: [2015]

Equation Physical Interpretation

P ∇ × V
→ = 0 I

Incompressible continuity 
equation

Q ∇.V
→ = 0 II Steady flow

R DV
Dt

→

=0 III Irrotational flow

S ∂
∂

=
→
V
t

0 IV
Zero acceleration of fluid 
particle

 (A) P-IV, Q-I, R-II, S-III
 (B) P-IV, Q-III, R-I, S-II
 (C) P-III, Q-I, R-IV, S-II
 (D) P-III, Q-I, R-II, S-IV

 25.  The velocity field of an incompressible flow is given 
by

   V = (a1x + a2y + a3z)i + (b1x + b2y + b3z)j + (c1x + 
c2y + c3z)k, where a1 = 2 and c3 = –4. The value of b2 
is ______. [2015]

 26.  Water (r = 1000 kg/m3) flows through a venturimeter 
with inlet diameter 80 mm and throat diameter 40 mm. 
The inlet and throat guage pressures are measured to 
be 400 kPa and 130 kPa respectively. Assuming the 
venturimeter to be horizontal and neglecting friction, 
the inlet velocity (in m/s) is _____. [2015]

 27.  If the fluid velocity for a potential flow is given by 
V(x, y) = u(x, y)i + v(x, y)j with usual notations, then 
the slope of the potential line at (x, y) is: [2015]
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 28.  A Prandtl tube (Pitot-static tube with C = 1) is used 
to measure the velocity of water. The differential 
manometer reading is 10 mm of liquid column with 
a relative density of 10. Assuming g = 9.8 m/s2, the 
velocity of water (in m/s) is ____. [2015]

 29.  The instantaneous stream-wise velocity of a turbulent 
flow is given as follows:

 u(x, y, z, t)  = u  (x, y, z) + u′ (x, y, z, t)

   The time-average of the fluctuating velocity u′ (x, y, 
z, t) is: [2016]

(A) u′/2 (B) −u /2

(C) zero (D) u /2

 30.  The volumetric flow rate (per unit depth) between two 
streamlines having stream functions Ψ1 and Ψ2 is:
 [2016]

(A) |Ψ1 + Ψ2| (B) Ψ1 Ψ2
(C) Ψ1/ Ψ2 (D) |Ψ1 – Ψ2|

 31.  A channel of width 450 mm branches into two sub-
channels having width 300 mm and 200 mm as shown 
in figure. If the volumetric flow rate (taking unit depth) 
of an incompressible flow through the main channel is 
0.9 m3/s and the velocity in the sub-channel of width 
200 mm is 3 m/s, the velocity in the sub-channel of 
width 300 mm is ______ m/s.

 Assume both inlet and outlet to be at the same 
elevation. [2016]

Width = 450 mm

Flow rate = 0.9m3/s  

Width = 300 mm

Width = 200 mm
Velocity = 3 m/s

 32.  For a certain two-dimensional incompressible flow, 
velocity field is given by 2 2xyi y jˆ ˆ.−  The streamlines 
for this flow are given by the family of curves. [2016]

(A) x2 y2 = constant (B) xy2 = constant
(C) 2xy – y2 = constant (D) xy = constant

 33.  The water jet exiting from a stationary tank through 
a circular opening of diameter 300 mm impinges on 
a rigid wall as shown in the figure. Neglect all minor 
losses and assume the water level in the rank to remain 
constant. The net horizontal force experienced by the 
wall is _________ kN. [2016]

  Density of water is 1000 kg/m3.

  Acceleration due to gravity g = 10 m/s2.

6.2 m

Circular opening of 
diameter 300 mm

Jet

Stationary rigid wall

 34. For a two-dimensional flow, the velocity field is

�
u

x

x y
i

y

x y
j=

+
+

+2 2 2 2
ˆ ˆ

   where î  and ĵ  are the basis vectors in the x-y 
Cartesian coordinate system. Identify the CORRECT 
statements from below. [2016]

(1) The flow in incompressible
(2) The flow is unsteady

(3) y-component of acceleration, ay
 
=

−
+

y

x y( )2 2 2

(4) x-component of acceleration, ax
 

− +( )
+
x y

x y( )2 2 2

(A) (2) and (3) (B) (1) and (3)
(C) (1) and (2) (D) (3) and (4)
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Answer Keys

Exercises
Practice Problems 1
 1. B 2. A 3. D 4. A 5. B 6. C 7. D 8. A 9. D 10. B
11. A 12. D 13. A 14. D 15. C 16. A 17. B 18. A 19. B 20. C

Practice Problems 2
 1. A 2. C 3. D 4. B 5. C 6. A 7. C 8. A 9. A 10. A
11. C 12. A 13. C 14. B 15. D 16. B 17. B 18. B 19. C 20. B
21. C 22. B 23. A 24. B 25. D 26. C 27. D 28. D 29. C 30. D

Previous Years’ Questions
 1. C 2. C 3. D 4. D 5. D 6. B 7. A 8. D 9. B 10. B
11. D 12. A 13. B 14. B 15. D 16. D 17. B 18. C 19. A 20. B
21. A 22. D 23. A 24. C 25. 1.9 to 2.1  26. 6 27. B 28. 1.30 to 1.34
 29. C 30. D 31. 1 32. B 33. 8.7–8.8  34. B
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