HUMAN GENETICS

INTRODUCTION

The study of transmission of characters from one generation to the other in human population is called human genetics. The principles of inheritance are applicable to man in the same way as in other animals and plants. Only during the past several decades human genetics became a flourishing discipline with increasingly sophisticated techniques for the diagnosis and treatment of many inherited conditions. The experimental study of inheritance of characters in human is not so easy as it has been in case of guinea pig, Drosophila etc. however, more than two hundred traits are reported to be inherited in human.

14.1 CHROMOSOMES

The chromosomes are capable of self-reproduction and maintaining morphological and physiological properties through successive generations. They are capable of transmitting the contained hereditary material to the next generation. Hence these are known as 'hereditary vehicles'. The eukaryotic chromosomes occurs in the nucleus and in certain other organelles, and are respectively called nuclear and extranuclear chromosomes. Nuclear chromosomes are long, double stranded DNA molecules of linear form and associated with proteins, separated from the cytoplasm by nuclear envelope and replicated during S phase of cell cycle, while extranuclear chromosomes are present in the mitochondria and plastid. They are short, double stranded DNA molecules of circular form and are not associated with proteins and also called prochromosomes.

(i) Discovery of chromosomes

Hofmeister (1848) : First observed chromosomes in microsporocytes (microspore mother cells) of *Tradescantia*.

Flemming (1879) : Observed splitting of chromosomes during cell division and coined the term, 'chromatin'.

Roux (1883) : He believed the chromosomes take part in inheritance.

W.Waldeyer (1888) : He coined the term 'chromosome'.

Benden and Boveri (1887): They found a fixed number of chromosomes in each species.

(ii) Kinds of chromosomes

(a) **Viral chromosomes :** In viruses and bacteriophages a single molecule of DNA or RNA represents the viral chromosome.

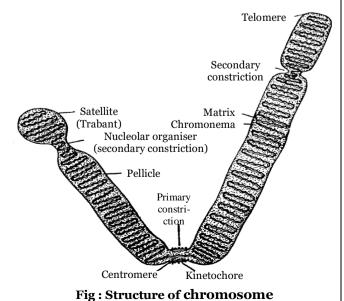
(b) **Bacterial chromosomes :** In bacteria and cyanobacteria, the hereditary matter is organized into a single large, circular molecule of double stranded DNA, which is loosely packed in the nuclear zone. It is known as bacterial chromosome or *nucleoid*.

(c) **Eukaryotic chromosomes :** Chromosomes of eukaryotic cells are specific individualized bodies, formed of deoxyribonucleo proteins (DNA + Proteins).

(iii) **Number of chromosomes :** The number of chromosomes varies from two, the least number an organism can have, to a few hundred in different species. The number of chromosomes a species possesses has no basic significance, nor it necessarily shows relationship between two different species that have the same number.

Both dog and fowl have 78 chromosomes. Thus, it is not the number of chromosomes, but the genes in them which differentiate species. Their number also does not indicate the size or complexity of the organism. *Amoeba proteus* has 250 chromosomes and man has 46. The related species tend to have similar chromosome. Man and his nearest relatives, the apes, have chromosomes similar in size, shape and banding pattern. The least number of chromosomes are found in *Ascaris megalocephala i.e.* 2 while in a radiolarian protist (*Aulocantha*) has maximum number of chromosomes is 1600. The male of some roundworms and insects have one chromosome less than the females. For instance, the male and female roundworm *Coenorhabditis* have 11 and 12 chromosomes respectively and the male and female cockroach (*Blatta*) have 23 and 24 chromosomes respectively.

Common name	Zoological name	Chromosomes
(1) Man	Homo sapiens	46
(2) Gorilla	Maccaca mulatta	48
(3) Pig	Sas scrofa	40
(4) Sheep	Ovis aries	54
(5) Cat	Felis maniculata	38
(6) Dog	Canis familiaris	78
(7) Rat	Rattus rattus	42
(8) Rabbit	Oryctolagus	44
	cuniculus	
(9) Honey bee	Apis mellifera	32, 16
(10) Mosquito	Culex sp	6
(11) Grasshopper	Gryllus	23(male),
		24(female)


Diploid number of chromosomes in some animals

(iv) **Chromosome structure :** Different regions or structure recognized in chromosomes are as under

(a) **Pellicle :** It is the outer thin but doubtful covering or sheath of the chromosome.

(b) **Matrix :** Matrix or ground substance of the chromosome is made up of proteins, small quantities of RNA and lipid. It has one or two chromonemata (singular-chromonema) depending upon the state of chromosome.

(c) **Chromonemata :** They are coiled threads which form the bulk of chromosomes. A chromosome

may have one (anaphase) or two (prophase and metaphase) chromonemata. The coiled filament was called chromonema by Vejdovsky in 1912. The coils may be of the following 2 types

(1) **Paranemic coils :** When the chromonemal threads are easily separable from their coils then such coils are known as paranemic coils.

(2) Plectonemic coils : When the chromosomal threads remain inter-twined so intimately that they cannot be separated easily are known as plectonemic coils.

(d) A primary Constriction and Centromere (kinetochore) : A part of the chromosome is marked by a constriction. It is comparatively narrow than the remaining chromosome. It is known as primary constriction. The primary constriction divides the chromosome into two arms. It shows a faintly positive Feulgen reaction, indicating presence of DNA or repetitive type. This DNA is called centromeric heterochromatin.

Centromere or kinetochore lies in the region of primary constriction. The microtubules of the chromosomal spindle fibres are attached to the centromere. Therefore, centromere is associated with the chromosomal movement during cell division. Kinetochore is the outermost covering of centromere.

Type of chromosomes based on number of centromeres : Depending upon the number of centromeres, the chromosomes may be :

(1) Monocentric with one centromere.

(2) Dicentric with two centromeres, one in each chromatid.

(3) Polycentric with more than two centromeres.

(4) Acentric without centromere. Such chromosomes represent freshly broken segments of chromosomes, which do not survive for long.

(5) Diffused or non-located with indistinct throughout the length of chromosome. The microtubules of spindle fibres are attached to chromosome arms at many points. The diffused centromeres are found in insects, some algae and some groups of plants.

Types of chromosomes based on position of centromere : Based on the location of centromere the chromosomes are categorised as follows :

(1) **Telocentric :** These are rod-shaped chromosomes with centromere occupying a terminal position. One arm is very long and the other is absent.

(2) Acrocentric : These are rod-shaped chromosomes having subterminal centromere. One arm is very long and the other is very small.

(3) **Submetacentric :** These are J or L shaped chromosomes with centromere slightly away from the mid-point so that the two arms are unequal.

(4) Metacentric : These are V-shaped chromosomes in which centromere lies in the middle of chromosomes so that the two arms are almost equal.

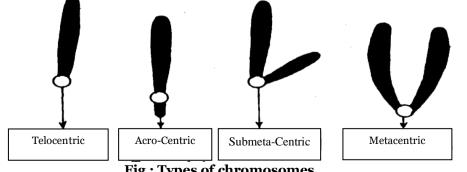


Fig: Types of chromosomes

(e) **Chromomeres :** Chromomeres are linearly arranged bead-like and compact segments described by J. Bellings. They are identified by their characteristic size and linear arrangement along a chromosome.

(f) Secondary constriction or nucleolar organizer : Sometimes one or both the arms of a chromosome are marked by a constriction other than the primary constriction. During interphase this area is associated with the nucleolus and is found to participate in the formation of nucleolus. It is, therefore, known as nucleolar organizer region or the secondary constriction. In certain chromosomes, the secondary constriction is (In human beings 13, 14, 15, 20 and 21 chromosome are nucleolar organizer) intimately associated with the nucleolus during interphase. It contains genes coding for 18S and 28S ribosomal RNA and is responsible for the formation of nucleolus. Therefore, it is known as nucleolar organizer region (*NOR*).

(g) **Telomeres :** The tips of the chromosomes are rounded and sealed and are called telomeres which play role in Biological clock. The terminal part of a chromosome beyond secondary constriction is called *satellite*. The chromosome with satellite is known as *sat chromosome*, which have repeated base sequence.

(h) **Chromatids :** At metaphase stage a chromosome consists of two chromatids joined at the common centromere. In the beginning of anaphase when centromere divides, the two chromatids acquire independent centromere and each one changes into a chromosome.

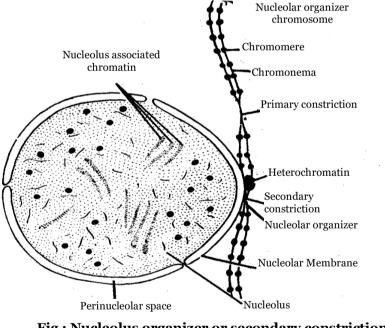


Fig : Nucleolus organizer or secondary constriction and its association with nucleolus

(v) **Molecular organisation of chromosome :** Broadly speaking there are two types of models stating the relative position of DNA and proteins in the chromosomes.

(a) **Multiple strand models :** According to several workers (Steffensen 1952, Ris 1960) a chromosome is thought to be composed of several DNA protein fibrils and atleast two chromatids form the chromosome.

(b) **Single strand models :** According to Taylor, Duprow etc. The chromosome is made up of a single DNA protein fibril. There are some popular single strand models.

(1) Folded fibre model : Chromosomes are made up of very fine fibrils 2 nm - 4 nm in thickness. As the diameter of DNA molecule is also 2 nm (20Å). So it is considered that a single fibril is a DNA molecule. It is also seen that chromosome is about a hundred times thicker than DNA whereas the length of DNA in chromosome is several hundred times that of the length of chromosome. So it is considered that long DNA molecule is present in folding manner which forms a famous model of chromosome called folded fibre model which given by *E.J. Dupraw* (1965).

(2) **Nucleosome model :** The most accepted model of chromosome or chromatin structure is the 'nucleosome model' proposed by Kornberg and Thomas (1974). Nucleosomes are also called *core particles or Nu-bodies*. The name nucleosome was given by *P. Outdet* et al. The nucleosome is a oblate particle of 55Å height and 110Å diameter. Woodcock (1973) observed the structure of chromatin under electron microscope. He termed each beaded structure on chromosome as nucleosome. Nucleosome is quasicylindrical structure made up of histones and DNA.

Histone are mainly of two types :

(a) **Nucleosomal histone :** These are small proteins responsible for coiling DNA into nucleosome. These are H_2A , H_2B , H_3 and H_4 . Each histone protein consist of two molecule, thus the four histone proteins form a octamer. These form the inner core of nucleosome.

(b) **Linker histone :** H_1 proteins is known as linker histone that connect one core particle with another. These are present once per 200 base pairs. These are loosely associated with DNA. H_1 histone are responsible for packing of nucleosome into 30 *nm* fibre.

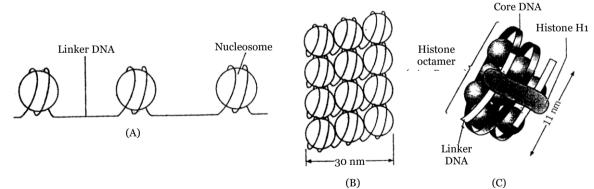


Fig : Nucleosomes : (A) 3 Nucleosomes (B) Nucleosomes coiled to form a solenoid (C) Basic structure

Functions of histones : Histones in eukaryotic chromosomes serve some functions.

- These either serve as structural elements and help in coiling and packing of long DNA molecules.
- Transcription is possible only by dissolution of histones in response to certain molecular signals.

DNA in nucleosome : Nucleosome is made of core of eight molecules of histones wrapped by double helical DNA with $1\frac{3}{4}$ turns making a repeating unit. Every $1\frac{3}{4}$ turn of DNA have 146 base pairs. When H_1 protein is added the nucleotide number becomes 200. DNA which joins two nucleosome is called linker DNA or spacer DNA.

(3) **Solenoid model :** In this model the nucleosomal bead represents the first degree of coiling of DNA. It is further coiled to form a structure called solenoid (having six nucleosome per turn). It represents the second degree of coiling. The diameter of solenoid is 300Å. The solenoid is further coiled to form a supersolenoid of 2000-4000Å diameter. This represent the third degree of coiling. The supersolenoid is perhaps the unit fibre or chromonema identified under light microscopy. The solenoid model was given by Fincy and Klug 1976. Klug was awarded by nobel prize in 1982 for his work on chromosome.

(4) **Dangier-String or Radial Loop Model :** (Laemmli, 1977). Each chromosome has one or two interconnected scaffolds made of nonhistone chromosomal proteins. The scaffold bears a large number of lateral loops all over it. Both exit and entry of a lateral loop lie near each other. Each lateral loop is 30 *nm* thick fibre similar to chromatin fibre. It develops through solenoid coiling of nucleosome chain with about six nucleosomes per turn. The loops undergo folding during compaction of chromatin to form chromosome.

(vi) **Heterochromatin and Euchromatin :** Flemming (1880) named the readily stainable material in nuclei as chromatin. It is present both during *interphase* and *cell division* (as the chromosomal material). It consists of about equal parts by weight of *DNA and histones*. There are two classes of chromatin structure, heterochromatin and euchromatin.

(a) Heterochromatin or static chromatin is highly condensed and is usually transcriptionally inactive and found in the centromeres of chromosomes. Heterochromatin is of two types, (i) genetically inactive *constitutive heterochromatin* which is a permanent part of the genome, and (ii) *facultative heterochromatin* which varies in its state in different cell types and development stages.

(b) Euchromatin or dynamic chromatin is relatively extended and open. It at least has the potential of being actively transcribed. It makes up the major part of the genome, and is visible only during mitosis.

Heterochromatin	Euchromatin			
Remains condensed throughout interphase	Shows normal cycle of condensation during			
(positive heteropycnosis) giving rise to	cell division and extension during interphase.			
chromocentres.				
Because of the condensed state, it stains more	Because it is less condensed, it stains less			
heavily giving rise to banding patterns or	heavily (normal staining properties). Only			
chromosomes.	slightly basophilic.			
Found in condensed regions of the	Found diffuse or less tightly coiled regions.			
chromosome and in association with tight	Undergoes typical condensation-			
folding or coiling of the chromosomal fibre.	decondensation cycle.			
May contain highly repetitive (satellite) DNA	Almost free of repetitive DNA. Contains			
or single copy (unique) DNA.	predominantly single copy DNA.			
Relatively inert metabolically, but does not	Genetically active : Almost all the genes are			
contain a few genes.	located on euchromatin.			
DNA is genetically inert, and does not	Genetically active, dispersed part of chromatin			

Comparison of heterochromatin and euchromatin

transcribe mRNA for protein synthesis in the	in interphase nuclei. Its DNA synthesizes		
condensed state.	mRNA for protein synthesis.		
Late replication of DNA at the S phase of the	Comparatively early replication of DNA		
cell cycle. Under-replication in polytene	during the early stage of the S phase of cell		
chromosomes.	cycle.		
Crossover frequency is less, because	Crossover frequency is more because of the		
condensed regions of the chromosomal fibre	decondensed (extended) state of euchromatin.		
cannot come close together for frequent			
crossover. This may help protect vital genes			
from the effects of crossover.			

(vii) **Chromosome banding :** It was the technique demonstrated by **Casperson** (1968) using a fluorescent dye quinacrine mustard for the study of finer chromosomal aberrations. The development of banding techniques has made the identification of individual chromosomes easier. Each chromosome can be identified by its characteristic banding pattern. In X chromosomes the bands are large, each containing $\sim 10^7 bp$ of DNA, and could include several hundreds of genes. The different banding techniques are identified by the letters Q, G, C, R and T.

Type of banding	Staining technique	Nature of bands
Q (quinacrine) banding	Chromosomes exposed to quinacrine mustard (acridine dye) which preferentially binds to AT- rich DNA. Other fluorescent dyes used are <i>DAPI or Hoeschst</i> 33258.	UV fluorescence reveals fluorescencing Q bands which correspond to G-bands. DNA of Q/G bands contains more closely spaced SARs, giving tighter loops (Q loops).
G (Giemsa) banding	Chromosomes treated with alkaline solution and subjected to controlled trypsin digestion before staining with Geimsa, a DNA banding chemical dye. Relatively permanent stain.	Dark bands are called G bands and pale bands are G-negative. G bands are presumed to be <i>AT-rich</i> . They are late replicating and contain highly condensed chromatin.
R (reverse) banding	Chromosomes treated with heated saline or restrictase to denature AT-rich DNA and stained with <i>Giemsa</i> . GC-specific chromomycin dyes, <i>e.g</i> , chromomycin A, olivomycin or mithracin give the same pattern.	R-banding pattern is essentially the reverse of the <i>G</i> -banding pattern. R bands are Q negative. They generally replicate in the S-phase and have less condensed chromatin.
T (telomaric) banding	Prolonged heat treatment of chromosomes before staining with	T bands are a subset of R bands which are the most inetnsely staining. They

Differentiation of chromosomes by banding

	Giemsa or combination of dyes	are especially concentrated at the	
	and fluorochromes.	telomeres.	
C (centromere)	Chromosomes pre-treated with	Preferred darkening of constitutive	
banding	sodium hydroxide or barium	centromeric heterochromatin. Rest of	
	hydroxide and stained with	the chromosome show Q banding	
	Giemsa.	pattern.	

(viii) **Human karyotype and idiogram : Tjio** and **Levan** (1956) of Sweden found that human cells have 23 pairs or 46 chromosomes. 22 pairs or 44 chromosomes are autosome and the last or 23rd pairs is that of sex chromosomes, XX in females and XY in males. A set of chromosomes of an individual or species is called a karyotype. In human the 23 pairs of chromosomes in somatic cells form the karyotype. It is possible to identify individual chromosomes on the basis of the following characteristics.

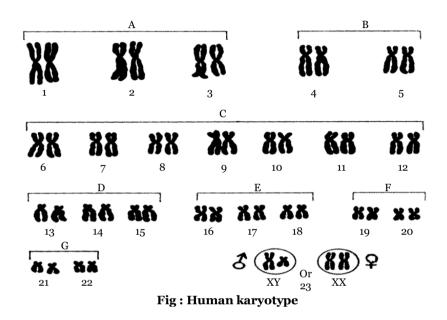
(1) The total length of the chromosomes.

(2) Arm ratio.

(3) The position of the secondary constrictions and nucleolar organizers.

(4) Subdivision of the chromosome into euchromatic and heterochromatic regions.

Homologous pairs of identified chromosomes can be arranged in a series of decreasing lengths. Such an arrangement is called an idiogram. Idiogram not possible in symmetrical karyotype.


(a) **Karyotyping of human chromosomes :** Chromosomes are clearly visible only in rapidly dividing cells. Human chromosomes are studied in blood cells (WBCs), cells in bone marrow, amniotic fluid and cancerous tissues. The WBCs divide when added with phytohaemagglutinin (PHA). The division stops when colchicine is added at metaphase stage. These dividing WBCs are then treated with hypotonic saline solution. Chromosomes are now stained with stains like orcein, Giemsa dye or recent quinacrine dye. When viewed with special miscroscope in ultraviolet light the stain produces fluorescent bands on chromosomes. The chromosomes are then arranged on photographic plate for making diagram and their study. The pictorial representation of a person's chromosomes is called Karyotype.

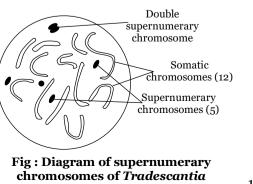
(b) **Classification of chromosomes :** The human metaphase chromosomes were first of all classified by a conference of cytogeneticists at Denver, Colorado in 1960 and is known as the 23 pairs (46) chromosomes in human has been numbered from 1 to 23 according to their decreasing size. Patau (1960) divided the human chromosome into the following seven groups designated A to G.

Group	Size	Shape	Number in set	Number in a cell
А	Large	Metacentric	1-3	6
		Submetacentric		
В	Large	Submetacentric	4-5	4
С	Medium	Submetacentric	6-12	15 male
			and X	16 female

Characteristics of the Chromosomes in the Human Karyotype

D	Medium	Acrocentric	13-15	6
Е	Small	Submetacentric	16-18	6
F	Small	Metacentric	19-20	4
G	Smallest	Acrocentric	21-22	5 male
			and Y	4 female
				46

- The group A consist of longest metacentric chromosomes.
- The group G consist of the shortest acrocentric chromosomes. These chromosomes have satellites that correspond to nucleolar organizers. In males, group G includes a variable Y chromosome which lacks the satellite.
- Chromsomes of group D also contains satellite.
- The X chromosomes is the member of group C and can be identified by special banding or staning methods.


(ix) Special types of chromosomes

(a) **Supernumerary, Accessory or B chromosomes or Satellite chromosomes or Giant lines plasmid :** In some species, chromosomes have been found that are in addition to the normal autosomes and heterosomes. These chromosomes have been called supernumerary chromosomes, accessory chromosomes or B-chromosomes, and differ from normal or A-chromosomes in the following respects.

(1) They are usually smaller than A-chromosomes.

(2) They are frequently heterochromatic and telocentric.

(3) They are genetically unnecessary, and normally do not strongly influence viability and phenotype.

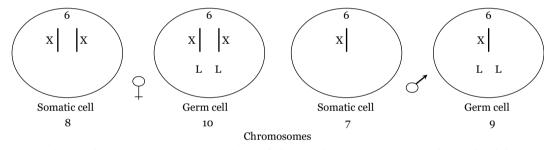
(4) Their number may vary in different cells, tissues, individuals and populations.

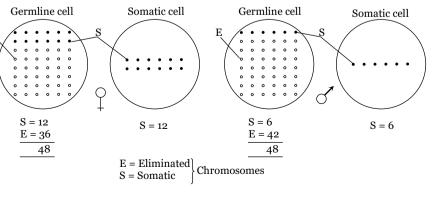
(5) They are not homologous with any of the A-chromosomes and do not synapses with them.

(6) They are found more commonly in plants than in animals.

Among animals they have been reported mostly in insects and a few species of flatworms. Of the 50 species of insect in which B-chromosomes have been reported, 29 are short horned grasshoppers belonging to the family Acridiae. Usually each nucleus has one or two B-chromosomes. In *Tradescantia edwardsiana* there are 50 B-chromosomes in addition to the 12 somatic A-chromosomes.

(b) Limited or L-chromosomes : Limited or L-chromosomes are so called because they are limited to the germ line. They have been found in the family Sciaridae (Diptera: Insecta). The germ line cells in females have 10 chromosomes: three pairs of autosomes, a pair of X-chromosomes and a pair of L-chromosomes. Those of males have 9 chromosomes, there being only one X-chromosome. Somatic cells have 8 chromosomes in females and 7 in males, the L-chromosomes being absent. During the fifth and sixth cleavages, L-chromosomes are eliminated from nuclei destined to form somatic tissue, but retained in germ line cells. L-chromosomes differ from B-chromosomes in that they are constant in all individuals of the species having them. B-chromosomes are found only in some individuals of the species.




Fig: Schematic representation of the L-chromosomes in the Sciaridae

(c) Minute or m-chromosomes : Minute or mchromosomes are so called because of their extremely small size (0.5 micron or less). They have been found in a variety of species of bryophytes, higher plants, insects of the family Coreidae (Heteroptera) and birds. They have been seen mainly

during meiosis, and only occasionally during mitosis. Usually Fig : Minute or m-chromosomes one or two chromosomes are seen, but four to five may also be present. In the moss, Sphagnum there are 19 large bivalents and 2 m- chromosomes.

(d) S and E-chromosomes :

S and E-chromosomes have been reported in insects in the family Cecidomyiidae (gall insects) and family Chironomidae (Diptera). In the gall insect Miastor, both males and females have 48 chromosomes in germ line cells. In somatic cells, however. there are only 12

80

ഗ

0

3

00 ∞

80

19 large bivalents

Second m chromosome

(quadriparite)

m chromosome consisting of

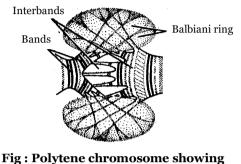
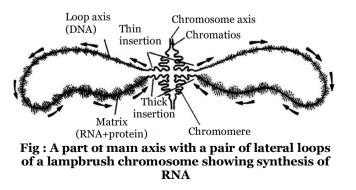

univalents

Fig : Schematic representation of the S and E chromosomes of the gall insect Miastor

chromosomes in females and 6 in males. Chromosomes which are present in both germ and somatic cells are called *S*-chromosomes. Those which are eliminated from somatic cells but are present in germ cells are called *E*-chromosomes. Thus in females the germ line cells have 12 S-chromosomes and 36 E-chromosomes. In male germ line cells there are 6 S-chromosomes and 42 E-chromosomes. The zygote receives half its S-chromosomes from each parent, while all the E-chromosomes are received from the female parent.

(e) Polytene chromosome : Polytene chromosome was described by Kollar (1882) and first

reported by **Balbiani** (1881) in the salivary gland cells of chironomus larva. They are found in salivary glands of insects (Drosophila) and called as salivary gland chromosomes. These are reported in endosperm cells of embryosac by Malik and **Singh** (1979). Length of this chromosome may be upto $2000 \,\mu m$. The chromosome is formed by somatic pairs between homologous chromosomes and repeated replication or endomitosis of chromonemata. These are attached to chromocentre. It has pericentromeric heterochromatin. Polytene



balbiani ring

chromosomes show a large number of various sized intensity bands when stained. The lighter area between dark bands are called interbands. They have puffs bearing *Balbiani rings*. Balbani rings produce a number of m-RNA, which may remain stored temporarily in the puffs, are temporary structures. These are also occur in Malpighian tubules, rectum, gut, foot pads, fat bodies, ovarian nurse cells etc.

(f) **Lampbrush chromosomes :** They are very much elongated special type of synapsed or diplotene chromosome bivalents already undergone crossing over and first observed by **Flemming** (1882). The structure of lampbrush chromosome was described by **Ruckert** (1892). The lampbrush chromosomes occur at the diplotene stage of meiotic prophase in the primary oocytes of all animal species, both vertebrates and invertebrates as in sagitta (chaetognatha), sepia (mollusca), Echinaster (Echinodermata) and in several species of insect, sharks, amphibians, reptiles, birds and mammals. Lampbrush chromosomes are also found in spermatocytes of several species, giant nucleus of

acetabularia and even in plants. In urodele oocyte the length of lampbrush chromosome is upto $5900\mu m$. These are found in pairs consisting of homologous chromosomes jointed at chiasmata (meiotic prophase-I). The chromosome has double main axis due to two elongated chromatids. Each chromosome has rows of large number of chromatid giving out lateral loops, which are uncoiled parts of chromomere with one-many

transcriptional units and are involved in rapid transcription of *m*RNA meant for synthesis of yolk and other substances required for growth and development of meiocytes. Some *m*RNA produced by lampbrush chromosome is also stored as informosomes *i.e.*, *m*RNA coated by protein for producing biochemicals during the early development of embryo. Length of loop may vary between $5-100\mu m$.

Important Tips

- The Heteropyknosis : Darkly staining property of chromatin.
- To Outdet (1975) : Coined the term nucleosome.
- In H₁, H₂A and H₂B proteins are lysine rich (H₁ is very lysine rich) while H₃ and H₄ are arginine rich polypeptide chains.
- Satellite is also called trabant.
- Chromosomes are stained by acetocarmine or acid fushsin.
- Morgan is called father of experimental genetics.
- Bateson is called father of modern genetics.
- Metil stevens (1902) discovered Y chromosomes.
- One gene one enzyme theory was given by Beadle and Tautum.
- Muton is a unit of mutation.
- Strasburger was first of all described chromosome in nucleus.
- Sum of genes in a population is called gene pool.
- One pair of genes can completely mask the expression of another pair of gene is called epistasis.
- Haploid set of chromosome is called genome.
- The frequency of an allele in an isolated population is due to genetic drift.
- Chromosomes were first seen by Hofmeister.

14.2 MULTIPLE ALLELISM

(i) **Mode of origin :** Genes having only two distinct alleles. If mutation occurs in the same gene but in different directions in different individuals, the population as a whole will have many different alleles of that gene. Each allele may produce a different phenotype, and various combinations of alleles produce several genotypes and phenotypes in the population.

(ii) Characteristics

- (a) There are more than two alleles of the same genes.
- (b) All multiple alleles occupy the corresponding loci in the homologous chromosomes.
- (c) A chromosome or a gamete has only one allele of the group.

(d) Any one individual contains only two of the different alleles of a gene, one on each chromosome of the homologous pair carrying that gene.

(e) Multiple alleles express different alternative of a single trait.

(f) Different alleles may show codominance, dominance-recessive behaviour or incomplete dominance among themselves.

(g) Multiple alleles confirm to the Mendelian pattern of inheritance.

(iii) **Definition :** More than two alternative forms (alleles) of a gene in a population occupying the same locus on a chromosome or its homologue are known as multiple alleles.

(iv) **Examples of multiple allelism :** A well known example of a trait determined by multiple alleles is the blood groups in man and skin colour.

Blood groups in man

(a) **Blood proteins :** According to **Karl landsteiner** (1900) a Nobel prize winner, blood contains two types of proteinous substances due to which agglutinations occurs.

(1) Agglutinogen or antigen : It is a protein found on the cell membrane of RBC's.

(2) Agglutinin or antibody : This the other proteinous substance, found in the plasma of the blood.

Whenever the blood of a person receives the foreign proteins (antigen) his blood plasma starts forming the antibodies in order to neutralize the foreign antigens.

(b) **Agglutinations :** Two types of antigens are found on the surface of red blood corpuscles of man, antigen A and B. To react against these antigens two types of antibodies are found in the blood plasma which are accordingly known as antibody – *anti-A or a* and *anti-B or b*. Agglutination takes place only when *antigen A* and *antibody a* occur together or *antigen B* and *antibody b* are present in the blood. Under such condition *antibody a* reacts with *antigen A* and makes it highly sticky. Similarly *antigen B* in presence of *antibody b* become highly sticky with the result RBC's containing these antigens clump to form a bunch causing blockage of the capillaries. Agglutination in blood is therefore antigen-antibody reaction.

(c) Types of blood groups

(1) **ABO blood group : Landsteiner** divided human population into four groups based on the presence of antigens found in their red blood corpuscles. Each group represented a blood group. Thus there are four types of blood groups viz. A, B, AB and O. He observed that there was a reciprocal relationship between antigen and antibody according to which a person has antibodies for those antigens which he does not possess. For example a person of blood group B does not possess *antigen A* but his blood plasma has *antibody 'a'* due to which agglutination with the blood of a person with blood group A occurs. Similarly persons with blood group AB possess both the *antigens A* and B but their blood plasma does not possess any of the antibodies. In the same way person having blood group A does not possess antigen B but *antibody 'b'* is found in his blood plasma. Persons with blood group O possess none of the antigens and that is why their blood possesses both the *antibodies 'a'* and 'b'.

Antigen	Antibody Type of blood		% in society
		group	
(1) A	Anti-B or 'b'	А	23.5
(2) B	Anti-A or 'a'	В	34.5
(3) A, B	Absent	AB	7.5
(4) None	'a' and 'b'	0	34.5

Blood groups of man with antigen and antibodies

(2) **M**, **N** blood group : **K**. Landsteiner and **A**.S. Wiener discovered that antigen M,N or both MN are also found on the surface of red blood corpuscles of human beings. No antibodies are however formed in the blood plasma for these antigens. If however, these antigens are injected into rabbit's blood, they produced such antibodies which are not found in human beings. Inheritance of such kind of blood groups is also brought about like that of A, B and AB.

In this way when blood with M group is injected in rabbit it will produce antibodies in the blood serum which will bring about agglutination with blood group M and MN but not with blood of N group. In the same way on injecting blood of N group into the rabbit it will bring about agglutination with blood group N and MN and not with blood having blood group M.

(d) **Blood transfusion :** Blood transfusion is best done in the persons of same blood group. At the same time it is possible to know in which different blood groups the blood transfusion can be made possible.

Persons with blood group AB are called **universal recipients** because both antigens A and B are found in their blood and the two antibodies 'a' and 'b' are absent. Therefore, such persons can receive blood of all the blood groups. In the same way persons who have blood group O⁻ are **universal donors** as they lack both the antigens and Rh⁻ person can donate to Rh⁺ person as well as Rh⁻ person but Rh⁺ person cannot donate blood to Rh⁻ person. But at the same time such persons can not be given the blood of any other blood group except blood group O because their blood possesses both the antibodies 'a' and 'b'. Persons belonging to blood group A and B contain only one antigen and one antibody against it, in their blood. Such persons can therefore receive blood either of the blood group of their own or the blood group O.

Blood	Can accept	Can donate to	Agglutination				Specific montion
group	from	Can donate to	А	В	AB	0	Specific mention
(1) A	А, О	A, AB	No	Yes	No	Yes	
(2) B	B, O	B, AB	Yes	No	No	Yes	
(3) AB	A, B, AB, O	AB only	Yes	Yes	No	Yes	Universal recipient
(4) O	O only	A, B, AB, O	No	No	No	No	Universal donor

Possibilities of blood transfusion

(e) **Blood bank :** A place where blood of different blood groups is safely stored in bottles for emergency use, is called blood bank. Blood after proper testing is stored in a sealed bottle at a definite temperature $(4^{\circ}-6^{\circ}c)$ to be preserved for a definite time period.

Artificial anticoagulants are used to prevent blood clotting in the blood banks. These anticoagulants are added to the blood preserved in bottle. Such anticoagulants include sodium citrate, double oxalates (sodium and ammonium), dicumarol and EDTA (ethylene diamine tetra acetic acid). The whole blood in this way can be stored for a maximum period of 21 days.

(f) **Inheritance of blood groups :** Blood groups in human are **inheritable trait** and are inherited from parents to offsprings on the basis of Mendel's Laws. Blood group inheritance depends on genes received from parents. Genes controlling blood group in man are three instead of two and are called multiple alleles. All these three genes or alleles are located on the same locus on homologous chromosomes. A person can have only two of these three genes at a time which may be either similar or dissimilar in nature. These genes control the production of blood group/antigens in the offspring. The gene which produces antigen A is denoted by I^a, gene for antigen B by I^b and the gene for the absence of both antigens by I^o. it is customary to use the letter I (Isohaemagglutinogen) as a basic

symbol for the gene at a locus. Based on this, six genotypes are possible for four blood groups in human population.

	Genotype	Nature of gene	Type of blood group
(1)	I ^a I ^a	Homozygous	А
		Dominant	
(2)	I ^a I ^o	Heterozygous	А
(3)	I _p I _p	Homozygous	В
		Dominant	
(4)	Ip Io	Heterozygous	В
(5)	I ^a I ^b	Codominant	AB
(6)	Io Io	Homozygous	0
		Recessive	

Genotype of blood groups in man.

The alleles I^a and I^b of human blood group are said to be codominant because both are expressed in the phenotype AB. Each produces its antigen and neither checks the expression of the other. There is codominance as well as dominant recessive inheritance in the case of the alleles for the blood groups in human beings. The alleles I^a and I^b are codominant and are dominant over the allele I^o (I^a = I^b > I^o). The human blood groups illustrate both multiple allelism and codominance. This blood group are inherited in the simple Mendelian fashion. Thus offsprings with all four kinds of blood groups are possible. If the parents are heterozygous for blood groups A and B which is shown below.

Male						
(Heterozygous for blood group A)						
				Gamet	I ^a	Io
				es		
					I ^a	Io
	for	blood group B)		I ^b	I ^a I ^b	I _p I _o
le	sno	dn			Group	Group
Female	zyg	gro	\mathbf{I}^{o}		AB	В
Нe	tero	poo	[p	Io	I ^a I ^o	Iº Iº
	(He	þľ			Group A	Group
						0

Cross between parents heterozygous for blood group A and B

If we know the blood groups of a couple the blood groups of their children can easily be predicted as shown below.

Possible blood groups of children for known blood groups of parents.					
	Blood groups of	Genotype of parents	ts Blood groups of children		
	parents (known)	(known)	Possible	Not possible	
(1)	O and O	$I^{o} I^{o} \times I^{o} I^{o}$	0	A, B, AB	
(2)	O and A	I ^o I ^o × I ^a I ^o	O, A	B, AB	
(3)	A and A	I ^a I ^o × I ^a I ^o	O, A	B, AB	
(4)	O and B	$I^{o} \ I^{o} \times I^{b} \ I^{o}$	O, B	A, AB	
(5)	B and B	$I^b I^o imes I^b I^o$	O, B	A, AB	
(6)	A and B	$I^a I^a imes I^b I^b$			
		$I^a I^a imes I^b I^o$	O, A, B, AB	None	
		$I^a I^o imes I^b I^o$			
(7)	O and AB	$I^o I^o imes I^a I^b$	A, B	O, AB	
(8)	A and AB	$I^a I^o imes I^a I^b$	A, B, AB	0	
(9)	B and AB	$\mathrm{I}^{\mathrm{b}}~\mathrm{I}^{\mathrm{o}} imes \mathrm{I}^{\mathrm{a}}~\mathrm{I}^{\mathrm{b}}$	A, B, AB	0	
(10)	AB and AB	$I^a I^b imes I^a I^b$	A, B, AB	0	

Possible blood groups of children for known blood groups of parents.

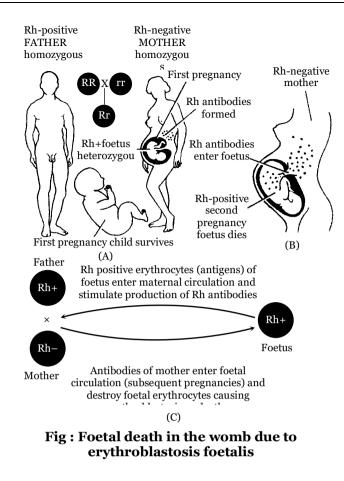
(g) **Significance of blood groups :** The study of blood groups is important in settling the medicolegal cases of disputed parentage because with the help of blood group of a child it can be decided as to who can be his or her genuine father, if the blood group of mother is known. It means that blood groups of the mother and a child being known, the possibilities of blood group in the father can be worked out or if blood group of child and that of father is known then that of mother can be known with the help of the table given below. Blood groups can also save an innocent from being hanged in the case of murder and can help in hanging the real culprit.

Possibilities of blood groups of other parent on the basis of blood group of child and one parent being known.

S.No	Blood group of	Genotype of	Blood group of	Blood group of other parent	
•	child (known)	child (known)	father or mother (known)	Possible	Not possible
(1)	0	Io Io	0	A, B	AB
			А	O, B	
			В	O, A	
(2)	А	I ^a I ^o , I ^a I ^a	O, B	A, AB	O, B
(3)	В	I ^b I ^o , I ^b I ^b	0, A	B, AB	O, A
			А	B, AB	O, A
(4)	AB	I ^a I ^b	В	A, AB	O, B
			AB	A, B, AB	Ο

(h) Rhesus or Rh factor

(1) **Rh factor : Landsteiner** and **Weiner** (1940) discovered a different type of protein in the blood of Rhesus monkey. They called it Rh antigen or Rh factor after Rhesus monkey. When injected the blood of these monkeys into the blood of guinea pigs they noticed the formation of antibodies against the Rh antigen in the blood of guinea pigs. Formation of Rh antigen is controlled by dominant gene (R) and its absence by recipient gene (r). People having this antigen with genotype (RR or Rr) are called Rh positive (Rh⁺) and those whose blood is devoid of it with genotype (rr) are Rh negative (Rh⁻). About 85% human beings in Europe and 97% in India are Rh⁺.


(2) **Importance of Rh factor :** Generally human blood is devoid of Rh antibodies. But it has been noticed that on transfusion of blood of a Rh⁺ person to Rh⁻ person, the recepient develops Rh antibodies in its blood plasma. If Rh⁺ blood is transfused for the second times it causes agglutination and leads to the death of Rh⁻ person.

(3) **Erythroblastosis foetalis :** This disease is related to the birth of a child related with Rh factor. It causes the death of the foetus within the womb or just after birth. It was studies by **Levine** together with **Landsteiner** and **Wiener**. The father of Rh affected foetus is Rh⁺ and the mother is Rh⁻. The child inherits the Rh⁺ trait from the father. A few Rh⁺ red blood corpuscles of foetus in the womb enter in the blood of the mother where they develop Rh antibodies. As mother's blood is Rh⁻ *i.e.* devoid of Rh antigen, it causes no harm to her. These Rh antibodies alongwith the mother's blood on reaching the foetal circulation cause clamping of foetal RBCs or agglutination reaction. The first child is some how born normal because by that time the number of antibodies in mother's blood remain lesser but they increase with successive pregnancies. Thus the foetus following the first child dies either within the womb or just after its birth. This condition is known as erythroblastosis foetalis. So a marriage between Rh⁺ boy and Rh⁻ girl is considered biologically incompatible.

Boy	Girl	Type of biological marriage
Rh^+	Rh^+	Compatible marriage
Rh ⁻	Rh⁻	Compatible marriage
Rh ⁻	Rh^+	Compatible marriage
Rh ⁺	Rh⁻	Incompatible marriage

Type of biological marriage on the basis of Rh factor

However, there is no danger if both parents are Rh^- or mother is Rh^+ and father is Rh^- . Rh factor serum has been developed which when given to the Rh^- mother after each child birth saves the next child. This serum contains Rh antibodies which destroy the Rh antigens of foetus before they can initiate formation of Rh antibodies in the mother.

(4) **Rhogam method :** It is a method of preventing erythroblastosis foetalis. In this method the Rh^- mother is given a special blood test after delivery of her Rh^+ child. If foetal Rh^+ cells are present in mother's blood. She is given injections of rhogam. Rhogam is a preparation of anti-Rh antibodies. It is obtained from immunized donors. The rhogam forms a coat around foetal RBCs in mother's blood. As a result no Rh^+ antigens are available to stimulate mother's circulation and no antibodies are formed.

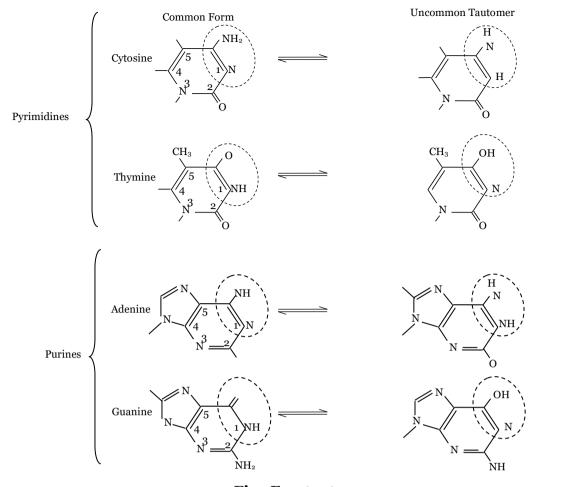
(5) **Inheritance of Rh factor :** Rh factor or Rh antigen is determined by a series of four pair of multiple alleles. They are denoted as R^1 , R^2 , R^0 , R^z , r', r", r" and r. The alleles denoted by capital letter give rise to Rh⁺ condition while those denoted by small letter to Rh⁻ condition. Rh⁺ condition is dominant over Rh⁻ condition. Thus Rh⁺ person may be homozygous (RR) or heterozygous (Rr) while Rh⁻ persons are always homozygous(rr). Hereditary trait for Rh⁻ factor is inherited according to Mendelian principle.

Important Tips

- The Most common blood groups in India are B and Rh⁺.
- Best recipient is AB⁺.
- The AB blood group was discovered by two Landsteiner's students Von Decastello and Sturli (1902).
- ☞ Inheritance of A, B, AB and O blood types in man was discovered by Bernstein in 1925.
- A very rare h/h individual are like blood type O individuals. They are said to have the Bombay blood type.
- Rh factor was first of all reported in RBCs of Macaca rhesus (rhesus monkey) by Landsteiner and Wiener in 1940.
- Immunological incompatibility between mother and foetus sometimes results in a condition called haemolytic disease of the new born (HDN).
- HDN was earlier known as erythroblastosis foetalis.

14.3 GENETIC VARIATIONS

The idea of mutation first originated from the observations of a Dutch botanist **Hugo de Vries** (1880) on variations in plants of *Oenothera lamarckiana*. The mutation can be defined as sudden, stable discontinuous and inheritable variations which appear in organism due to permanent change in their genotype. Mutation is mainly of two types :


• **Spontaneous mutations :** Mutation have been occurring in nature without a known cause is called spontaneous mutation.

• **Induced mutation :** When numerous physical and chemical agents are used to increase the frequency of mutations, they are called induced mutations.

(i) **Gene mutations :** Gene or point mutations are stable changes in genes *i.e.* DNA chain. Many times a change in a gene or nucleotide pair does not produce detectable mutation. Thus the point or gene mutation mean the process by which new alleles of a gene are produced. The gene mutation are of following types

(a) **Tautomerism :** The changed pairing qualities of the bases (pairing of purine with purine and pyrimidine with pyrimidine) are due to phenomenon called tautomerism.

Tautomeres are the alternate forms of bases and are produced by rearrangements of electrons and proton in the molecules.

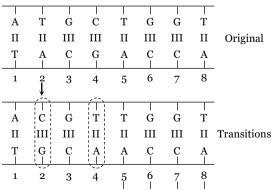
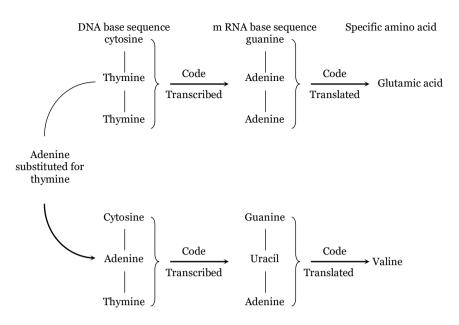
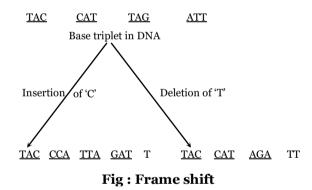


Fig : Few tautomers


Tautomerism is caused by certain chemical mutagens. In the next replication purines pair with pyrimidines and the base pair is altered at a particular locus. The uncommon forms are unstable and at the next replication, cycle revert back to their normal forms.

(b) **Substitutions (Replacements) :** These are gene mutations where one or more nitrogenous base pair are changed with others. It may be further of three sub types.

(1) **Transition :** In transition, a purine (adenine or guanine) or a pyrimidine (cytosine or thymine or uracil) in triplet code of DNA or mRNA is replaced by its type *i.e.* a purine replaces purine and pyrimidine replaces pyrimidine.



(2) **Transversion :** Transversion are substitution gene mutation in which a purine (adenine or guanine) is replaced by pyrimidine (thymine or cytosine) or vice versa.

Fig : Transversion

(3) **Frame shift mutations :** In this type of mutations addition or deletion of single nitrogenous base takes place. None of the codon remains in the same original position and the reading of genetic code is shifted laterally either in the forward or backward direction.

(ii) **Chromosomal mutation or aberrations :** A gene mutation normally alters the information conveyed by a gene, it alters the message. On the other hand, chromosomal mutation only alters the number or position of existing genes. They may involve a modification in the morphology of chromosome or a change in number of chromosomes.

Morphological aberrations of chromosomes :

(a) **Deletion or deficiency :** Sometimes a segment of chromosome break off and get lost. Deficiency generally proves lethal or semilethal.

- **Deficiency :** If a terminal segment of a chromosome is lost, it is called deficiency.
- **Deletion :** If intercalary segment is lost it is termed deletion.

Deletions in human beings

- A missing chromosome segment is referred to either as deletion or deficiency.
- In a dilpoid organism, the deletion of a chromosome segment makes the part of genome hypoploid.

• Deletion may be associated with phenotypic effect, especially if the it is large.

(1) Cri-du-chat Syndrome

- A classical example of deletion is the Cri-du-chat syndrome (from the french words for "cry of the cat") in human beings discovered by **Lejeune** in 1963.
- This condition is caused by a conspicuous deletion in the short arm of one of the 5th autosomes.

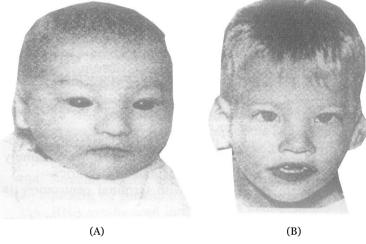
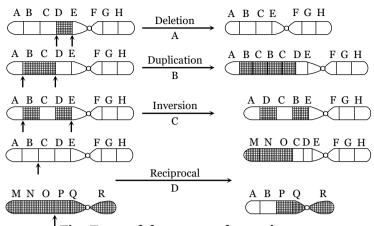


Fig : Cat cry syndrome (A) An infant (B) An older child

• These individuals are severely impaired, mentally as well as physically; their plaintive catlike crying gives the syndrome its name.

(2) Wolf-Hirschhorn's Syndrome

- Wolf-Hirschhorn's syndrome is another well characterized deletion syndrome in human beings caused by a deletion of short arm of chromosome 4 (4p-).
- The phenotypic effect includes wide-spaced eyes and cleft lip.


(b) **Duplication :** In this mutation deleted chromosomal segment is attached to its normal homologous chromosome. Here a gene or many genes are repeated twice or more times in the same chromosome.

(c) **Inversion :** A piece of chromosome is removed and rejoined in reverse order. For example a chromosome with the gene order A, B, C, D, E, F, G, H is broken between B,C,D and between f and g and the centre portion turned through 180°, the resulting gene order is A, D, C, B, E, F, G, H it is of two types.

(1) **Pericentric inversion :** The centromere lies within the inverse order.

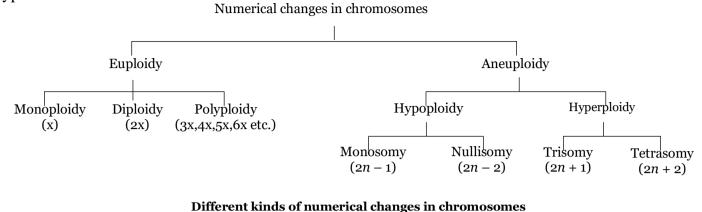
(2) **Paracentric inversion :** The centromere lies outside the inverted segment.

(d) **Translocation :** Mutual exchange (reciprocal) of the chromosome segments between non homologous chromosome. An exchange of parts between two non homologous chromosomes is called reciprocal translocation. In simple translocation a segment of one chromosome breaks and is transferred to another non-homologous chromosome.

[†] Fig : Types of chromosomal mutation

Translocations in human beings

- Certain types of cancer are associated with chromosome rearrangements.
- Two examples of tumours associated with consistent chromosome translocations are Chronic Myelogenous Leukaemia (CML) and burkitt's lymphoma.


(1) Chronic Myelogenous Leukaemia (CML)

- Chronic myelogenous leukaemia in human beings is a fatal cancer involving uncontrolled replication of myeloblasts (stem cells of white blood cells).
- Ninety percent of CML is associated with an aberration of chromosome 22.
- This abnormal chromosome was originally discovered in the city of Philadelphia in 1959 and thus is called the 'Philadelphia chromosome'.
- Initially it was though to have a simple deletion in its long arm, however, subsequent analysis using molecular techniques has shown that the Philadelphia chromosome is actually the result of a reciprocal translocation between chromosomes 9 and 22.
- In the Philadelphia translocation, the tip of the long arm of chromosome 9 has been joined to the body of chromosome 22 and the distal portion of the long arm of chromosome 22 has been joined to the body of chromosome 9.
- CML is characterized by an excess of granular leucocytes in the blood.
- With the increase in the number of leucocytes, there is a reduction in the number of RBCs resulting in severe anaemia.

(2) Burkitt's Lymphoma

- Burkitt's lymphoma, a particularly common disease in Africa, is another example of a white blood cell cancer associated with reciprocal translocations.
- These translocations invariably involve chromosome 8 and one of the three chromosomes (2, 14 and 22) that carry genes encoding the polypeptides that form immunoglobulins or antibodies.
- Translocations involving chromosomes 8 and 14 are the most common.

Numerical aberrations of chromosomes : Each species has a characteristic number of chromosome. Variations or numerical changes in chromosomes (Heteroploidy) can be mainly of two types:

(X = basic chromosome number, 2n = somatic chromosome number)

(a) **Euploidy :** The somatic chromosome number in euploids is the exact multiple of basic haploid number. In euploidy an organism acquires an additional set of chromosomes over and above the diploid complement.

(1) Monoploidy or haploidy : Monoploids possess only one set or single basic set of chromosomes. Haploids on the other hand have half the somatic chromosome number. In diploid organisms monoploids and haploids are identical while in a tetra-or hexaploid with 4n or 6n chromosomes the haploids will possess 2n or 3n chromosome whereas its monoploid will possess only one set (n) of chromosome.

(2) **Diploidy :** The common chromosome number in the somatic cells of plants and animals.

(3) **Polyploidy :** Organism with more than two sets of chromosomes are known as polyploids. It may be triploid with three sets of chromosomes (3n) or tetraploid with four sets of chromosome (4n) and so on.

(b) **Aneuploidy :** Aneuploidy is the term applied for the chromosomal mutations involving only a part of a set, *i.e.*, loss (hypoploidy) or addition (hyperploidy) of one or more chromosomes. Aneuploidy may result from non disjunction of chromosome during cell division.

(1) **Monosomy :** Diploid organism that are missing one chromosome of a single pair with genomic formula 2n - 1. Monosomics can form two kind of gametes, (*n*) and (*n*-1).

(2) **Nullisomy :** An organism that has lost a chromsome pair is nullisomic. The result is usually lethal to diploids (2n - 2).

(3) **Trisomy :** Diploids which have extra chromosome represented by the chromosomal formula 2n + 1. One of the pairs of chromosomes has an extra member, so that a trivalent may be formed during meiotic prophase.

(4) **Tetrasomy :** In tetrasomic individual particular chromosome of the haploid set is represented four times in a diploid chromosomal complement. The general chromosomal formula for tetrasomics is 2n + 2 rather than 2n + 1 + 1. The formula 2n + 1 + 1 represents a double trisomic.

(iii) **Types of aneuploidy :** Aneuploidy may be of following types on the basis of chromosomes involved in non disjunction.

(a) **Aneuploidy involving non-disjunction in sex chromosomes :** This kind of aneuploidy is brought about due to non-disjunction in sex chromosomes. It may lead to following types of syndromes :

(1) **Turner's syndrome :** Such persons are monosomic for sex chromosomes *i.e.* possess only one X and no Y chromosome (XO). In other words they have chromosome number 2n - 1 = 45. They are phenotypic females but are sterile because they have under developed reproductive organs. They are dwarf about 4 feet 10 inches and are flat chested with wide spread nipples of mammary glands which never enlarge like those in normal woman. They develop as normal female in childhood but at adolescence their ovaries remain under developed. They lack female hormone estrogen. About one out of every 5,000 female births results in Turner's syndrome.

(2) Klinefelter's syndrome : Since 1942, this abnormality of sex is known to geneticists and physicians. It occurs due to Trisomy of sex chromosomes which results in (XXY) sex chromosomes. Total chromosomes in such persons are 2n + 1 = 47 in place of 46. Klinefelter (1942) found that testes in such male remain under developed in adulthood. They develop secondary sex characters of female like large breasts and loss of facial hair. Characters of male develop due to Y chromosome and those like female due to XX chromosomes. About one male child out of every 5,000 born, develops Klinefelter's syndrome.

Such children are born as a result of fertilization of abnormal eggs (XX) by normal sperms with (X) or (Y) chromosomes or by fertilization of normal eggs with (X) chromosomes by abnormal sperms with (XY) chromosome. They are sterile males mentally retarded and are **eunuchs**.

(3) **Super females and metasuper females :** Presence of extra (X) chromosomes in females shows such condition leading to (XXX, XXXX, XXXXX), having total 47, 48 or 49 chromosomes in each cell. Females with this type of aneuploidy show abnormal sexual development and mental retardation. Severeness of abnormality increases with the increase in number of (X) chromosomes.

(iv) Criminal's syndrome (super males) : Presence of an extra (Y) chromosome in males causes such a condition (XYY) resulting in individuals with 2n + 1 = 47 chromosomes. They have unusual height, mentally retarded and criminal bent of mind since birth. Their genital organs are under developed. Their frequency is one in every 300 males.

(b) Aneuploidy involving non-disjunction in autosomes : This type of an euploidy occurs due to trisomy of autosomes. In any particular autosomal pair, having 3 instead of normal 2 chromosomes. Such persons may be males 45 + XY = 47(2n + 1) or females 45 + XX = 47(2n + 1). On the basis of the number of the autosome pair affected by trisomy, they can be of following types.

(1) **Down's syndrome :** This autosomal abnormality is also known as Mongolian idiocy or mongolism. In Langdon Down of England (1866) studied the Mongolian idiocy and described the trisomic condition of their chromosomes. Down's syndrome, a very common congenital abnormality arises due to the failure of separation of 21^{st} pair of autosomes during meiosis. Thus an egg is produced with 24 chromosomes instead of 23. A Down's syndrome has 3 autosomes in 21st pair instead of 2. Total number of chromosomes in this case is 2n + 1 (21^{st}) = 47.

The affected children have a very broad fore head, short neck, flat palms without crease, stubby fingers, permanently open mouth, projecting lower jaw and a long thick extending tongue. They have low intelligence and are short heighted. They have defective heart and other organs. They are born to mothers aged 40 year and above during first pregnancy. They may survive upto 20 years under medical care.

They are called mongolian idiots because of their round, dull face and upper eyelids stretched downwards similar to mongolian race.

(2) Edward's syndrome : This autosomal abnormality occurs due to trisomy of eighteenth pair of autosomes in which the number of chromosomes are 2n + 1 = 47. The child with this defect survives only about 6 months. Such children have defective nervous system, malformed ears and a receding chin.

(3) **Patau's syndrome :** This is trisomy of thirteenth pair of autosomal chromosome. This trisomic condition involves numerous malformations such as harelip, clefted palate and cerebral, ocular and cardiovascular defects. Such children usually survive for about 3 months only.

(iv) **Mutagens :** Any substance or agent inducing mutation is called a mutagen. The mutagens may be broadly grouped into two classes.

(a) **Physical mutagens :** It comprise mainly radiations. Radiation has been used to induce mutations for the first time by **H.J. Muller** (1927) on animals and **L.J. Stadler** (1928) on plants. Radiation that can produce mutation is known as effective radiations which are as follows.

(1) **Ionizing (Particulate) :** α -particles, β -rays, protons and neutrons.

(2) **Ionizing (non particulate) :** X-rays, r-rays and cosmic rays.

(3) Nonionizing : Ultraviolet rays

(b) **Chemical mutagen :** A large number of chemicals react with the four nucleotides and modify their base-pairing capabilities. These are as follows.

(1) Base analogues : 5-bromodeoxyuridine (Brdu), 2-amino purine.

(2) Chemicals modifying base-pairing

- Hydroxylamine
- Nitrous acid
- Alkylating agent : Nitrogen mustard, ethyl methane sulfonate (EMS), methyl methane sulfonate (MMS) and N-methyl-N'-nitro-nitroso-guanidine (NTG).

(3) Intercalating agents : Proflavin and acridine orange

(v) **Genetic diseases in man :** There are many diseases in man due to gene mutations. It is either dominant or recessive. The mutated person may become incapable to produce specified enzyme, so result in inborn errors of metabolism.

(a) Chondrodystrophic dwarfism

(1) Chondrodystrophic dwarfism is a dominant autosomal mutation, most people are homozygous for recessive allele (c/c).

(2) The presence of one dominant C results in the premature closure of the growth areas of long bones of arms and legs, resulting in shortened and bowed arms and legs.

(b) Huntington disease

(1) Huntington disease is caused by a dominant gene on chromosome 4.

(2) The mutated gene causes abnormality by producing a substance that interferes with normal metabolism in the brain that leads to progressive degeneration of brain cells.

(3) The death comes ten to fifteen years after the onset of symptoms.

(c) Neurofibromatosis

(1) Also called "von Recklinghausen disease" caused by a dominant gene on chromosome 17.

(2) The affected individual may have ten spots on the skin which later may increase in size and number.

(3) Small benign tumours called neurofibromas may occur under the skin or in various organs.

(d) Tay-Sachs disease

(1) Tay-Sachs disease results from the lack of the dominant gene on chromosome 15 for the production of hexosaminidase and subsequent storage of its substrate, a fatty substance known as glycosphingolipid, in lysosomes.

(2) The patient suffers from defective vision, muscular weakness and gradual loss of all mental and physical control, death occurs by the age of three or four years.

(e) Cystic fibrosis

(1) The most common lethal genetic disease due to a recessive mutation on the chromosome 7.

(2) The body produces abnormal glycoprotein which interferes with salt metabolism.

(3) The mucus secreted by body becomes abnormally viscid and blocks passages in the lungs, liver and pancreas.

(f) Alzheimer's disease

(1) Alzheimer's disease, named after the German neurologist Alzheimer, is a degenerative brain disease characterized by memory loss, confusion, restlessness, speech disturbances, erosion of personality, judgement, and inability to perform the functions of daily living.

(2) Alzheimer's disease, a form of dementia, occurs in karyotypically normal individuals.

(3) About 5 percent of karyotypically normal individuals over age of 65 develop Alzheimer disease, and nearly 25 percent of those over age 80 do so.

(4) The brain of Alzheimer's patients show a marked loss of neurons.

(5) These patients also show an accumulation of senile plaques, which are thickened nerve cell processes (axons and dendrites) surrounding a deposit of particular type of polypeptide called amyloid β protein.

(6) In the brain of normal persons, amyloid β protein is produced and processed in a number of ways from a large number of amyloid precursor protein.

(7) The occurrence of Alzheimer's disease in people with Down's syndrome suggests that a gene or genes on chromosome 21 is involved.

(8) Genetic mapping has demonstrated that the gene for amyloid β protein is located on chromosome 21; this gene encodes an Amyloid Precursor Protein (APP) that is enzymatically cleaved to produce amyloid β proteins.

(9) According to **Bush** (2003) Alzheimer's disease is caused by a copper and zinc build up in the brain.

(g) Marfan's syndrome

(1) Marfan's syndrome is due to dominant mutation resulting in the production of abnormal form of connective tissues and characteristic extreme looseness of joints.

(2) The long bones of body grow longer; fingers are very long called 'spider fingers' or arachnodactyly.

(3) The lenses in eyes become displaced.

(h) Albinism

(1) Albinism is an autosomal recessive mutation.

(2) An albino cannot synthesize melanin which provides black colouration to skin and hair.

(3) Albinism is due to tyrosinase deficiency.

(4) The enzyme tyrosinase normally converts the amino acid tyrosine to melanin through an intermediate product **DOPA** (dihydro phenyl alanine).

(i) Sickle-cell disease

(1) Sickle-cell disease is a genetic disease reported from negroes due to a molecular mutation of gene Hb^A on chromosome 11 which produces the β chain of adult haemoglobin.

(2) The mutated gene Hb^s produces sickle-cell haemoglobin.

(3) The sixth amino acid in β chain of normal haemoglobin is glutamic acid.

(4) In sickle-cell haemoglobin this amino acid is replaced by valine.

(5) The children homozygous (Hb^SHb^S) produce rigid chains.

(6) When oxygen level of the blood drops below certain level, RBCs undergo sickling.

(7) Such cells do not transport oxygen efficiently; they are removed by spleen causing severe anaemia.

(8) Individuals with the Hb^AHb^A genotype are normal, those with the Hb^SHb^S genotype have sickle-cell disease, and those with the Hb^AHb^S genotypes have the sickle-cell trait.

(9) Two individuals with sickle-cell trait can produce children with all three phenotypes.

(10) Individuals of sickle-cell trait are immune to malaria.

(j) Thalassemia

(1) Thalassemia is a human anaemia due to an autosomal mutant gene and when this gene is present in double dose, the disease is severe thalassemia major with death occurring in childhood.

(2) Heterozygous persons show a milder disease, thalassemia minor or also called **Cooley's** anaemia.

(3) The persons suffering from thal assemia major are unable to produce β chain.

(4) Their haemoglobin contains δ chains like that of foetus which is unable to carry out normal oxygen transporting function.

(k) Alkaptonuria

(1) Alkaptonuria was the first of the recessive human trait discovered in 1902 by Archibald Garrod, 'father of physiological genetics' or 'father of biochemical genetics'.

(2) Patients of alkaptonuria excrete large amounts of homogentistic acid in urine.

(3) Such urine turns black upon exposure to light.

(4) In normal person, homogentistic acid (alkapton) is oxidized by a liver enzyme homogentistic acid oxidase to maleyl acetoacetic acid.

(1) Phenylketonuria (PKU)

(1) Phenylketonuria was discovered by the Norwegian physician **A. Folling** in 1934; an autosomal recessive mutation of gene on chromosome 12.

(2) PKU results when there is a deficiency of liver enzyme phenylalanine hydroxylase that converts phenylalanine into tyrosine.

(3) There is a high level phenylalanine in their blood and tissue fluids.

(4) Increased phenylalanine in the blood interferes with brain development; muscles and cartilages of the legs may be defective and the patients cannot walk properly.

(m) Gaucher's disease

(1) Gaucher's disease is a genetic disease associated with abnormal fat metabolism, caused by the absence of the enzyme **glucocerebrosidase** required for proper processing of lipids.

(2) Non processing of lipids results in accumulation of fatty material in spleen, liver, bone marrow and brain.

(3) The swelling of these organs occurs and patients usually die by the age of 15 years.

(n) Galactosemia

(1) Galactosemia is inherited as an autosomal recessive, and the affected person is unable to convert galactose to glucose.

(2) Galactosemia is due to the deficiency of the enzyme Galactose Phosphate uridyl Transferase (GPT).

(3) Milk is toxic to galactosemic infants; child usually dies at three years of age.

(o) Taste blindness of PTC

(1) Taste blindness of PTC is a genetic trait, not a disease, discovered by Fox in 1932.

(2) PTC (phenyl thiocarbamide) is a compound of nitrogen, carbon and sulphur with sour taste.

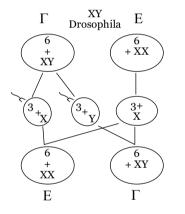
(3) About 30% people lack the ability to taste PTC which is transmitted by a dominant gene T.

(4) The genotypes TT and Tt are tasters of PTC, while tt are non-tasters or taste blind persons.

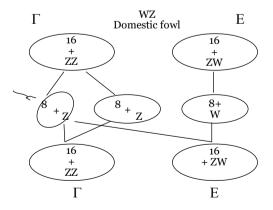
14.4 SEX DETERMINATION

Fixing the sex of an individual as it begins life is called sex determination. The various genetically controlled sex-determination mechanisms have been classified into following categories

(i) **Chromosomal theory of sex determination :** The X-chromosome was first observed by German biologist, **Henking** in 1891 during the spermatogenesis in male bug and was described as X-body. The chromosome theory of sex determination was worked out by **E.B. Wilson** and **Stevens** (1902-1905). They named the X and Y chromosomes as sex-chromosomes or allosomes and other chromosomes of the cell as autosomes.

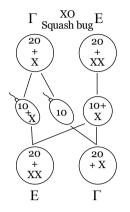

Sex chromosomes carry genes for sex. X-chromosomes carries female determining genes and Ychromosomes has male determining genes. The number of X and Y chromosomes determines the female or male sex of the individual, Autosomes carry genes for the somatic characters. These do not have any relation with the sex.

(a) **XX-XY type or Lygaeus type :** This type of sex-determining mechanism was first studied in the milk weed bug, Lygaeus turcicus by **Wilson** and **Stevens**. Therefore, it is called Lygaeus type. These are two different patterns of sex determination in Lygaeus type.

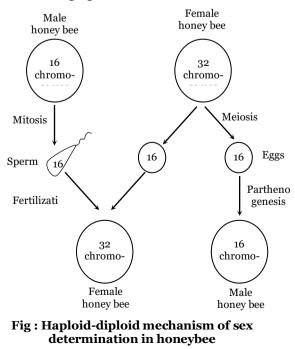

(1) Female homogametic XX and male heterogametic XY : The homogametic sex (XX) is female and produces ova all of one type, *i.e.* having X-chromosome. The male is heterogametic-XY and produces sperm of two types. 50% of which possess X-chromosome and other 50% Y-chromosome. This is simple XX-XY type and is found in man, *Drosophila* and certain insects.

Example : In *Drosophila* total number of chromosomes is eight, of which six are autosomes, common to both male and female. The fourth pair is of sex chromosomes. In male this is represented by XY *i.e.* Karyotype of male *Drosophila* 6+XY and in female XX *i.e.* 6+XX. Ova produced by female are all similar possessing 3+X chromosomes, whereas the sperm produced by male are 3+X and 3+Y in equal numbers.

(2) **Female heterogametic and male homogametic :** In fowl, other birds and some fishes, certain moths and butterflies, the female sex is heterogametic, with X and Y chromosome often represented by Z and W



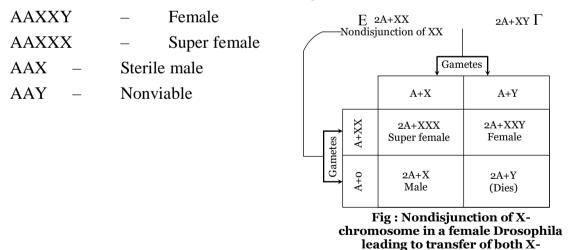
and laying two types of eggs, one half with X or Z chromosome and the other half with Y or W chromosome. The male sex is homogametic having XX or ZZ chromosomes. It produces sperm all of one type.


(b) **XX-XO type or Protenor type : Mc clung** in male squash bug (*Anasa*) observed 10 pairs of chromosomes and an unpaired chromosome. Their females have eleven pairs of chromosomes (22). Thus all the eggs carry a set of eleven chromosomes but the sperm are of the two types: fifty percent with eleven chromosomes and the other fifty percent with ten chromosomes. The accessory

chromosome was X-chromosomes. Fertilization of an egg by a sperm carrying eleven chromosomes results in a female, while its fertilization by a sperm with ten chromosomes produces male. It is said to be evolved by the loss of Y-chromosome.

(c) **Haploid-diploid mechanism of sex determination :** Hymenopterous insects, such as bees, wasps, saw flies, and ants, show a unique phenomenon in which an unfertilized egg develops into a male and a fertilized egg develops into a female. Therefore, the female is diploid (2N), and the male is haploid (N). eggs are formed by meiosis and sperms by mitosis. Fertilization restores the diploid number of chromosomes in the zygote which gives rise to the female. If the egg is not fertilized, it will still develop but into a male. Thus, the sex is determined by the number of chromosomes.

In honeybee, the quality of food determines whether a diploid larva will become a fertile queen or a sterile worker female. A larva fed on royal jelly, a secretion from the mouth of nursing workers, grows into a queen, whereas a larva fed on pollen and nectar grows into a worker bee. Thus, the environment determines fertility or sterility of the bee but it does not alter the genetically determined sex. The sex ratio of the offspring in the hive is controlled by the queen. She lays more fertilized eggs that produce worker females and fewer unfertilized eggs which produce haploid males. The queen mates only once in her life time, keeps a store of sperms in the seminal receptacle, and can control fertilization of eggs by releasing or not releasing sperms.


S.	Organisms	Heterogameti	Gamete		Zygotes	
No.		c sex	Sperms	Eggs	Females	Males
(1)	Drosophila, man	Male	X and Y	All X	XX	XY
	etc.					
(2)	Protenor(Bug,	Male	X and O	XX	XX	XO
	Grasshopper)					
(3)	Birds, moths	Female	All X	X and Y	XY	XX
(4)	Fumea (a moth)	Female	All X	X and O	Х	XX

Different types of chromosomal mechanisms of sex-determination in animals

(ii) **Quantitative or ratio theory of sex determination : C.B Bridges** worked out ratio theory of sex determination in *Drosophila*. According to this theory the ratio of chromosomes to autosomes is the determining factor for the sex. Single dose of X-chromosome in a diploid organism produces male, whereas 2X-chromosomes produce a female. If a complete haploid set of autosomes is designated by A then 2A : X will give rise to male and 2A : 2X to female.

(a) **Intersexes in** *Drosophila* and ratio theory of sex determination : Bridges hypothesis was supported by studies of flies arising after abnormal distribution of chromosomes on account of nondisjunction. Due to abnormal meiosis during oogenesis both the X-chromosomes fail to separate and move to one pole of meiotic spindle. Thus few eggs are formed with single autosomal genome but with 2X chromosomes, *i.e.* (AXX) and other with single autosomal genome but no sex chromosome (A). when such abnormal eggs are fertilized with normal sperm, the following result are obtained.

Results of fertilization of abnormal female gametes

Out of this progeny 1/4th males with no X are nonviable; the other 1/4 are without Y-chromosome and sterile. 1/4th females have an extra Y-chromosome while rest 1/4th females with 3X are super females. These are sterile with under developed sexual characteristics.

(ii) **Triploid intersexes and balance theory :** The triploid flies with (3A + 3X) are much like the normal diploid females both in appearance as well as in fertility. On mating to diploid males their progeny consisted of following types.

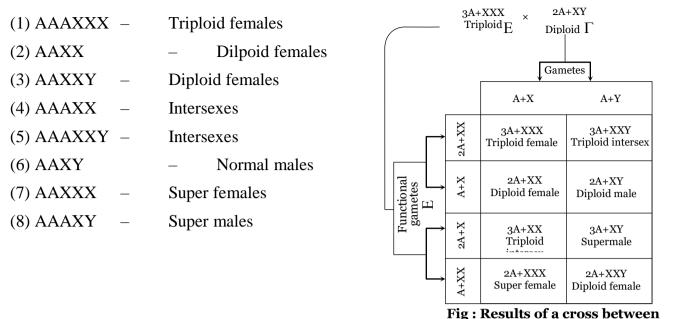
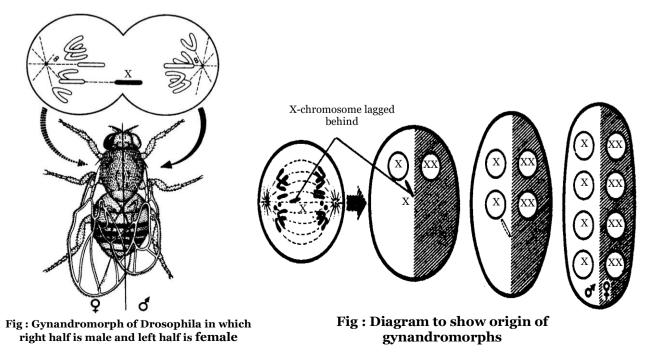



Fig : Results of a cross between triploid female and diploid male

The intersexes are sterile and intermediate between females and male, because the sex balance ratio in the intersexes comes to 2:3.

(2) **Gyandromorphs in Dorsophila and ratio theory of sex determination :** In *Drosophila* occasionally flies are obtained in which a part of the body exhibits female characters and the other part exhibits male characters. Such flies are known as **gynandromorphs**. These are formed due to misdivision of chromosomes and start as female with 2A+2X-chromosomes. One of the X-chromosomes is lost during the division of the cell with the result that one of the daughter cells possesses 2A+2X chromosomes and the other 2A+X. If this event happens during first zygotic division, two blastomeres with unequal number of X-chromosomes are formed. The blastomere with 2A+2X-chromosomes produces male half and the resultant fly is a bilateral gynandromorph. The occurrence of gynandromorphs clearly indicates that the number of X-chromosomes determines the sex of the individual.

(iii) **Genic balance theory :** Based upon the observations of ratio theory **Bridges** put forward genic balance theory in which he suggested that every individual whether male or female possesses in its genotype genes for both male and female characteristics. Which sex will actually develop is decided by the preponderance of that type of genes.

According to the genic balance theory of Bridges in *Drosophila melanogaster*, sex is determined by the ratio of the X-chromosomes and the set of autosomes. The Y-chromosomes play no part in sex determination it only governs male fertility. The XO flies are male, but sterile. Sex is governed by the ratio of the number of X chromosomes to sets of autosomes. The table given below indicates how the ratio of X/A help to determine the sex.

S. No.	Sex	Number of X- chromosomes	Number of autosomal set	Sex index X/A ratio
(1)	Super female	XXX (3)	AA (2)	3/2 = 1.5
(2)	Normal female Tetraploi d Triploid Diploid Haploid	XXXX (4) XXX (3) XX (2) X (1)	AAAA (4) AAA (3) AA (2) A (1)	4/4 = 1.0 3/3 = 1.0 2/2 = 1.0 1/1 = 1.0
(3)	Intersex	XX (2)	AAA (3)	2/3 = 0.66
(4)	Normal male	X (1)	AA (2)	1/2 = 0.50
(5)	Super male	X (1)	AAA (3)	1/3 = 0.33

Ratio of X-chromosome to autosomes and the corresponding phenotype in Drosophila

Genes for maleness are carried on the autosomes, those for femaleness on the X-chromosomes. The sex index ratio of female is 1.0 while in males is 0.50. If X/A ratio is greater than 1.0 produces super females (meta females) and less than 0.50 produces super males. The X/A ratio lesser than 1.0 but greater than 0.5 (for example 0.66) result in intersexes. The degree of femaleness is greater where the X/A ratio is closer to 1.0 and the degree of maleness is greater where that ratio is closer to 0.5.

Human sex determination : The genic balance theory of sex determination is not universally accepted. Unlike *Drosophila* X : A does not influence sex determination. The key to sex determination in humans is the SRY (for sex region on the Y) gene located on the short arm of the Y-chromosome. In the male, the testis-determining factor (TDF) is produced by SRY on the Y-chromosome. TDF induces the medulla of the embryonic gonads to develop into testes. In the absence of SRY on Y, no TDF is produced. The lack of TDF allows the cortex of the embryonic gonads to develop into ovaries.

(iv) **Hormonal theory of sex determination :** The sex determination theories of chromosomes and genic balance successfully apply to the lower animals but in higher vertebrates and under certain conditions in invertebrates, the embryo develops some characters of the opposite sex together with the characters of its own sex-chromosome. It means, the sex changes under specific circumstances. This is due to the hormones secreted by the gonads of that animal.

(a) **Free martinism :** The influence of hormones on sex determination comes from free-martins often found in cattles. LILLIE and others found that where twins of opposite sex (one male and other female) are born, the male is normal but female is sterile with many male characteristics. Such sterile females are known as free martins.

The scientific explanation the for formation of free martins is the effect of hormones of the male sex on the female. In cattle the foetal membranes of the twins are fused in such a manner that they have a common circulation of blood. The female hormone is produced at a slightly later stage in development the and guides its development towards female side. But since the twins have a common circulation and blood passes from one twin into the body of other twin, the male hormone which is produced slightly in advance of female hormone, enters the body of female twin and before the female hormone onsets the development of female characteristics it is already differentiated in the guidance of male hormone. As a result the developing female is sterile.

(v) **Environmental theory of sex determination :** In some animals, there is environmental determination of sex.

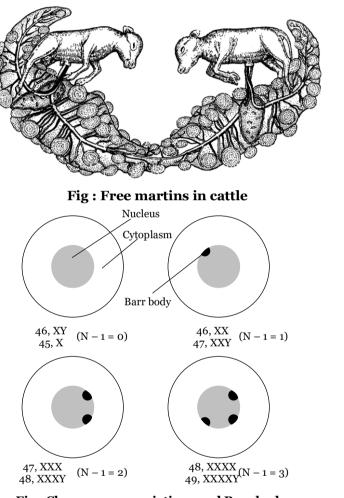


Fig : Chromosome variations and Barr body

(a) In *Bonellia*, a marine worm, the swimming larva has no sex. If it settles down alone, it develops into a large (2.5 cm) female. If it lands on or near an existing female proboscis, a chemical secreted from her proboscis causes the larva to develop into a tiny (1.3 mm) male. Male lives as a parasite in the uterus of the female.

(b) In turtles, a temperature below 28°C produces more males, above 33°C produces more females, and between 28°C to 33°C produces males and females in equal proportion, while in crocodile male sex is predominant at high temperature.

(vi) **Barr body in sex determination : Murray Barr** (1949), a geneticist noticed a small body in the nucleus of the nerve cells of female cats which stained heavily with nuclear stains. Further investigations showed that not only nerve cells, but many other cells from female cats only, had these

bodies, now known as sex chromatin or Barr bodies. It was soon learnt that such bodies can be found in females of many mammals including human. In women the Barr body lies against the nuclear membrane like a round disc in the neutrophil blood cells, skin cells, nerve cells, cells of mucous membrane, cells of lining in vagina and urethra. They are absent in man. These bodies are thus named after the discover **Barr**.

Barr bodies are used to determine the sex of unborn human embryos. In this technique called **amniocentesis** sample of the amniotic fluid is examined for Barr bodies. The sex is determined by the presence or absence of Barr bodies in epithelial cells of embryo present in the amniotic fluid sample. Studies from the cells of aborted embryos show that Barr bodies can be distinguished at about 15 or 16th day after conception that means several weeks before the formation of gonads. Whereas sex of embryo is determined soon after fertilization, sex differentiation can be noticed in third week stage of pregnancy.

Mary Lyon hypothesis : According to the British geneticist **Mary Lyon** (1961), one of the two X-chromosomes of a normal female becomes heterochromatic and appears as Barr body. This inactivation of one of the two X-chromosomes of a normal female is the dosage compensation or Lyon's hypothesis.

It is estimated that number of Barr bodies is one less from the total number of X chromosomes present in embryo. Therefore, Barr bodies are also used to decide the genic constitution of such persons who have irregular number of sex chromosomes. More than one X chromosome in such persons is transformed into Barr bodies.

S.	Individual	No. of X chromosome	No. of Barr body (X – 1)
No.			
(1)	Normal woman	XX	2-1 = 1 (one barr body)
(2)	Women with Turner's	ХО	1-1 = 0 (no barr body)
	syndrome		
(3)	Super female	XXX	3-1 = 2 (two barr bodies)
(4)	Man	XY	1-1 = 0 (no barr body)
(5)	Man with Klinefelter's	XXY	2-1 = 1 (one barr body)
	syndrome		

Sex can also be distinguished by studies of simple blood smears. The neutrophils, the most common of the white blood corpuscles, have a nucleus divided into two or three lobes. Female neutrophils showing a small drumstick extending out from one of the nuclear lobes, is a definite indication of the female chromosome component in the cells.

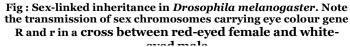
Important Tips

- Goldschmidt brought forward the quantitative theory of sex..
- The term "gynandromorphism" was introduce by Goldschmidt in 1915.
- Drumstick is the sex chromatin present in the neutrophil (Polymorphonuclear leucocyte) of 3 to 5% cells in females, but not in males.
- Y chromatin (Y body) can be identified as bright spot by staining cells with acridine dyes.
- First X-linked gene was discovered by T.H. Morgan (1910) for white eye mutation.

- Pedigree of colour blindness was first described by Horner (1876).
- It is also called bleeder's disease, first studied by John Cotto in 1803.
- Duchenne Muscular Dystrophy (DMD) is the disease which is characterized by a progressive weakness and loss of muscle.
- Inheritance of beard in a man is sex-limited.
- In melandrium (Garden flower) the sex determination type is XX-XY.

14.5 SEX LINKED INHERITANCE


Sex chromosomes of some animals and man besides having genes for sex character also possess gene for non sexual (somatic) characters. These genes for non sexual characters being linked with sex chromosomes are carried with them from one generation to the other. Such non-sexual (somatic) characters linked with sex chromosomes are called sex linked characters or traits, genes for such characters are called sex linked genes and the inheritance of such characters is called sex linked inheritance. The concept of sex-linked inheritance was introduced by **THOMAS H. MORGAN** in 1910, while working on *Drosophila melanogaster*.


The sex chromosomes in man and *Drosophila* are almost same in structure. The X and Y chromosomes, although different (non-homologous) in shape, size and structure, have atleast some similar (homologous) part which is known as homologous segment and the remaining part as non-homologous or differential segment. Genes for sex linked characters occur in both segments of X and Y chromosomes. Many sex linked characters (About 120) are found in man. Such characters are mostly recessive.

(i) Types of sex linked inheritance

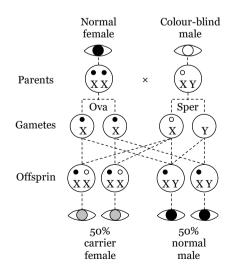
(a) **Diandric sex linked or X linked traits :** Genes for these characters are located on non-homologous segment of X chromosome. Alleles of these genes do not occur on Y chromosome. Genes of such characters are transferred from father to his daughter and from his daughter to her sons in F_2 generation. This is known as Cris-cross inheritance. As the genes for most sex linked characters are located in X chromosome, they are called X-linked characters *e.g.* colour blindness and haemophilia in man and eye colour in *Drosophila*.

(1) Sex linked inheritance in Drosophila : Drosophila melanogaster has XX and XY sex chromosomes in the female

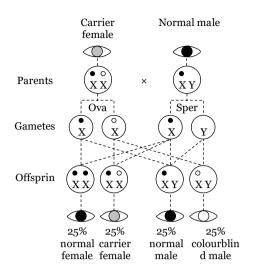
and male respectively. Its eye colour is sex linked.

Allele of the eye colour gene is located in the X chromosome, and there is no corresponding allele in the Y chromosome. The male expresses a sex-linked recessive trait even if it has a single gene for it, whereas the female expresses such a trait only if it has two genes for it. The normal eye colour is red and is dominant over the mutant white eye colour. The following crosses illustrate the inheritance of Xlinked eye colour in *Drosophila*.

(i) **Red-eyed female** × **White-eyed male :** If a homozygous red-eyed female fly is mated with a **hemizygous** (having a single allele for a trait) white-eyed male fly, all the F_1 flies, irrespective of their sex, are red eyed. When the red-eyed male and female flies of F_1 are intercrossed (equivalent to self pollination in peas), the F_2 flies are in the ratio of 2 red-eyed females to 1 red-eyed male to 1 white-eyed male. Thus, the red-eyed and white-eyed flies are in the ratio of 3 : 1 in F_2 generation (Mendelian monohybrid ratio).

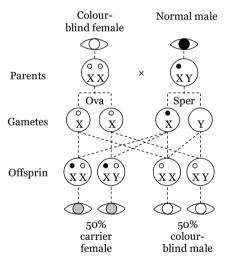

If X^{R} represents a gene for red eye and X^{r} that for white eye colour, the above cross may be diagramed as follows. The above cross shows that a recessive X-linked trait follows criss-cross inheritance, *i.e.*, transmission from the father to the grandsons through the daughters. The latter are called carriers because they have a trait but do not express it.

(2) **Sex linked inheritance in man**. Colour blindness and Haemophila are the two main sex linked or X-linked disease are found in man.

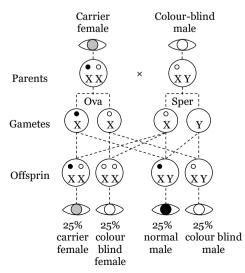

(i) **Colour blindness :** Person unable to distinguish certain colours are called colour blind. Several types of colour blindness are known but the most common one is 'red-green colour blindness'. It has been described by **HORNER** (1876).

The red blindness is called protanopia and the green blindness deutoranopia. X-chromosome possesses a normal gene which control the formation of colour sensitive cells in the retina. Its recessive allele fails to do its job properly and results in colour blindness. These alleles are present in X chromosome is evidenced by the following results.

(1) If a normal female is married to a colour blind man.


Results : All her sons and daughter have normal colour vision, but all daughters are carrier. (2) But when her daughter (carrier) are married to man with normal colour vision man.

Result : Some colour blind sons are formed.


Conclusion : It means that a woman with normal colour vision whose father is colour blind gives birth to children, of which about half of the sons are colour blind and other half are normal.

(3) If a colour blind woman is married to a normal man.

Result : All her sons are colour blind whereas all the daughter have normal colour vision.

(4) But when these daughters having normal colour vision (Heterozygous) are married to colour blind man.

Result : The colourblind grandsons and grand daughters are produced with almost equal number of normal grandsons and grand daughters.

Conclusion : It means that a colour blind woman has sons all colour blind and daughters all with normal vision and a colour blind woman always has a colour blind father and her mother is a carrier.

	PARENTS			OFFSPRINGS			
Fe	male	Μ	ale	Daughters		Sons	
Genoty	Phenotyp	Genotype	Phenotyp	Genotype	Phenotyp	Genotype	Phenoty
ре	e		e		e		ре
XX	Normal	X ^c Y	Colourblin	XX ^c	Carrier	XY	Normal
			d				
XX ^c	Carrier	XY	Normal	(i) XX	Normal	XY	Normal
				(ii) XX ^c	Carrier	X ^c Y	Colourbl
							ind
XX ^c	Carrier	X°Y	Colourblin	(i) XX ^c	Carrier	XY	Normal
			d	(ii) X ^c X ^c	Colourblin	X ^c Y	Colourbl
					d		ind
X ^c X ^c	Colourblin	XY	Normal	X°X	Carrier	X°Y	Colourbl
	d						ind

Inheritance of colourblindness

The above results could easily be explained with the assumption that colour vision is sex linked character and its gene is present on X-chromosome, Y-chromosome lacks its allele. Always male receives its X-chromosome from mother (through ovum) and Y-chromosome from father (through sperm), whereas the female receives one X-chromosome from each parent (through ovum and sperm). From the above result following conclusions may be drawn.

(1) Colour blindness is more common in males than in females.

(2) Two recessive genes are needed for the expression of colour blindness in female, whereas only one gene gains expression in male.

(3) Males are never carriers.

(4) Colour blind women always have colour blind fathers and always produce colour blind sons.

(5) Colourblind women produce colour blind daughters only when their husbands are colour blind.

(6) Women with normal colour vision, whose fathers are colour blind, produce normal and colour blind sons in approximately equal proportion.

(ii) **Haemophilia :** In haemophilia the blood fails to clot when exposed to air and even a small skin injury results in continuous bleeding and can lead to death from loss of blood.

It is also called bleeder's disease, first studied by **John Cotto** in 1803. The most famous pedigree of haemophilia was discovered by **Haldane** in the royal families of Europe. The pedigree started from Queen Victoria in the last century. In a patient of haemophilia blood is deficient due to lack necessary substrate, thromboplastin. It is of two types.

(a) **Haemophilia-A**: Characterized by lack of antihaemophilic globulin (Factor VIII). About fourfifths of the cases of haemophilia are of this type.

(b) **Haemophilia-B**: 'Christmas disease' (after the family in which it was first described in detail) results from a defect in Plasma Thromboplastic Component (PTC or Factor IX).

Like colour blindness, haemophilia is a well known disorder which is sex-linked recessive condition. The recessive X-linked gene for haemophilia shows characteristic Criss-cross inheritance like the gene for colour blindness. Its single gene in man results in disease haemophilia, whereas a woman needs two such genes for the same.

(iii) **Defective enamel :** It is a dominant X-linked trait and is inherited through a dominant X-linked gene. As X-chromosome is present in both man and woman, it is expressed in both the sexes. However, such persons have defective enamel on teeth like grey or brown unlike pure white enamel in a normal man.

Another example of dominant X-linked gene is the dimpled cheeks. Dimple may occur on one or both the cheeks.

(b) Holandric or Y-linked traits : Genes for these characters are located on non-homologous segment of Y chromosome. Alleles of these genes do not occur on X chromosome. Such characters are inherited straight from father to son or male to male e.g. hypertrichosis of ears in man.

(1) **Hypertrichosis of ears :** This is a condition in which excessive amount of large hair grow on the pinna in man. It is sex-linked trait controlled by a gene present on the non-homologous segment of the Y-chromosome. Hence its inheritrance is called



Fig : 'Hairy ears', an inheritance by holandric gene

holandric inheritance and it appears only in man. It passes directly from father to son.

(c) **XY-linked inheritance :** The genes which occur in homologous sections of X and Y-chromosomes are called XY-linked genes and they have inheritance like the autosomal genes.

Example of XY-linked genes are those of the inheritance of following

(1) **Xeroderma pigmentosa**, a skin disease characterized by the pigment patches and cancerous growth on the body.

(2) Nephritis, a kidney disease.

(ii) **Sex-influenced traits :** The autosomal traits in which the dominant expression depends on the sex hormones of the individual are called sex-influenced traits. These traits differ from the sex limited traits which are expressed in only one sex. It has following examples.

(1) **Baldness in man :** Baldness in humans is the best example of sex-influenced traits. This trait is due to a single mutant gene but the expression of the heterozygous is different in man and woman. This is a hereditary character controlled by sex-influenced gene which is dominant in men and recessive in women. The difference in expressions may be caused by varying amounts of male and female sex hormones. If autosome dominant gene 'B' is regarded to inherit the baldness, the homozygous (BB) dominant condition will cause baldness in man as well as women. This gene for baldness acts recessively in woman when present in heterozygous (Bb) condition, the baldness develops in males only because under such condition the phenotype expression (baldness) is influenced by androgen hormone secreted by man. A heterozygous female is normal. A homozygous recessive condition (bb) does not allow baldness to develop either in male or female.

Genotyp	Phenotype		
e	Men	Women	
B/B	Bald	Bald	
B/b	Bald	Non-bald	
b/b	Non-bald	Non-bald	

Phenotypic expression of genotype for baldness

The different phenotypes in men and women shown in above table are sex-influenced characters and also called sex-controlled traits.

The progeny that would be obtained from the marriage of heterozygous (B/b) man and woman for baldness have been shown below.

P ₁	Women (B/b)	Man (B/b)
Male gametes	(non-bald)	Bald
Female	B and b	B and b
gametes	В	b
В	B/B bald male	B/b bald male
	Bald female	Non-bald female
b	B/b bald male	b/b non-bald
	Non-bald	male
	female	Non-bald female

Progeny resulting from the marriage of bald men and non-bald women both heterozygous

(2) **Length of index finger :** It is another example of sex-influenced trait in man. It is controlled by a gene which is dominant in male and recessive in the female. When the hand is placed on white board the tip of the fourth finger or ring finger just touches a horizontal line, it is seen that index or second finger does not reach this line in many cases. In some persons index finger extends beyond this horizontal line as shown in figure. The short index finger is inherited as a dominant trait in men and as a recessive condition in women.

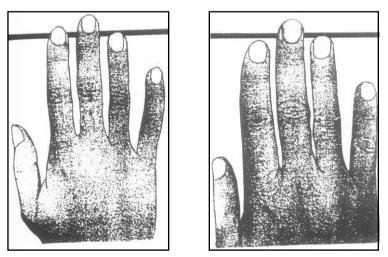
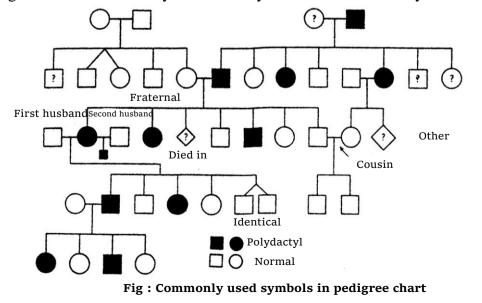


Fig : Sex influenced inheritance of length of index finger

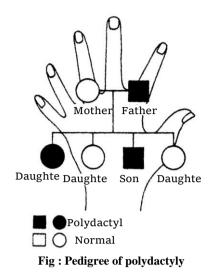

(iii) **Sex limited traits :** Traits or characters which develop only in one sex are called sex-limited characters. They are produced and controlled by the genes which may be located on autosomes in only one sex. Such genes are responsible for secondary sexual characters as well as primary sexual characters. They are inherited according to Mendel's laws.

Sex-limited traits in man : Beard is produced by sex-limited genes in man, which does not develop in woman. Breast development is normally limited to woman. In case of abnormalities of hormonal secretions facial hair may develop in woman and a faminine breast development may occur in man. It means that expression of sex-limited characteristics in vertebrates depend upon the secretion of sex hormones. For example genes for deep masculine voice, masculine body, masculature in man will express themselves only in the presence of male hormone. Genes for faminine voice and faminine musculature on the other hand express themselves in the absence of male hormone and will not require the secretion of female hormone. Similarly, breast development in woman requires the presence of female hormone rather than mere absence of the male hormone. It can be concluded that certain sex-limited characteristics are expressed in the absence of certain hormones and other express only in the presence of sex-hormones.

14.6 PEDIGREE ANALYSIS

Inheritance of hundreds of characteristics such as polydactyly, haemophilia, colour blindness, attached ear lobes and tongue rolling, generation after generation in particular families of man have been studied. In order to conduct such study, a standard method has been used to represent the family pedigree in a concise, easily understood form so that one can visualize the entire pedigree (family history) at a glance of the chart.

(i) **Pedigree chart and symbols :** It is customary to represent men by squares and women by circles in a chart for study of pedigree analysis. Marriage is indicated by a connecting horizontal line and the children by attachment to a vertical line extending downward from the horizontal line. Individuals having particular characters to be studied are denoted by solid squares or circles while those not having them are indicated by outlines only. Twins are denoted by bifurcating vertical lines.



In such a pedigree analysis a person who is the beginner of the family history is called proband. It

is called propositus, if male and poposita, if female. The children of such parents are known as sibs or siblings. So a family is constituted by such parents and their siblings. Sometimes, a very large family is formed as a result of interconnected marriages. Such a circle of large persons interconnected is called Kindred.

In order to study pedigree analysis we have taken some of the important case histories as follows :

(a) **Polydactyly :** The pedigree of this trait has become standard usage among the geneticists and it helps us to understand the process of transmission of this trait.

This inheritable trait was discovered when a woman brought her young daughter to a doctor for examination as she had an extra finger on one hand and an extra toe on one foot. On investigation it was found that child's father had this characters (though his extra finger had been removed surgically) and that her brother also had the character. The other two children of this family had normal number of fingers and toes. This type of inheritance is typical of characters which are known as dominant.

(b) Attached ear lobes : This is a recessive type of inheritance and is inherited in a different way.

(1) Two parents with free ear lobes produced two children with attached ear lobe in a family of five children.

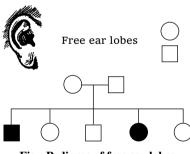
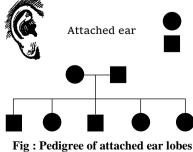
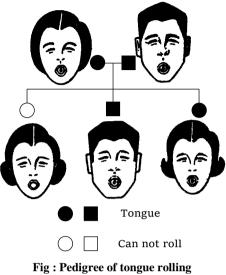




Fig : Pedigree of free ear lobes

(2) In another family both parents had attached ear lobes but all the four of their children had this trait of attached ear lobes.

(c) **Tongue rolling :** Some persons are capable of rolling their tongue while others are not gifted with this power. A couple both of whom are tongue roller have two out of these children as tongue rollers.

(d) **Crooked little fingers :** This is a family pedigree of a human family where crooked little fingers are inherited through a simple dominant gene. In this pedigree a woman had two sons one of which had crooked little finger. Her husband also had same type of defective fingers. On further survey of her husbands, family it was found that her husband's sister and mother both had crooked little fingers, as well as his grandfather also possesses this trait. The characteristic also appeared in more distant relatives.

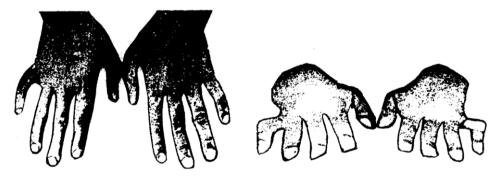
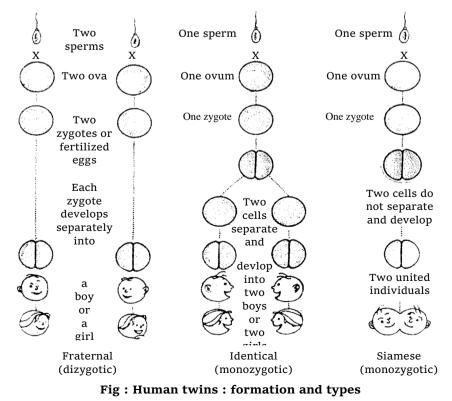


Fig : Inheritance of crooked little fingers (dominant trait)

14.7 Twins


Twins : Two birth occurring at the same time in human are called twins, they are of peculiar genetic interest. The hereditary basis of a number of human traits has been established by the study of twins. There are 3 kinds of twins.

(i) **Identical or monozygotic twins :** Identical twins are formed when one sperm fertilizes one egg to form a single zygote. As a result of separation of two daughter cells or blastomeres after the first cleavage, each of the cell develops into a separate individual. Such individuals are called **identical twins**. Since they develop from a single zygote, they are called **monozygotic twins**. They have the same genotype and phenotype and are of same sex. Differences if any, may be due to different environmental conditions.

(ii) **Siamese twins or conjoint twins :** Like monozygotic twins, siamese twins also originate from one zygote but the daughter cells formed as a result of first cleavage fail to separate completely and they remain joined at some point. They grow into two individuals joined together. Thus the two individuals called **conjoint twins** remain attached at one or more parts of the body. They were first studied in the country Siam, hence called Siamese twins. Siamese twins usually do not survive after birth although a few cases of their survival are well known. They are always of the same sex, same genotype and phenotype.

(iii) **Fraternal twins :** They are dizygotic twins formed from the two eggs fertilized by two sperms separately but at the same time. They may be both males, both females or one male and one female. They may have different genotypic constitution and different phenotype. Thus fraternal twins develop in same environment with different constitution but are the members of same age. They resemble each other just like any two brothers and sisters. Although they may be of same sex but due to different hereditary traits, they may carry congenital variations.

Among the twins fraternal twins are most common and Siamese twins are most rare.

14.8 EUGENICS, EUTHENICS AND EUPHENICS

(i) **Eugenics :** The term eugenics (Gr. Eugenes, well born) was coined by British scientist **Sir Francis Galton** in 1883. Galton is called 'Father of eugenics' as this branch has been started by him.

Eugenics is the branch of science which deals with improvement of human race genetically. This aspect of human betterment aims to improve the human germplasm by encouraging the inheritance of best characteristics so that defective characters may be eliminated. Eugenics attempts to attain its objective bilaterally by suggesting a number of 'do's and 'don'ts' to improve the human gene pool. The 'don'ts' are meant to check inheritance of the poor or undesirable germplasm, while the do's aim at perpetuating desirable germplasm to be inherited. By this method aim of improvement of human race may be achieved by two ways :

(a) **Positive eugenics :** In this approach of eugenics the future generations are improved by encouraging the inheritance of better traits. Following methods may be adopted to achieve this.

(1) **Planned marriages :** The selection of mate for marriage should be made on the basis of better traits rather than on the basis of dowry, caste or religion etc. will give rise to the progeny with better traits.

(2) **Perevention of loss of good germplasm :** Many intelligent, specialists, educationists and politicians with better traits should be encouraged getting marriage at early stage and practice polygamy may contribute for more and more utilization of good germplasm.

(3) **Medical engineering :** To destroy the unwanted germplasm or such genes before their expression **Liederberg** (1963) put forth a novel idea of medical engineering.

(4) **Germinal choice or eutelegenesis :** In human beings artificial fertilization or insemination is a biological process. **Muller** (1963) put forward the idea of production of children of high mental qualities and good traits by artificial fertilization of a woman of high quality traits with the sperms of desired best man.

(5) **Genetic counselling :** Production of healthy progeny should be the endeavour of man to ensure a better future for humanity. Genetic counselling can make a significant contribution in this direction. It can provide much needed relief for families with history of genetic diseases. Genetic counselling is even useful after marriage. A Rh⁻ woman with Rh⁺ partner when aware of the implications in the second child, can go for suitable medical aid well in advance.

(b) **Negative eugenics :** This is a negative aspect of improving mankind by restricting the transmission of poor and defective germplasm. This restriction can be brought about in the following ways.

(1) **Segregation :** Persons with serious abnormal hereditary defects like feeble mindedness, epilepsy, leucoderma, criminals, immorals and stupid people, should be isolated *i.e.* should not be permitted to mingle and marry with normal, intelligent persons.

(2) **Restriction on blood marriages :** Marriage between close relative like cousins tend to bring together the recessive alleles in homozygous condition and can be expressed in haemophilia, albinism and colour blindness.

(3) **Sterilization :** The most effective method to stop the persons with defective germplasm to produce offsprings is the sterilization. This prevents the transmission of undesirable traits in man and woman by vasectomy and tubectomy respectively.

(ii) **Euthenics :** Euthenics is the improvement of human race by improving the environmental conditions, *i.e.*, by subjecting them to better nutrition better unpolluted ecological conditions, better education and sufficient amount of medical facilities.

(a) **Better education :** Education is one of the surest agents which can provide better humanity. The conditions of surroundings *i.e.* the immediate environment of an individual has a great bearing upon personality of the person. The society which an individual chooses determines to some extent, his character. Medical facilities are largely responsible for maintenance of sound health. Employment conditions determine the degree of fulfillment of the individual's basic requirements and hence it influences his entire outlook. Euthenics attempts to provide the best of education, the healthiest of surroundings, the finest of societies, full medical facilities and rewarding employment conditions.

(b) **Subsidization of superior students :** Euthenics requires that a best student be selected and be provided opportunities for his multifaceted development. Students of no definite class and group may be equally intelligent. A few are most intelligent, some are average, still others are below average and some are dull or feeble minded or idiots. A definite scale to measure the mental ability has been prescribed which is known as intelligence quotient.

Intelligence quotient (IQ) : The ratio between actual (chronological) age and mental age multiplied with 100 is known as I.Q. Intelligence quotient is the mental competence in relation to chronological age in man. It can be denoted by following formula.

I.Q. =
$$\frac{\text{Mental age}}{\text{Actual age}} \times 100$$

By applying this formula we can easily calculate the IQ, such as if a 10 year child has mental age 14, his IQ will be

$$I.Q. = \frac{14}{10} \times 100 = 140$$

On the basis of different levels of I.Q. persons are classified as follows.

S.	I.Q.	Person
No.		
(1)	0 - 24	Idiot
(2)	25 - 49	Imbecile
(3)	50 - 69	Moron
(4)	70 – 79	Dull
(5)	80 - 89	Ordinary
(6)	90 - 109	Average
(7)	110 – 119	Superior
(8)	120 - 139	Most superior
(9)	140 or more	Genius

(iii) **Euphenics :** The study of born defectives and their treatment is called euphenics. The term euphenics was given by **A.C. Pai** (1974) for symptomatic treatment of human genetic disease especially in born errors of metabolism. Following methods can be employed as euphenic measures.

(a) **Amniocentesis :** It is a test to detect genetic diseases as well as the sex of embryo during development in mother's womb. Amniotic fluid is tested and if embryo has genetic disease the embryo can be aborted.

(b) **Infusion of missing enzyme :** Genetic physiological diseases occur due to lack of particular enzymes. Infusion of such missing enzyme may help in treatment of such disease.

(c) **Genetic engineering :** Treatment of the gene controlling genetic disease by genetic surgery and genetic engineering is also helpful in euthenics.

14.9 GENETIC ENGINEERING

(i) Recombinant DNA technology

(a) **Definition :** Genetic engineering, a kind of biotechnology, is the latest branch in applied genetics dealing the alteration of the genetic make up of cells by deliberate and artificial means. Genetic engineering involves transfer or replacement of genes, so also known as recombination DNA technology or gene splicing.

(b) **Tools of genetic engineering :** Two enzymes used in genetic engineering are restriction endonuclease and ligases. R.E. is used to cut the plasmid as well as the foreign DNA molecules of specific points while ligase is used to seal gaps or to join bits of DNA.

The ability to clone and sequence essentially any gene or other DNA sequence of interest from any species depends on a special class of enzymes called restriction endonucleases. Restriction endonucleases are also called as molecular scissors or 'chemical scalpels'. Restriction endonucleases cleave DNA molecules only at specific nucleotide sequence called restriction sites. The first restriction enzyme identified from a bacterial strain is designated I, the second II and so on, thus, restriction endonuclease EcoRI is produced by Escherichia coli strain RY 13. Restriction enzyme called EcoRI recognizes the sequence $\begin{array}{c} G \downarrow A A T T C \\ C T T A A \uparrow G \end{array}$ and cleaves the DNA between G and A on both strands. Restriction nucleases make staggered cuts; that is, they cleave the two strands of a double helix at different joints and blunt ended fragments; that is, they cut both strands at same place.

Enzyme name	Pronunciation	Organism in which	Recognition
		enzyme is found	sequence and
			position of cut
Bam HI	"bam-H-one"	Bacillus	5' G [↓] GAT C C 3'
		amyloliquefaciens H	3' C C TAG↑ G 5'
Bgl II	"bagel-two"	Bacillus globigi	$A^{\downarrow}G A T C T$
			$T C T A G \uparrow A$
Eco RI	"echo-R-one"	E. coli RY13	$G^{\downarrow}AATTC$
			C T T A A↑G
Hae II	"hay-two"	Haemophilus aegyptius	$R \subseteq C \subseteq C^{\downarrow}Y$

Characteristics of some restriction endonucleases

			Y↑C G C G R
Hind III	"hin-D-three"	Haemophilus influenzae	$A^{\downarrow} A G C T T$
		Rd	$T \ T \ C \ G \ A \uparrow A$
Pst I	"P-S-T-one"	Providencia stuartii	$C T G C A^{\downarrow}G$
			G↑ A C G T C
Sma I	"sma-one"	Serratia marcescens	$\mathbf{C} \mathbf{C} \mathbf{C} \downarrow^{\downarrow} \mathbf{G} \mathbf{G} \mathbf{G}$
			$G\;G\;G\uparrow C\;C\;C$
Hae III	"hay-three"	Haemophilus aegyptius	$G G \downarrow C C$
			$C \ C \uparrow G \ G$
Hha I	"ha-ha-one"	Haemophilus	G C G [↓] C
		hemolyticus	C↑G C G
Hpa II	"hepa-two"	Haemophilus	$C^{\downarrow} C G G$
		parainfluenzae	$G \ G \ C \uparrow C$

(c) Steps of recombinant DNA technology

(1) Isolating a useful DNA segment from the donor organism.

(2) Splicing it into a suitable vector under conditions to ensure that each vector receives no more than one DNA fragment.

(3) Producing of multiple copies of his recombinant DNA.

(4) Inserting this altered DNA into a recipient organism.

(5) Screening of the transformed cells.

(d) **Vectors :** Vector in genetic engineering is usually a DNA segment used as a carrier for transferring selected DNA into living cells. Which are as follows

(1) **Plasmid :** Plasmid are extrachromosomal, closed circular double stranded molecules of DNA present in most eukaryotes. All plasmid carry replicons pieces of DNA that have the genetic information required to replicate. Plasmid pBR 322 was one of the first widely used cloning vectors, it contain both ampicillin and tetracycline resistance genes.

(2) **Phage :** It is constructed from the phage λ chromosomes and acts as bacteriophage cloning vectors.

(3) **Cosmid :** The hybrids between plasmid and the phage λ chromosome give rise to cosmid vectors.

Beside all these there are artificial chromosomes like

BACs (Bacterial Artificial chromosomes)

YACs (Yeast Artificial chromosomes)

MACs (Mammalian Artificial chromosomes) are very efficient vectors for eukaryotic gene transfers.

(e) **Application of recombinant DNA technology :** The technique of recombinant DNA can be employed in the following ways.

(1) It can be used to elucidate molecular events in the biological process such as cellular differentiation and ageing. The same can be used for making gene maps with precision.

(2) In biochemical and pharmaceutical industry, by engineering genes, useful chemical compounds can be produced cheaply and efficiently which is shown in table.

Medically useful recombinant products	Applications
Human insulin	Treatment of insulin-dependent diabetes
Human growth hormone	Replacement of missing hormone in short stature people
Calcitonin	Treatment of rickets
Chronic gonadotropin	Treatment of infertility
Blood clotting factor VIII/IX	Replacement of clotting factor missing in patients with Haemophilia A/B
Tissue plasminogen activator	Dissolving blood clots after heart attacks and strokes
Erythropoitin	Stimulation of the formation of erythrocytes (RBCs) for patients suffering from anaemia during kidney dialysis or side effects of AIDS patients treated by drugs
Platelet derived growth factor	Stimulation of wound healing
Interferon	Treatment of pathogenic viral infections, cancer

Applications of recombinant DNA products

Interleukins	Enhancement of action of immune system
Vaccines	Prevention of infectious diseases such as hepatitis B, herpes,
	influenza, pertussis, meningitis, etc.

(ii) **Cloning :** Cloning is the process of producing many identical organisms or clones. In this process nucleus of ovum (n) is removed and replaced by nucleus of diploid cell of same organism. Now the egg with 2n nucleus is transferred to the uterus of mother to have normal pregnancy and delivers clone of itself.

Examples of organism cloning

(1) Cloning of sheep was done by **Dr. Ian Wilmut** (1995) of Roslin Institute, Edinberg U.K. and normal healthy lamb (DOLLY) was born in Feb, 1996. This lamb was exactly similar to her mother.

(2) The first cloned calves George and Charlie were born in January 1998.

(3) ANDI was the world's first genetically altered primate produced by inserting a jelly fish gene into the embryo of a rhesus monkey.

(4) Scientist at Scotland cloned POLLY and MOLLY. Unlike Dolly, polly and molly were transgenic (they carried human protein gene) polly and molly were born in july 1997.

(5) **Brigitte Boissliar**, a 46-year old french chemist announced the creation of the world's first cloned human boby nicknamed "Eve" (December 2002).

(iii) **Polymerase chain reaction (PCR) :** It was developed by **Kary Mullis** in 1983 and won Nobel prize in 1993. PCR is a method for amplifying a specific piece of DNA molecule without the requirement for time-consuming cloning procedure. This process require Target DNA, a heat stable DNA polymerase, which work at optimum temperature of 70°C usually Taq DNA and four types of nucleotides with small single stranded strands of DNA of about 20 nucleotide called primers, produce multiple copy of desired DNA.

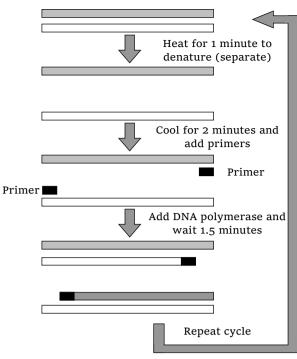


Fig : DNA amplification by PCR

(iv) Gene libraries and gene banks

(a) **Gene libraries :** A gene library is a collection of gene clones that contains all the DNA present in some source. If the original source of the DNA was original DNA from a living organism, then the library seek to include clones of all that DNA, it is called a genomic gene library. Gene libraries can also be created by using RNA.

(b) **cDNA** : If a gene library is created by enzymatic copying of RNA by reverse transcriptase (RNA-dependent DNA polymerase), it would be called c-DNA library. c-DNA stands for complimentary DNA or copy DNA. c-DNA is made to use PCR to amplify an RNA. PCR does not work on RNA, so one can copy it to DNA using reverse transcriptase and then PCR amplify the c-DNA; this is called RT-PCR (reverse transcriptase PCR).

(c) **Gene bank :** A gene bank is repository of clones of known DNA fragments, genes, gene maps, seeds, spores, frozen sperms or eggs or embryos. These are stored for possible use in genetic engineering and breeding experiment where species have become extinct.

(v) **DNA finger printing : Alec Jeffreys et al** (1985) developed the procedure of genetic analysis and forensic medicine, called DNA finger printing. It is individual specific DNA identification which is made possible by the finding that no two people are likely to have the same number of copies of repetitive DNA sequences of the regions. It is also known as DNA profiling. The chromosomes of every human cell contain scattered through their DNA short, highly repeated 15 nucleotide segments called "mini-satellites" or variable-number Tandem Repeat (VNTR).

(a) Technique for DNA fingerprinting

- Only a small amount tissues like blood or semen or skin cells or the hair root follicle is needed for DNA fingerprinting.
- Typically DNA content of about 100,000 cells or about 1 microgram is sufficient.
- The procedure of DNA fingerprinting involves the following major steps :

(i) DNA is isolated from the cells in a high-speed refrigerated centrifuge.

(ii) If the sample of DNA is very small, DNA can be amplified by Polymerase Chain Reaction (PCR).

(iii) DNA is then cut up into fragments of different length using restriction enzymes.

(iv) The fragments are separated according to size using gel electrophoresis through an agarose gel. The smaller fragments move faster down the gel than the larger ones.

(v) Double stranded DNA is then split into single stranded DNA using alkaline chemicals.

(vi) These separated DNA sequences are transferred to a nylon or nitrocellulose sheet placed over the gel. This is called 'Southern Blotting' (after **Edward Southern**, who first developed this method in 1975).

(vii) The nylon sheet is then immersed in a bath and probes or makers that are radioactive synthetic DNA segments of known sequences are added. The probes target a specific nucleotide sequence which is complementary to VNTR sequences and hybridizes them.

(viii) Finally, X-ray film is exposed to the nylon sheet containing radioactive probes. Dark bands develop at the probe sites which resemble the bar codes used by grocery store scanners to identify items.

(b) Applications of DNA fingerprinting

This technique is now used to :

(i) Identify criminals in forensic laboratories.

(ii) Settle paternity disputes.

(iii) Verify whether a hopeful immigrant is, as he or she claims, really a close relative of already an established resident.

(iv) Identify racial groups to rewrite biological evolution.

(vi) **Gene therapy :** The use of bioengineered cells or other biotechnology techniques to treat human genetic disorders is known as gene therapy. Gene therapy is the transfer of normal genes into body cells to correct a genetic defect. It can be used to treat genetic diseases like sickle-cell anaemia and Severe Combined Immuno Deficiency (SCID). It (SCID) is caused by a defect in the gene for the enzyme adenosine deaminase (ADA). SCID patients have no functioning T lymphocytes and one treated with the injections of their white blood cells that have been engineered to carry the normal ADA alleles.

(vii) **Transgenics :** A gene that has been introduced into a cell or organism is called a transgene (for transferred gene) to distinguish it from endogenous genes. The animal carrying the introduced foreign gene is said to be transgenic animal and the possessor called Genetically Modified Organisms (GMOs). Most of the transgenic animals studied to date were produced by microinjection of DNA into fertilized eggs. Prior to microinjection, the eggs are surgically removed from female parent and fertilized *in vitro* then DNA is microinjected into the male pronucleus of the fertilized egg through a very fine-tipped glass needle. The integration of injected DNA molecules appears to occur at random sites in the genome.

The first transgenic animal produced was the 'supermouse' by the incorporation of the gene for human growth hormone by **Richard Palmiter** and **Ralph Brinster** in 1981.

(viii) Genomics and human genome project : The term genome has been introduced by Winkler in 1920 and the genomics is relatively new, coined by Thomas Rodericks in 1986. Genomics is the subdiscipline of genetics devoted to the mapping, sequencing and functional analysis of genomes. Genomics is subdivided into following types:

(a) **Structural genomics :** It is the study of genome structure deals with the complete nucleotide sequences of the organisms.

(b) **Functional genomics :** It is the study of genome function which includes transcriptome and proteome. Transcriptome is a complete set of RNAs transcribed from a genome while proteome is a complete set of proteins encoded by a genome and aims the determination of the structure and function of all the proteins in living organisms. The human genome project, sometimes called "biology's moon

shot", was launched on october 1, 1990 for sequencing the entire human genome of 2.75 billion (2.75×10^9 or 2750000 bp or 2750000 kilobase pairs or 2750 megabase pairs) nucleotide pairs.

Two important scientist associated with human genome are **Francis Collins**, director of the Human Genome Project and **J. Craig Venter**, founding president of Celera genomics. The complete sequencing of the first human chromosome, small chromosome 22, was published in December 1999.

S.	Organism	No. of base pair	No. of genes
No.			
(1)	Bacteriophage	10 thousand	_
(2)	E. coli	4.7 million	4000
(3)	Saccharomyces cerevisiae	12 million	6000
(4)	Caenorhabditis elegans	97 million	18,000
(5)	Drosophila melanogaster	180 million	13,000
(6)	Human	3 billion	30,000
(7)	Lily	106 billion	_

Genome of Model organisms

Prospects and implications of human genome :

- (1) The genome project is being compared to the discovery of antibiotics.
- (2) Efforts are in progress to determine genes that will revert cancerous cells to normal.

(3) The human genome sequencing not only holds promise for a healthier living. It also holds the prospects of vast database of knowledge about designer drugs, genetically modified diets and finally our genetic identity.

Important Tips

- Pallindromic DNA is a segment of DNA in which the base pair sequence reads the same in both directions from a point of symmetry.
- Western blotting is the technique used to detect specific proteins.
- Northern blotting is the technique used to blot transfer of RNAs.
- Recombinant DNA is also called chimeric DNA.

- Eli Lily (American company) in 1983 produced genetically engineered insulin called humulin with the help of E. coli plasmid clone.
- DNA foot printing : It determines the location and lengths of binding sites of various proteins that bind to DNA.
- Hargovind Khorana is associated with genetic engineering. He synthesized 'gene' artificially in a test tube (1969).
- Polymerase Chain Reaction (PCR) was developed by Kary Mullis in 1983 and got Nobel prize for chemistry.
- Southern blotting technique is used for separating DNA fragments and identification of cloned genes.
- *•* Gel electrophoresis and autoradiography are employed in nucleic and blotting.
- Delayed ripening is possible by reducing the amount of cell wall degrading enzyme
 'Polygalacturonase' responsible for fruit softening.

ASSIGNMENT

CHROMOSOMES

Bas	ic Level				
1.	The term 'gene' was firs	t used by			
	(a) Johannsen	(b) Mendel	(c) Lemark	(d) Cuvier	
2.	The prokaryotic genetic	system contains			
	(a) DNA and histones		(b) Either DNA or histones		
	(c)DNA but no histones		(d) Neither DNA nor h	istones	
3.	'One gene one enzyme'	theory was given by			
	(a) Beadle and Tautum	(b) Watson and Crick	(c) Beadle and Morgan (d) Morgan and Muller		
4.	In an organism that has	44 chromosomes i.e. 22 h	omologous pairs; at the e	nd of first meiotic division	
	the daughter cell will ha	ave			
	(a) 44 chromosomes		(b) 11 chromosomes		
	(c) 22 chromosomes		(d) Any number betwe	en 44 and 22	
5۰	The somatic chromosor	ne complement in all huma	an being is		
	(a) 21 pairs of autosom	nes and one pair of heteros	somes		
	(b) 23 pairs of autosom	nes and one pair of heteros	osomes		
	(c) 22 pairs of autosomes and one pair of heterosomes				
	-	nes and one pair of XY ch			
6.	Relative morphologies	of chromosome of an indiv	idual indicates his/her		
	(a) Genotype	(b) Phenotype	(c) Pedigree chart	(d) Karyotype	
7.	The smallest portion of	a gene which is responsibl	e for mutation is called as		
	(a) Operon	(b) Codon	(c) Recon	(d) Muton	
8.	Each chromosome car movements during mite	•	which plays a fundamen	ntal role in chromosome	
	(a) Centromere or Kine	etochore	(b) Telomere		
	(c) Centriole		(d) Chromatid		
9.	The terminal end of a cl	hromosome is called			
	(a) Centromere	(b) Chromomere	(c) Telomere	(d) Metamere	
10.	Where is the genetic inf	formation in body containe	d		
	(a) Structural proteins	(b) Enzymes	(c) DNA	(d) Enzymes and DNA	
11.	Wilkins X-ray diffraction	on showed the diameter of	the DNA helix as		
	(a) 10 Å	(b) 20 Å	(c) 30 Å	(d) 40 Å	
12.	The number of autosom	nes in man is			
	(a) 22 pairs	(b) 11 pairs	(c) 43 pairs	(d) 23 pairs	
13.	A normal metaphase ch	romosome with a midial co	entromere is		
	(a) Metacentric	(b) Sub-metacentric	(c) Acrocentric	(d) Telocentric	

14	Lampbrush chromosom	es are found inside			
14.	(a) Salivary glands of <i>I</i>		(b) Salivary glands of silk moth		
	(c) Oocytes of frog	Jiosophila	(d) Nucleus of man		
15		nd centromere position the		een divided into a number	
15.	Depending upon size and centromere position the 46 chromosomes have been divided into a num of groups				
	(a) 6	(b) 5	(c) 7	(d) 10	
16.	Chromosome number is	5			
	(a) Fixed for a species		(b) Fixed for an ecosys	tem	
	(c) Fixed for a commun	nity	(d) Fixed for a biosphere	re	
17.	The twenty third pair of	chromosomes in man is kn	nown as		
	(a) Chromatid	(b) Heterosome	(c) Autosome	(d) Gene	
18.	The careers of hereditar	y material are			
	(a) Chromosomes	(b) Gene	(c) Gametes	(d) Gametocytes	
19.	In man the normal num	ber of chromosomes is			
	(a) 42	(b) 44	(c) 46	(d) 48	
20.	The genetic material of	virus is			
	(a) DNA	(b) RNA	(c) DNA and RNA	(d) DNA or RNA	
21.	The chromosomes as th	read like structures in nucle	eus was first described by		
	(a) Mendel	(b) Strasburger	(c) Darwin	(d) Levitzky	
22.	Genes are made up of				
	(a) Histones	(b) Lipoproteins	(c) Polynucleotides	(d) Hydrocarbons	
23.	The function of chromo	somes of carrying the gene	etic information from one	cell generation to another	
	is performed by				
	(a) RNA	(b) DNA	(c) Histones	(d) Calcium	
24.	In chromosomes, the ma	aterial controlling heredity	is		
	(a) DNA	(b) Histones	(c) Chromocentres	(d) RNA	
25.	The term 'gene' refers to)			
	(a) A portion of RNA	(b) A linkage group			
	(c) A Portions of DNA	(d) A sequence of amino	acids		
26.	The structure of the chro	omosome to which spindle	fibre is attached is		
	(a) Chromatid	(b) Telomere	(c) Centromere	(d) Chromomere	
27.	Who used the word "ch	romosome"			
	(a) Huxley	(b) Flemming 1888	(c) Kollikar 1888	(d) Waldeyer 1888	
28.	Polytene chromosomes	were first observed by			
	(a) Batanetzky-1980 1905	(b) Heitz and Bauer-1935	5(c) Balbiani-1881	(d) Stevens and Wilson-	
29.	The structure present ov	ver chromosome is			
	(a) Nucleolus	(b) Centromere	(c) Centrochrome	(d) Golgi bodies	

30.	A genome is the			
	(a) Diploid set of chro		(b)Haploid set of c	hromosomes
	(c) Triploid set of chro	omosomes	(d)All the above	
31.	Noble prize to Kornber	Kornberg and Ochoa was given for		
	(a) Artificial synthesis	of genes	(b) Chemistry of DNA	and RNA
	(c) 'One gene one enzy	yme' hypothesis	(d) Artificial synthesis	s of DNA
32.	The chromosomes exce	ept those relating to sex are	known as	
	(a) Heterosomes	(b) Autosomes	(c) Allosomes	(d) Cytosomes
33.	Chromosome set in zyg	gote is		
	(a) 2 <i>n</i>	(b) 1 <i>n</i>	(c) 3 <i>n</i>	(d) 4 <i>n</i>
34 .	Number of autosomes	in a normal female is		
	(a) 21	(b) 22	(c) 23	(d) 44
35.	Homologous chromoso	omes which are present in n	nale and female both are	known as
	(a) Heterosomes	(b) Replosomes	(c) Androsomes	(d) Autosomes
36.	Number of chromosom	es present in gorilla is		
	(a) 46	(b) 44	(c) 48	(d) 50
37.	Allosomes are the nam	e of		
	(a) Sex chromosomes		(b) Swellings on the cl	romosomes
	(c) Chromosomes othe	somes other than the ones which determine sex		
	(d) Nucleolus organisi	ng regions or chromosom	es.	
38.	In humans, the sex chro	omosome complement is		
	(a) XX-XY	(b) XX-XO	(c) ZO-ZZ	(d) ZW-ZZ
39.	Diploid chromosome n	umber in humans is		
	(a) 46	(b) 44	(c) 48	(d) 42
40.	A chromosome with su	b-terminal centromere is		
	(a) Acentric	(b) Acrocentric	(c) Metacentric	(d) Telocentric
41.	A chromosome with ce	entromere near the middle is	s called	
	(a) Metacentric	(b) Submetacentric		(d) Telocentric
42.	X-chromosome is	· · ·	()	
	(a) Telocentric	(b) Submetacentric	(c) Acrocentric	(d) Acentric
	Y- chromosome is		(e) Merocentric	(u) / leenuite
43.				
	(a) Acrocentric	(b) Telocentric	(c) Submetacentric	(d) Acentric
44.	-	vith a number of chromoner		
	(a) Lampbrush chrome	osome	(b) Heterochromosome	
	(c) Supernumerary chi	comosome	(d) Polytene chromoso	ome
1				

45 .	Chromatid is			
	(a) One half of chr	comosome	(b) Haploid chromos	some
	(c) Complete chro	mosome	(d) Duplicate chrome	osome
46.	Centromere is that	part of chromosome where		
	(a) Nucleoli are fo	rmed	(b) Crossing over tak	kes place
	(c)Chromatids are	attached	(d) Nicking occurs	
4 7•	Separation will occ	eur in two genes if they are		
	(a) Dominant allel	es	(b) Recessive alleles	
	(c) Present on hom	nologous chromosome	(d) Present on two se	eparate chromosome
48.	The polygenic gene	es show		
	(a) Different genot	type	(b) Different phenoty	ype
	(c) Different Kary	otype	(d) None of the abov	ve
49.	Unit of distance be	tween genes on the chromos	somes is	
	(a) C.DNA	(b) Morgan	(c) Centimorgan	(d) Chisquare
50.	Total number of au	tosomes in a fertilized egg o	of human beings is :	
	(a) 44	(b) 22	(c) 46	(d) 23
51.	A gene is said to be	e dominant, if		
	(a) It is never expr	ressed in any condition		
	(b) It is expressed	only in heterozygous		
	(c) It expresses its	effect only in, homozygou	s stage	
	-	both in homozygous and he		
52.	Laws of segregation	n and dominance were given	n by	
	(a) Darwin	(b) Morgan	(c) Mendel	(d) De Vries
53.		les takes place during		
	(a) Cleavage	(b) Meiosis	(c) Fertilization	(d) Non-disjunction
54 .	-	n a population is called		
	(a) Genotype	(b) Karyotype	(c) Gene pool	(d) Lethal gene
55.	If two opposite all fact is described as	-	ding morphological expre	ssion masking the other, the
	(a) Inheritance	(b) Dominance	(c) Limiting factor	(d) Segregation
56.	A cross used to asc	ertain whether a dominant is	s homozygous or heterozyg	gous is termed
	(a) Monohybrid	(b) Reciprocal	(c) Back cross	(d) Linkage cross
5 7•	Organisms phenoty	pically similar but genotypi	cally different are said to b	De
	(a) Heterozygous	(b) Monozygous	(c) Multizygous	(d) Homozygous

58.	An individual receiving	like genes for the same ch	aracters from its two pare	nts, is known as
	(a) Allelomorphic	(b) Homozygous	(c) Heterozygous	(d) Azygous
59.	When dominant and rec	cessive alleles express them	selves together, it is calle	ed
	(a) Dominance	(b) Co-dominance	(c) Amphidominance	(d) Pseudodominance
60.	An organism which rec	eives identical alleles of a p	particular gene from both	parents is
	(a) Heterozygote	(b) Holometabolous	(c) Homosapiens	(d) Homozygote
61.	When an allele fails to e	express itself in presence of	the other allele, the form	er is said to be
	(a) Recessive	(b) Dominant	(c) Codominant	(d) Complementary
62.	A pair of contrasting ch	aracter is termed as		
	(a) Allelomorphs	(b) Homozygous	(c) Heterozygous	(d) Polymorphs
63.	The haploid condition i	s found in		
	(a) Amoeba	(b) Bacteria	(c) Ovum	(d) Zygote
64.	The character which ap	pears physically in an anim	al is	
	(a) Genotype	(b) Phenotype	(c) Heterotype	(d) Morphozygous
65.	The frequency of a char	racter is found to be increas	ing when	
	(a) It is dominant	(b) It is recessive	(c) It is adaptable	(d) It is inheritable
66.	Epistasis implies			
	(a) One pair of genes c	an completely mask the example	xpression of another pair	of gene
	(b) One pair of genes i	ndependently controls a pa	articular phenotype	
	(c) One pair of genes e	enhances the phenotype ex	pression of another pair	of gene
	(d) Many genes collect	ively control a particular p	ohenotype	
Adv	ance Level			
67.	Whereas the number o what is the need for sec		to half in first reduction	division of meiosis, then
	(a) For the segregation	of replicated chromosome	es	
	(b)For equal distribution	on of haploid chromosome	S	
	(c) For the formation of	of four gametes		
	(d) For the equal distri	bution of genes on chromo	osomes	
68.	The polytene chromoso	mes were discovered for th	e first time in	
	(a) Chironomus	(b) Fruitfly	(c) Drosophila	(d) House fly
69.	The point at the which t	the polytene chromosomes	appear to be attached tog	ether is known as
	(a) Centriole	(b) Chromocentre	(c) Centromere	(d) Chromomere
70.	What is the chromosom	e number of plasmodium		
	(a) 18	(b) 14	(c) 10	(d) 9

	(a) 10	(b) 12	(c) 06	(d) 09	
72.				, the cells in the seminiferous	
	tubule will have				
	(a) 40 chromosomes		(b) 20 chromosome	(b) 20 chromosomes	
	(c) 10 chromosomes		(d) While some oth	er will have 20	
73.	Balbiani discovered sp are recognized by the p		from the salivary glar	nd of chironomus larva which	
	(a) Bands	(b) Loops	(c) Both bands and	loops (d)All of the above	
74.	A cistron is				
	(a) Structural unit of g	ene (b)Functional unit of	f RNA		
	(c) Functional unit of g	gene (d)Replication unit of	of gene		
75.	Genetic information are	e carried in form of long ch	ain of molecules made	e up of	
	(a) Amino acids	(b) RNA	(c) Nucleotides	(d) Polypeptides	
76.	The human chromosom	nes are divided into 7 group	os, B-chromosomes are	e	
	(a) 6-12	(b) 1-2	(c) 13-15	(d) 4-5	
77•	The condensation of the cycle	ne chromosomes are maxin	nal with visible centro	omeres at which phase of cell	
	(a) G_1 phase	(b) <i>S</i> phase	(c) G_2 phase	(d) <i>M</i> phase	
7 8.	Gene can be defined as				
	(a) Unit of segregation		(b) Unit of physiolo	(b) Unit of physiological activity	
	(c) Unit of recombinat	ion	(d) Unit of function	l	
7 9 .	Lamp-brush chromoson	me is found in			
	(a) Drosophila	(b) Ascaris	(c) Hydra	(d) None of the above	
80.	In recent past human cl dyes, known as	hromosomes have been stu	died by a technique us	sing specific, often fluorescent	
	(a) Dyeing technique technique	(b) Banding technique	(c) Ultra dyeing tec	hnique (d)Karyotyping	
81.	Arrangement of chrome	osomes in the order of deci	reasing length is terme	d	
	(a) Pedigree	(b) Eugenetics	(c) Idiogram	(d) Dysengenics	
82.	Traits controlled by ger	nes located on autosomes a	re said to be		
	(a) Sex affected	(b) Sex influenced	(c) Sex linked	(d) Genetic traits	
83.	Tjio and Levan's contr	ibution is very significant	because they		
	(a) Gave the number of	f human chromosomes	(b) Pointed out mut	ational changes	
(c) Identified Barr bodies (d) Detected sex linkage					

84.	Polytene or giant chro	mosomes are found in		
	(a) Salivary glands of	man	(b)Salivary glands of	woman
	(c) Salivary glands of	all animals	(d) Salivary glands of	Drosophila
85.	Telocentric chromoso	me differs from acrocentri	c chromosomes in that	
	(a) The former has a s	ubterminal centromere wh	hereas the later has a cen	trally located centrosome
	(b) The centromere in	the former is terminal and	l in the later is subtermin	al
	(c) The former has a terminal centromere and the later has a medially located centromere			
	(d) None of the above			
86.	Each chromosome at th	ne anaphase stage of a bone	e marrow cell in our body	has
	(a) Two chromatids	(b) No chromatids	(c) Only one chromati	d (d) Several chromatids
87.	A complete set of chro	mosomes inherited as singl	e unit from one parent is	known as
	(a) Gene pool	(b) Genotype	(c) Genome	(d) Genoid
88.	Centromere is a part of	chromosome which helps	in the	
	(a) Division of centros	somes	(b)Formation of spind	le fibres
	(c) Movement of chro	mosomes	(d)Formation of nucle	ar spindle
89.	The puffs and rings are	e associated with the		
	(a) Endoplasmic retice	ulum (b)Polytene chromos	somes	
	(c) Golgi bodies	(d)Nucleus		
90.	Lampbrush chromosor	nes are visible		
	(a) In diplotene of me	iosis (b)In prophase of me	eiosis	
	(c) In interphase	(d)In mataphase of r	neiosis	
91.	The grouping of human	n chromosomes is based on	L	
	(a) Secondary constrict	ctions alone	(b)Dot-like satellites a	llone
	(c) Banding patterns a	lone	(d)All the above	
92.	The gene which increase	ses the frequency of mutati	on in other is referred to a	38
	(a) Mutator gene	(b) Mutagene		
	(c) Hypostatic gene	(d) Complementary gen	e	
93.	Two allelic genes are lo		(h) Two homologous	ahromosomos
	(a) The same chromos(c) Two non-homolog		(b) Two homologous(d) Any two chromoso	
94.	-	lele in an isolated population	•	Jines
74.	(a) Gene flow	(b) Mutation	(c) Genetic drift	(d) Natural selection
95.	Number of autosomes			
	(a) 11	(b) 22	(c) 44	(d) 45

96.	Banding pattern of pres	ent man and chimpanzee i	s nearly the same. It indic	ates that both have	
	(a) Similar gene pool		(b) Similar number of	chromosomes	
	(c) Evolved from a con	mmon stock	(d) Developed brain an	nd memory	
97.	Chromosomes of all races of human are				
	(a) Different		(b) Similar		
	(c) Different in bandin	g only	(d) Similar in banding	only	
98. The banding pattern indicates that					
	(a) Gibbon, chimpanze	ee, gorilla and human are	fundamentally the same		
	(b) Chromosome mate	rial is highly concerned th	nroughout their evolution	l	
	(c) Differences in band	ling pattern is due to inve	rsion, translocation etc.		
	(d) All the above				
99.	Chromosome were first	t seen by			
	(a) Hofmeister	(b) Strasburger	(c) Flemming	(d) Waldeyer	
100.	As per latest information	on human genome has			
	(a) 3,00,000 genes	(b) 30,000 genes	(c) 3,000 genes	(d) 300 genes	
101.	Foetal sex can be detern	mined from cells present in	n amniotic fluid by lookin	g for	
	(a) Kinetochores		(b) Chiasmata		
	(c) Barr bodies and sex	x chromosomes	(d) Autosomes		
102.	Asymmetric karyotype	is			
	(a) Advanced feature		(b) Very primitive feat	ture	
	(c) Primitive feature		(d) Without any evolution	tionary significance	
103.	Asymmetric karyotype	is the one which has			
	(a) Fewer metacentric	chromosomes			
	(b) Large scale differen	nce between large and sm	all chromosomes		
	(c) Both (a) and (b)		(d) Chromosomes with	n varied shape	
104.	Puffs or balbiani rings i	n salivary gland chromoso	omes are sites of		
	(a) DNA replication	(b) DNA duplication	(c) RNA synthesis	(d) Protein synthesis	
105.	More than 200 chromos	somes occur in			
	(a) Chicken	(b) Dog	(c) Amoeba	(d) Gorilla	
106.	If two genes are prese effect are called	nt at the same locus and	after interacting with ea	ch other produce different	
	(a) Codominance	(b) Dominance	(c) Epistasis	(d) None of the above	
107.	A complete set of chron	nosomes inherited from pa	arent to offspring is called		
	(a) Genome	(b) Allele	(c) Diploid	(d) Gamete	
	(a) Genome	(b) Allele	(c) Diploid	(d) Gamete	

108. Which of the following is used to define the karyotype of a species (In this item one or more answers given may be correct) 1. The length of chromosome 2. The position of centromere 3. The number of chromosomes Answer codes : (a) 1, 2 and 3 are correct (b)Only 1 and 2 are correct (c) Only 2 and 3 are correct (d) Only 1 and 3 are correct **109.** To make a karyotype, chromosomes are photographed during (a) Interphase (b) Fertilization (c) Mitotic metaphase (d) Meiotic metaphase **MULTIPLE ALLELISM Basic Level** 110. Inheritance of ABO blood group system is an example of (b) Partial dominance (a) Multiple allelism (c) Epistasis (d) Dominance 111. Who discovered Rh factor (a) Huxley (b) Landsteiner (c) Landsteiner and Weiner (d) Weiner 112. A person with angligens 'B' in RBC and antibodies 'a' in the plasma belongs to the blood group (c) AB(d) O(a) A(b) *B* 113.Persons of blood group A contain (a) Antigen A and antibodies b(b) Antigen A and antibodies a (c) Antigen A and B and no antibodies (d) No antigens and both a and b antibodies 114.Rh factor may be responsible for (a) Turner's syndrome (b) AIDS (c)Sickle-cell anaemia (d)Erythoblastosis foetails 115. The problem due to Rh factor arises when the blood two $(Rh^+ \text{ and } Rh^-)$ mix up (b) Through transfusion (c) During pregnancy (d) (a) and (c) both (a) In a test tube 116. The antigen 'A' is present in the (a) Blood plasma of 'B' blood group person (b) RBC of 'B' blood person (c) Blood plasma of 'A' blood group person (d) RBC of 'A' blood group person 117. A person with antigens A and B and not antibodies belongs to blood group or In which blood group antibodies are absent (a) A(b) *B* (c) *AB* (d) *O*

118.I	f a man Rh^+ marries a lac	ly <i>Rh</i> ⁻ then		
	(a) First child will die		(b) First child will survive	
	(c)No child will be bor	'n	(d) None of the above	
119. A	At what temperature the b	blood is stored in bottles		
	(a) 4° <i>C</i>	(b) 37° <i>C</i>	(c) $0^{\circ}C$	(d) 25° <i>C</i>
120. In how much maximum period the stored blood should be transfused				
	(a) 7 days	(b) 10 days	(c) One month	(d) 15 days
121.]	The stored blood must be	free from		
	(a) Impurities only		(b) Viruses only	
	(c) Infectious biotic po	tentialities	(d) Bacteria only	
122.	Blood group of an indi	vidual in determined by		
	(a)Shape of RBC		(b) Combination of RE	BC and WBC
	(c) Genetic material ca	rried by individual	(d) Nature of haemogle	obin
123.	A person having blood	group O can receive blood		
	(a) Group O, B and AE	B (b) Group A, B and AB	(c) Group B and AB	(d) Group 'O' only
124.	A child's blood group is	'O'. The parents blood grou	ups cannot be	
	(a) AB and O	(b) B and O	(c) A and B	(d) A and A
125.	Blood groups are named	d because of the agglutinog	en A and B present in	
	(a) Plasma	(b) RBC	(c) WBC	(d) Platelet
126.	Which of the following	is genetically dominant in	man	
	(a) Colour blindness	(b) Rh positive	(c) Haemophilia	(d) Albinism
127.	Which of the following is	an inherited trait in man		
	(a) FSH	(b) LH	(c) TSH	(d) Rh
128.	Rh factor is named after	ſ		
	(a) Man	(b) Rat	(c) Monkey	(d) Chimpanzee
129.	A child of a mother with following blood group e	• •	her with blood group AE	3 may have any one of the
	(a) <i>A</i>	(b) <i>B</i>	(c) <i>AB</i>	(d) <i>O</i>
130.		' blood, he needs blood tra e could be substituted with	• -	d is not available which of atient
	(a) <i>AB</i>	(b) <i>O</i>	(c) <i>B</i>	(d) AB and O
131. <i>F</i>	Rh factor is concerned wi	th		
	(a) Blood groups		(b) Blood clotting	
	(c) Carbohydrates meta	abolism	(d) Eugenics	

132.	In erythroblastosis foeta	alis, which factors of the m	other pass through placen	ta into the foetus
	(a) <i>Rh</i> antigens	(b) <i>Rh</i> antibodies	(c) ABO antibodies	(d) Agglutinins
133.	Who was scientist to in	troduced ABO blood group	08	
	(a) Wiener	(b) Levine	(c) Fisher	(d) Landsteiner
134.	If blood group of paren	t are AB and O, children ha	ave	
	(a) O^- group	(b) AB	(c) AB and O	(d) A or B
135.	The blood of <i>AB</i> group	donor can be transfused to	a person with the blood g	-
	(a) A	(b) B	(c) AB	(d) O
136.		oup 'A' can be given blood		
	(a) A and B	(b) B and O	(c) A and O	(d) A, B, AB and O
137.F	For a child having blood mother	l group B, if father has blo	bod group A. What may	be the blood group of the
	(a) O and A	(b) O	(c) B or AB	(d) A
138.	Donors and recipients i	n a blood transfusion proce	ess can be	
	(a) Only father and some	n	(b) Only brother and si	ster
	(c)Only maternal and n		(d) All the above	
139.	If a certain patient with be given to him	n blood group B requires in	mmediate blood transfusion	on, the following type can
	(a) O and B	(b) O and AB	(c) A and AB	(d) B and AB
140.	Universal donors have group	no antigens in RBC and h	ave both a and b antibodi	ies. They belongs to blood
	(a) <i>A</i>	(b) <i>B</i>	(c) <i>AB</i>	(d) <i>O</i>
141.A	•	ccident and great loss of b o transfer blood of group	blood has occurred. There	e is no time to analyze his
	(a) AB, Rh^+	(b) AB, Rh^-	(c) O, Rh^-	(d) O, Rh^{-}
142.	Universal donor is			
	(a) A blood group	(b) <i>B</i> blood group	(c) <i>AB</i> blood group	(d) <i>O</i> blood group
143.	Antisera used to detect	Rh blood group		
	(a) Anti A	(b) Anti B	(c) Anti C	(d) Anti D
144.	To store blood some an	ticoagulant is added. It can	be	
-	(a) Sodium chloride	(b) Sodium oxalate	(c) Potassium chloride	(d) Thromboplastin
145.		up does not contain any an		-
	(a) Blood group O	(b) Blood group A	(c) Blood group B	(d) Blood group AB

146.	Which one of the follow	ving blood groups belongs	to the category of universation	al recipient
	(a) A	(b) AB	(c) B	(d) O
147.	The blood group of father children	er is 'A' and that of mother	is 'B' what will be the blo	ood group of their
	(a) <i>A</i> , <i>B</i> , <i>O</i> , <i>AB</i>	(b) <i>AB</i>	(c) <i>AO</i>	(d) None of the above
148.	Genotype of blood grou	p 'A' will be		
	(a) $I^A I^A$	(b) $I^B I^B$	(c) $I^A I^A$ or $I^A I^O$	(d) <i>I</i> ^A <i>I</i> ^O
149.	Blood group 'B' will have	ve alleles		
	(a) <i>ii</i>	(b) $I^A I^A$	(c) $I^{B}I^{B}$	(d) $I^{B}I^{B}$ or Ii
150.	Which of the following	are most abundant types of	fantibodies	
	(a) IgA	(b) <i>IgE</i>	(c) IgG	(d) <i>IgM</i>
151.N	Aultiple Allelism control	inheritance of		
	(a) Blood group	(b) Phenylketonuria	(c) Colour blindness	(d) Sicke cell anaemia
152.	Which one of the follow	ving is hereditary character	of blood	
	(a) Blood group	(b) Haem	(c) Nucleus	(d) None of the above
153.	Which of the following	would result in haemolysis	of foetus	
	(a) Rh incompatibility	(b) BO incompatibility	(c) AB incompatibility	(d) AO incompatibility
154.	During blood typing agg	glutination indicates that the	e :	
	(a) RBCs carry certain	antigens	(b) RBCs carry certain	antibodies
	(c) Plasma contains cer	tain antigens	(d) Plasma contains cer	tain antibodies
155.	The genotype of Rh pos	itive person could be :		
	(a) RR (DD)	(b) Rr (Dd)	(c) rr (dd)	(d) Both (a) and (b)
156.	Assertion (a) : Person v	vith blood group AB can ta	ke blood from any other j	person.
	e e	oup incompatibility is due antigen of other group is a	e .	tion. Blood group AB has
	(a) Both A and B are tr	ue and R is the correct exp	planation of A	
	(b) Both A and B are tr	ue but R is not the correct	explanation of A	
	(c) A is true but B is fa			
	(d) Both A and B are fa	llse		
	ance Level			
157.0	<i>AN</i> factor are due to (a) Two co-dominant g	enes M and N	(b) Recessive genes <i>m</i> a	and <i>n</i>
	(a) 1 wo co-dominant g (c) <i>Mn</i> and <i>Nm</i>		(d) None of the above	and <i>H</i>
158.		blood group and the father		e father will be
	• •		· _ · · ·	

		(c) $I^{O}I^{B}$	(d) $I^B I^B$			
159.	Detection of blood group is done by agglutinisation test using antiserum. According to this					
	(a) If the blood shows coagulation with antiserum B the blood group is B					
	(b) If the blood shows coagulation with both antiserum A and B, the blood group is O					
	(c) If the blood shows coagulation with antiserum A, the blood group is AB					
	(d) None of the above					
160.	In term of ABO system of blood grouping a transfus					
		-	ood to a group AB person			
	(c) Group O blood to a group AB person (d) Group A blood to a group O person					
161.E	161.Between persons of which two blood groups is the transfusion is not possible					
		(b) O and A (C	,			
		(d) O and AB	· · · · · ·			
162.	If a human mother has 'O' blood group, the foetus w	ould die if the b	blood of foetus is			
	(a) A					
	(b) B					
	(c) AB					
	(d) Would remain unaffected by blood group whet					
163.	The second pregnancy of a woman terminates due to transfusion. On the basis of this, which of the follow		e foetus. She has never had a blood			
	(a) Child from the first pregnancy is Rh^{+ve}	(b) The husbar	nd of the woman is Rh^{+ve}			
	(c) The woman is Rh^{-ve}	(d) All the abo	ve			
164.	A man with blood group 'AB' marries a woman with	n 'O' blood grou	p. In this situation			
	(a) The blood group of their children will be the sa	ame as that of t	he mother			
	(b) The blood group of the children differs from be	oth the parents				
	(c) While 50% of children will have father's blood group	d group, the re	maining will have mother's blood			
	(d) None of the above					
165.	When whole blood is stored with an anticoagulant	at $4^{\circ}C$, the K^{+}	ions move out from the RBC into			
	the plasma. The most likely reasons for this is that					
	(a) RBC haemolyses and hence leakage of K^+ ions	5				
	(b) K^+ ions become more mobile at $4^\circ C$					
	(c) Active transport ceases resulting in ionic equili	ibrium				
	(d) The anticoagulant attracts the K^+ ions into the p	plasma				
166.	In a medico-legal case of accidental interchange be	tween two bab	ies in a hospital, the baby of blood			
	group A could not be rightly given to a people					
			f group O and wife of group A			
			nd and wife of group A			
167.	If one parent belongs to 'A' blood group and the represent	other of 'O' bl	ood group, their children possibly			
1						

	(a) A and B groups only	(b)AB only	(c) A and O groups on	ly (d)All four groups			
168.	Which one of the followin	•	• •				
		b) ABO	(c) Xg	(d) MNSs			
169.		,		transfusion of blood leads			
	to aggulutination. This is b		0 1,				
	(a) X is Rh^+ and Y is Rh^-		(b) Haemoglobin of X	and Y is different			
	(c) X is Rh^{-} and Y is Rh^{+}		(d) Both are Rh^+				
170.	Blood bank of the body or	reservoir where the bloc	od is stored and can be me	obilized, is			
	(a) Heart (b) Liver	(c) Bone marrow	(d) Spleen			
171.A	woman of blood group 'C	D' presented a baby of bl	lood group 'O' which she	claimed as her child. She			
	brought a suit against a m	an of 'AB' group as the f	ather of the child. Which	statement is correct as per			
	your judgement						
	(a) The father and mother	r claimed are the true pe	ersons				
	(b) Father is true and mot	ther is not true person					
	(c) Both the parentage cla	aims are false					
	(d) Mother is the true person and father claimed is not true						
172.T	The probability of having a	child with blood group (to parents with blood gr	coups A and B is			
	(a) 4 out of 4 (b) 3 out of 4	(c) 2 out of 4	(d) 1 out of 4			
17 3. F	Parents of blood O and AB	cannot have a child of gr	oup AB because				
	(a) Gene O is dominant of	over gene A	(b) Gene O is dominan	t over gene B			
	(c) Gene A or B is absent	t in one of the parents					
	(d) Gene A and B are abs	ent in one of the parents	5				
174.	In case of disputed parenta	age, the blood group anal	ysis of the mother, child	and alleged father can			
	(a) Definitely prove a ma	n to be the father	(b) Only prove that he	can not be the father			
	(c) Not be of any use		(d) None of the above				
17 5. [v v		is mixed with blood of	another animal, blood of			
	which animal gives the thi						
		b) Chimpanzee	(c) Dog	(d) Mule			
176.	A human female with bloc						
	(a) Antibody-anti- <i>B</i> on th		-				
	(b) Antigen A on the red	-					
	(c) Antigen <i>B</i> on the red	-					
г	(d) Antigen A on the red $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	-					
177.E		-		nining the blood groups of			
		ed them not to have mor	e than one child. The blo	od group of the couple are			
	likely to be (a) Rh^+ male and Rh^- fema	la	(b) Rh^+ male and Rh^+ fer	nala			
	(a) Rh^- male and Rh^+ fema (c) Rh^- male and Rh^+ fema		(d) Rh^- male and Rh^- fer				
1=0	How many possible pheno			mait			
178.		b) 6	(c) 8	(d) 16			
	(u) T (0,0		(4) 10			

GENETIC VARIATION

Basic Level

Basi	c Level					
179.	Number of the chromos	somes in Klinefelter's synd	drome is			
	(a) 44	(b) 47	(c) 45	(d) 46		
180.	Edward's syndrome, Pat	tau's syndrome and Down's	syndrome are due to			
	(a) Mutation due to ma	Inutrition (b)Change	in sex chromosomes			
	(c) Change in autosome	es (d)Change	in both sex chromosome	es and autosomes		
181. A	A person who is trisomic	for twenty first pair of chro	omosomes is			
	(a) Klinefelter's syndro	ome (b)Down's syndrome	(c) Turner's syndrome	(d) None of the above		
182.	Turner's syndrome in h	uman is caused by				
	(a) Autosomal aneuplo	idy (b)Sex chromosome a	aneuploidy			
	(c) Polyploidy	(d)Point mutation				
183.	Which of the following	is genetic disease				
	(a) Phenylketonuria	(b) Blindness	(c) Cataract	(d) Leprosy		
184.	Webbed neck is charac	teristic of				
	(a) XXY male	(b) YY male	(c) XO female	(d) XXX female		
185.	185. The number of chromosomes in Down's syndrome is					
	(a) 23rd pair with one l	less = 45	(b) 21st pair with one r	nore $= 47$		
	(c) 17th pair with one r	nore $= 47$	(d)One extra sex chromosome = 47			
186.	186. A person who has 47 chromosomes due to an extra <i>Y</i> chromosome is affected by					
	•	(b) Klinefelter's syndrom	-	(d) Down's syndrome		
187.		rt of a chromosome to the o	-	her chromosome is called		
	(a) Inversion	(b) Mutation	(c)Translocation	(d) Linkage		
188.	Down's syndrome is					
	(a) Autosomal abnorma	ality	(b)Sex chromosome abnormality			
	(c)Sex-linked disease		(d) None of the above			
189.		ome number 44+XXY is ma	•	from		
	•	(b) Klinefelter's syndrom	ne			
	(c) Down's syndrome	•				
190.	Genotype of a Down's s	•				
	(a) 45+ <i>XX</i>	(b) 44+ <i>XY</i>	(c) $44+XXY$	(d) 22+ <i>XY</i>		
191.N	Mongolism syndrome is c	-				
	(a) One extra chromoso		(b) One extra sex chron			
	(c) One extra chromoso	-	(d) One less sex chrom	osome		
192.		h are without pigments (alb				
	(a) All the offsprings w		(b) Half of the offsprin	-		
	(c) 75% offsprings will		(d) No offspring will be	e albinism		
193.	Sickle cell anaemia is du	ue to				
1						

	(a) Hormones	(b) Viruses	(c) Genes	(d) Bacteria			
194.	The cause of Turner's sy	yndrome in man is					
	(a) Incomplete sex link	tage	(b) Sex-linked inheritat	nce			
	(c) Autosomal abnorma	ality	(d) Sex-chromosomal a	abnormality			
195.	In Klinefelter's syndrom	ne, what is generally the set	et of sex chromosome				
	(a) XX	(b) XY	(c) XXY	(d) XYY			
196.		there are more than two co	-				
	(a) Polytene	(b) Monoploidy	(c) Polyploidy	(d) Aneuploidy			
197.	Extra 18 th autosomal ch						
	(a) Edward syndrome	(b) Patau's syndrome	(c) Down's syndrome	(d) None of the above			
198.	8. In Down's syndrome (Mongolism) each cell has how many chromosomes						
	(a) 21 st pair having one	eless	(b) 23^{rd} pair with one le	ess			
	(c)45		(d) 47				
199.	An abnormal human ma	extra X chromosome (XX	(Y)is a case of				
	(a) Down's syndrome (b) Intersex						
	(c) Edward syndrome	d syndrome (d) Klinefelter syndrome					
200.	The reduction of one pa	ir of chromosome in huma	an is due to				
	(a) Fusion of two chron	mosomes into one	(b) Elimination				
	(c) Mutation		(d) Reproductive isolation				
201.	The monosomic conditi	on in human beings depicted	ted as XO is referred to as				
	(a) Criminal syndrome		(b) Down's syndrome				
	(c) Klinefelter's syndro	ome	(d) Turner's syndrome				
202.	Edward syndrome is on	account of					
	(a) 45 chromosomes in	stead of 46					
	(b) Presence of three cl	hromosomes on 18th pair	of autosome				
	(c) Presence of three cl	hromosomes on 21st pair of	of autosome				
		air of sex chromosomes					
203.	Number of sex chromos						
Ū	(a) Super female		(b) Turner's syndrome				
	(c) Klinefelter's syndro	ome	(d) Down's syndromes				
204.	-	is not related to chromoson	-				
-	(a) Euploidy	(b) AIDS					
	(c) Aneuploidy	(d) Klinefelter's syndror	ne				
205.	- ·	related to or In mongolism					
	(a) Monosomy	(b) Trisomy	(c) Nullisomy	(d) None of the above			
206.	•	of nucleotide in DNA is	· · · ·				
	(a) Mutation	(b) Isolation	(c) Polyploidy	(d) Sexual reproduction			
	× /	× /					

207.	Gene mutation is caused	1 by			
	(a) Reproduction		(b) Linkage		
	(c) Change in the seque	ence of nitrogenous base	(d) Change in the sequ	ence of genes in DNA	
208.	Discontinuous variation	are			
	(a) Mutation	(b) Acquired characters			
	(c) Essential features	(d) Nonessential features	8		
209.	The functional unit of m	nutation is			
	(a) Gene	(b) Muton	(c) Recon	(d) Cistron	
210.	Mutation is				
	(a) Sudden change in n	(a) Sudden change in morphology		ſS	
	(c) Change in heritable	characters	(d)None of the above		
211.N	Autations occur				
	(a) Mainly in haploid c	ells	(b) Mainly in diploid c	cells	
	(c) Whenever cells are	exposed to X-rays	(d) In any cell of the be	ody exposed to radiation	
212.	The reason of fault in ge	ene duplication is			
	(a) Transformation	(b) Translocation	(c) Mutation	(d) None of the above	
213.	To be evolutionary succ	essful, a mutation must be			
	(a) Germplasm DNA	(b) Somatoplasm DNA	(c) Cytoplasm	(d) RNA	
214.	Which of the following	is the main category of mu	tation		
	(a) Genetic mutation	(b) Zygotic mutaion	(c) Somatic mutaion	(d) All of the above	
215.	Hugo de Vries formulat	ed the "Mutation theory" b	based on the experiments	he conducted on	
	(a) Althea rosea		(b) Pisum sativum		
	(c) Drosophila melano	gaster	(d) Oenothera lamarck	kiana	
216.	Chromosome aberration	n occurs due to			
	(a) Aneuploidy	(b) Polyploidy	(c) Physical effects	(d) All the above	
217.]	Frisomy has chromosome	_			
	(a) $2n-1$	(b) $2n-1-1$	(c) $2n+1+1$	(d) $2n+1$	
218.	A strong mutagen is				
	(a) Cold	(b) Heat	(c) Water	(d) X-ray	
219.	Mental retardation assoc	ciated with sex chromosom	•		
	(a) Reduction in X-con	nplement	(b) Increase in X-complement		
	(c) Moderate increase i	n Y-complement	(d) Large increase in Y	-complement	
220.	Mutation is change that	is			
	(a) Never inherited		(b) Inherited only in F ₂ generation		
	(c) Inherited		(d) Responsible for pla	ant growth	
221.	An inborn error of meta	bolism which eventually af	ffects mental developmer	nt is	
	(a) Albinism	(b) Phenylketonuria	(c) Anaemia	(d) Bleeder's disease	

222	Monosomics are						
	(a) <i>n</i>	(b) $2n+1$	(c) $2n-2$	(d) $2n-1$			
223	Mutation are responsib	le for					
	(a) Extinction of organ	nisms	(b) Variations in p	oopulation			
	(c) Increase in populat	ion	(d) Maintaining ge	enetic continuity			
224	In human beings 45 ch	In human beings 45 chromosomes/single X/XO abnormality causes					
	(a) Down's syndrome	(b) Klinefelter's syndrom	me				
	(c)Turner's syndrome	(d) Edward's syndrome					
225.	Numerical change in ch	nromosome number which	is not be exact multip	ple of haploid genome is			
	(a) Triploid	(b) Allopolyploid	(c) Autopolyploid	(d) Aneuploid			
226	Mutation are commonl	У					
	(a) Dominant	(b) Codominant	(c) Recessive	(d) Incomplete			
227.	A change in chromosor	mal number is called					
	(a) Polyploidy		(b) Aneuploidy				
	(c) Chromosomal mut	ation	(d) Somatic mutation				
228	Deletion of certain gene	es cause					
	(a) Gene mutation (b) Chromosome muta		on (c)Gene modif	ication (d)Aneuploidy			
229	Albinism and phenylketonuria are disorders due to						
	(a) Recessive autosomal genes		(b) Dominant autosomal genes				
	(c) Dominant sex genes		(d) Recessive sex	genes			
	C C			8			
230	. Name the mutagen			-			
	. Name the mutagen (a) SO ₂	(b) CO ₂	(c) CO	(d) HNO ₂			
	 Name the mutagen (a) SO₂ Mutation are 	(b) CO ₂	(c) CO	(d) HNO ₂			
231.	 Name the mutagen (a) SO₂ Mutation are (a) Always harmful 	(b) CO ₂		(d) HNO ₂			
231.	 Name the mutagen (a) SO₂ Mutation are (a) Always harmful Point mutation is 	(b) CO ₂	(c) CO (c) Mostly useful	(d) HNO ₂ (d) Always useful			
231.	 Name the mutagen (a) SO₂ Mutation are (a) Always harmful Point mutation is (a) Loss of gene 	(b) CO ₂ (b) Rarely useful	(c) CO (c) Mostly useful (b) Change in a ba	(d) HNO ₂ (d) Always useful ase of gene			
231. 232.	 Name the mutagen (a) SO₂ Mutation are (a) Always harmful Point mutation is (a) Loss of gene (c) Addition of a gene 	(b) CO ₂ (b) Rarely useful	(c) CO (c) Mostly useful	(d) HNO ₂ (d) Always useful ase of gene			
231. 232.	 Name the mutagen (a) SO₂ Mutation are (a) Always harmful Point mutation is (a) Loss of gene (c) Addition of a gene Exact multiple of haplo 	(b) CO ₂ (b) Rarely useful bid number is	 (c) CO (c) Mostly useful (b) Change in a ba (d) Deletion of a s 	(d) HNO ₂ (d) Always useful ase of gene segment of gene			
231. 232.	 Name the mutagen (a) SO₂ Mutation are (a) Always harmful Point mutation is (a) Loss of gene (c) Addition of a gene Exact multiple of haplot (a) Euploid 	(b) CO ₂ (b) Rarely useful bid number is (b) Aneuploid	(c) CO (c) Mostly useful (b) Change in a ba	(d) HNO ₂ (d) Always useful ase of gene			
231. 232.	 Name the mutagen (a) SO₂ Mutation are (a) Always harmful Point mutation is (a) Loss of gene (c) Addition of a gene Exact multiple of haples (a) Euploid Ultimate source of organization 	(b) CO ₂ (b) Rarely useful oid number is (b) Aneuploid anic variation is	 (c) CO (c) Mostly useful (b) Change in a ba (d) Deletion of a s (c) Heteroploid 	(d) HNO ₂ (d) Always useful ase of gene segment of gene (d) Hyperploid			
231. 232. 233.	 Name the mutagen (a) SO₂ Mutation are (a) Always harmful Point mutation is (a) Loss of gene (c) Addition of a gene Exact multiple of haplot (a) Euploid 	(b) CO ₂ (b) Rarely useful bid number is (b) Aneuploid	 (c) CO (c) Mostly useful (b) Change in a ba (d) Deletion of a s 	(d) HNO ₂ (d) Always useful ase of gene segment of gene			
231. 232. 233.	 Name the mutagen (a) SO₂ Mutation are (a) Always harmful Point mutation is (a) Loss of gene (c) Addition of a gene Exact multiple of haples (a) Euploid Ultimate source of orgation of a gene (a) Mutations Polyploidy means occur 	 (b) CO₂ (b) Rarely useful b) Rarely useful b) Aneuploid c) Vatural selection c) Satural selection 	 (c) CO (c) Mostly useful (b) Change in a ba (d) Deletion of a s (c) Heteroploid 	(d) HNO ₂ (d) Always useful ase of gene segment of gene (d) Hyperploid			
231. 232. 233. 234.	 Name the mutagen (a) SO₂ Mutation are (a) Always harmful Point mutation is (a) Loss of gene (c) Addition of a gene Exact multiple of haplot (a) Euploid Ultimate source of orgation (a) Mutations 	 (b) CO₂ (b) Rarely useful b) Rarely useful b) Aneuploid c) Vatural selection c) Satural selection 	 (c) CO (c) Mostly useful (b) Change in a ba (d) Deletion of a s (c) Heteroploid 	(d) HNO ₂ (d) Always useful ase of gene segment of gene (d) Hyperploid (d) Hormonal activity			
231. 232. 233. 234. 235.	 Name the mutagen (a) SO₂ Mutation are (a) Always harmful Point mutation is (a) Loss of gene (c) Addition of a gene Exact multiple of hapled (a) Euploid Ultimate source of orgation of a gene (a) Mutations Polyploidy means occurs (a) Haploid sets of christ (c) More than diploid 	(b) CO ₂ (b) Rarely useful oid number is (b) Aneuploid anic variation is (b) Natural selection arrence of comosomes sets of chromosomes	 (c) CO (c) Mostly useful (b) Change in a ba (d) Deletion of a s (c) Heteroploid (c) Isolation 	(d) HNO ₂ (d) Always useful ase of gene segment of gene (d) Hyperploid (d) Hormonal activity			
231. 232. 233. 234. 235.	 Name the mutagen (a) SO₂ Mutation are (a) Always harmful Point mutation is (a) Loss of gene (c) Addition of a gene Exact multiple of haples (a) Euploid Ultimate source of orgation of a gene (a) Mutations Polyploidy means occuring the set of chrometers of the set of the s	(b) CO ₂ (b) Rarely useful oid number is (b) Aneuploid anic variation is (b) Natural selection arrence of comosomes sets of chromosomes	 (c) CO (c) Mostly useful (b) Change in a base (d) Deletion of a set (c) Heteroploid (c) Isolation (b) Diploid sets of 	(d) HNO ₂ (d) Always useful ase of gene segment of gene (d) Hyperploid (d) Hormonal activity			
231. 232. 233. 234. 235.	 Name the mutagen (a) SO₂ Mutation are (a) Always harmful Point mutation is (a) Loss of gene (c) Addition of a gene Exact multiple of hapled (a) Euploid Ultimate source of orgation of a gene (a) Mutations Polyploidy means occurs (a) Haploid sets of christ (c) More than diploid 	(b) CO ₂ (b) Rarely useful oid number is (b) Aneuploid anic variation is (b) Natural selection arrence of comosomes sets of chromosomes	 (c) CO (c) Mostly useful (b) Change in a base (d) Deletion of a set (c) Heteroploid (c) Isolation (b) Diploid sets of 	(d) HNO ₂ (d) Always useful ase of gene segment of gene (d) Hyperploid (d) Hormonal activity			

237.	Individual with Turner's	syndrome is				
	(a) Normal female		(b) Normal male			
		nentary ovaries and undev	-			
		ntary testes and undevelop	ped penis			
238.	A supermale has a genet					
	(a) XY	(b) XXY	(c) XXYY	(d) XYY		
239.	The risk of Down's sync	lrome offspring is more to	mothers at the age of			
	(a) 20 years	(b) 25 years	(c) 30 years	(d) 35 years		
240.	The mutation which retu	rns to the original state is c	called			
	(a) Reversible mutation	(b)Lethal mutation	(c) Backward mutation	(d) Abnormal mutation		
241.	The term mutation was	coined by				
	(a) Morgan	(b) Beadle and Tatum	(c) Hugo de Vries	(d) H. J. Muller		
242.	Mutagens are					
	(a) The genes which can mutate(c) Genes that regulate mutations		(b) The organism which show mutation			
			(d) The agent which cause mutation			
243.	Cystic fibrosis is caused	l by				
	(a) Recessive autosomal allele		(b) Dominant autosomal allele			
	(c) Recessive sex linked allele		(d) Dominant sex linked allele			
244.	Huntington's disease is					
	(a) Autosomal dominan	t disease	(b) Autosomal recessive disorder			
	(c) Sex-linked recessive disorder (d) Sex-linked dominant disease					
245.	A sudden or spontaneou	is change in the structure	and action of a particular	r gene is called		
	(a) Linkage	(b) Variation	(c) Mutation	(d) Allelomorph		
246.	Aneuploidy is the term	applied for the				
	(a) Gene mutation					
	(b) Chromosomal mutat					
		tion involving the addition				
		tion involving the addition	•			
247.		the gene mutation where				
	(a) Duplication	(b) Aneuploidy	(c) Euploidy	(d) Substitution		
248.		nts between the two non-h	-			
	(a) Polyploidy	(b) Chromosomal aberrat		(d) Inversion		
249.	-	osome get separated an	nd reattached in reverse	e position to the same		
	chromosome, the mutat					
	(a) Inversion	(b) Transversion	(c) Translocation	(d) Gene mutation		
250.	is called	e gets detached and lost c	iuring the cell division, t	he mutation so produced		

	(a) Deletion	(b) Euploidy	(c) Inversion	(d) Transcription			
251.	Huntigton's chorea is c	characterised by					
	(a) Incongruant muscle	e movement					
	(b) Disordered muscle	movement and mental det	erioration				
	(c) Weak eye sight and	(c) Weak eye sight and hearing power (d) Inability to speak					
252.	A person having Klinefelter's syndrome is chracterised by						
	(a) Male with some set	condary sexual characters	of female				
	(b) Female with some	secondary sexual characte	rs of male				
	(c) Having both male a	and female sex organs					
	(d) Female internal sex	x organs and male external	sex organs				
253.	The child affected with	h Down's syndrome has					
	(a) Flattened nasal brid	dge, open mouth with prot	ruding tongue				
	(b) Small forehead, bu	lging eyes and raised nasa	l bridge				
	(c) Habitually open mouth with long protruding tongue, bulging eyes and small forehead						
	(d) Large forehead, raised nasal bridge and long included tongue.						
2 54.	In cystic fibrosis there	is					
	(a) Failure of chloride	ion transport	(b) Mucous clogging of lungs				
	(c) Defective function	ing	(d) All the above				
255.	Albinism in man has b	been reported in :					
	(a) Negroes		(b) Europeans				
	(c) Both negroes and e	europeans	(d) None of the above				
256.		ose father was albino ma	arries an albino; what p	roportion of normal and			
	_	among their offspring					
		(b) One normal : one alb					
	(c)All normal	(d) Two normal : one all	01110				
257.	•						
	(a) Point mutation						
	(c) Gene mutation		ion				
258.	Genetic variation arises	•					
	(a) Recombination	(b) Mutation	(c) Nucleolus	(d) Both (a) and (b)			
259.		olved in the inheritance of	() 0 11 11 $()$				
	(a) Colourblindness	(b) Phenylketonuria	(c) Sickle cell anaemia	(d) Skin colour			
260.		recessive alleles for sickle of					
	(a) Epistatic	(b) Lethal	(c) Both (a) and (b)	(d) Pleiotropic			
261.	6 11	C C	(h) Chromosomal at a	rations			
	(a) Gene recombinatio		(b) Chromosomal aberr	auons			
	(c) Spontaneous mutat		(d) Polyploidy				
262.	v ariations that involve	change in number of chron	nosomes are				

	(a) Euploidy	(b) Aneuploidy	(c) Both (a) and (b)	(d) None of the above		
263.	More specific biologica	l effects are caused by				
	(a) X-rays	(b) Gamma rays	(c) Alpha particles	(d) UV light		
264.	When one chromosome	is lacking in a diploid set i	it is called			
	(a) Monosomic	(b) Nullisomic	(c) Trisomic	(d) Pentasomic		
265.		in non-reproductive cells	are			
	(a) Gametic mutation	(b) Somatic mutations				
	(c) Point mutation	(d) Chromosomal mutati	ons			
266.	-	man to all of his sons only		_		
	(a) Gene for that trait is	s dominant	(b) Gene is located on a	any chromosome		
	(c) Both (a) and (b)	1	(d) None of the above			
267.	Albinos have pigment a		(-) F			
	(a) Skin Which one is a homedita	(b) Hairs	(c) Eyes	(d) All the above		
268.	Which one is a hereditat (a) Cataract	(b) Blindness	(a) \mathbf{I}_{approx}	(d) Dhanyilkatanuria		
- (-			(c) Leprosy	(d) Phenylketonuria		
269.		is related to the high freque				
	(a) Maternal age (b) Paternal age (c) Both (a) and (b) (d) None of the abo Gaucher's disease is associated with abnormal metabolism of					
270.						
	(a) Fat	(b) Nucleic acid	(c) Protein	(d) Carbohydrate		
271.]	Epicanthus' is the sympton (x) up to (x)					
	(a) Haploidy	(b) Hetroploidy	-	(d) Turner's syndrome		
272.		alkaptonuria have an abno	_			
	(a) Uric acid	(b) hydrochloric acid	(c) Phenylalanine	(d) Homogentisic acid		
273.	Which of the following					
	(a) Haemophilia : Y-Ch		(b)Sickle-cell anaemia			
	(c) Down's syndrome :	21 st Chromosome	(d) Parkinson's disease	: X and Y-Chromosome		
2 74.	An example of molecul	ar mutations is				
	(a) Anaemia	(b) Sickle-cell anaemia				
	(c) Haemophilia	(d) Erythroblastosis faeta	alis			
275.	Which one of the follow	ving is a genetic trait				
	(a) Thalassemia		(b) Grave's disease			
	c) Cushing's syndrome	e	(d) Parkinson's disease			
276.	Amyloid β protein dependence	osits damages the brain of p	patients suffering from			
	(a) Tay-sachs disease	(b) Cystic fibrosis	(c) Alzheimer's disease	(d) Huntington disease		
277.	Progressive degeneratio	n of brain cells results from	n			
	(a) Cystic fibrosis	(b) Marfan syndrome	(c) Thalassemia	(d) Huntington disease		
278.		sease is another name of				
	-					

	(a) Gaucher's disease	(b) Alzheimer's disease	(c) Neurofibromatosis	(d) Sickle-cell disease	
279.	Hexosaminidase deficie	ncy results in			
	(a) Tay-Sachs disease	(b) Huntington disease	(c) Sickle-cell disease	(d) Marfan syndrome	
280.	Which of the following	is a lethal genetic disease c	lue to an autosomal reces	sive mutation	
	(a) Haemophilia	(b) Cystic fibrosis	(c) Neurofibromatosis	(d) Huntington disease	
281.	-	a chromosome results from	n the reciprocal transloca	tion between chromosome	
	numbers				
	(a) 10 and 20	(b) 3 and 11	()	(d) 9 and 22	
282.	c c	diseases is due to deletion	of chromosome		
	(a) Down's syndrome		(b) Patau's syndrome		
	(c) Cri-du-chat-syndrom		(d) Edward's syndrome		
283.	Deletion of short arm of	f chromosome $4(4p-)$ result	in		
	(a) Patau's syndrome		(b) Edward's syndrome		
	(c) Klinefelter's syndro		(d) wolf-Hirschhorn's syndrome		
284.				rst child of a couple with	
	normal skin pigmentatio	on was an albino. What is t	he probability that their s	econd child will also be an	
	(a) 100%	(b) 25%	(c) 75%	(d) 50%	
08-	. ,	l disorder resulting from the		(u) 30%	
205.	(a) Catalase	(b) Fructokinase	(c) Tyrosinase	(d) Xenthine oxidase	
286	Which one in man is a v		(c) Tyrosindse	(d) Mentiline Oxidase	
200.	(a) Diptheria	(b) Leucoderma	(c) Albinism	(d) Tuberculosis	
287	Albinism is a				
-07.		(b) Deficiency disease	(c) Contagious disease	(d) Sex linked disease	
288	-	-	-	lbino and 50% are normal	
200.	the woman is		ind 50% onispinigs are a		
	(a) Heterozygous norm	al (b)Homozygous norm	nal		
	(c)Heterozygous carrie	r (d)None of the above)		
Adva	ince Level				
289.			bin and one gene for sicl	kle cell haemoglobin. This	
	heterozygous condition				
	(a) Genome	(b) Anaemia	(c) Gene trait	(d) Sickle cell trait	
290.	-	number in a cell is 12, then			
	(a) 25	(b) 22	(c) 26	(d) 23	
291.	Monosomy and trisomy	*			
	(a) $2n+1, 2n+3$	(b) $2n-1, 2n-2$	(c) $2n, 2n+1$	(d) $2n-1, 2n+1$	

292. Phenylketonuria (PKU) is an inherited disease which refers to (a) Decrease in phenylalanine in tissue and blood (b) Increase in phenyl pyruvic acid in tissue and blood (c) Elimination of sugar in urine (d) Elimination of gentisic acid in urine 293. In man sometime during gametogenesis sex chromosomes are not separated themselves on account of which chromosome number becomes 45, 47 or 48. In this condition which of the following genotype and phenotype is correct (a) 22 pairs + XXY males(b)22 pairs + XX females(c)22 pairs + XXXY females (d) 22 pairs + Y females294. Down's syndrome is caused by an extra copy of chromosome number 21. What percentage of offspring produced by an affected mother and a normal father would be affected by this disorder (a) 25% (d) 50% (b) 100% (c) 75% **295.** Meta-females have (a) XX (b) XXO (c) XXXX (d) XXXXXX 296. Symptoms representing a particular disease due to chromosomal abnormalities are referred to (a) Sex mosaic (b) Syndrome (c) Lethal (d) Pedigree 297. Trisomic condition of Down's syndrome arises due to (a) Triploidy (b) Translocation (d) Dicentric bridge formation (c) Non-disjunction 298. Condition of sex chromosomes in a male child of Down's syndrome will be (a) XY (b) XXY (c) XX (d) XO**299.** Persons with the following syndrome have a tendency of tall structure, mental defects and a strong antisocial behavior (a) XYY syndrome (b) Down's syndrome (d) Turner's syndrome (c) Klinefelter's syndrome **300.** Euploidy is best explained by (a) Exact multiples of a haploid set of chromosomes (b) One chromosome less than the haploid set of chromosome (c) One chromosome more than the haploid set of chromosomes (d) One chromosome more than the diploid set of chromosomes 301. Sometimes chromosome number increase or decrease due to (a) Non-disjunction of chromosome (b)Genetic repeate (d) All of the above (c) Mutation **302.** If a diploid cell is treated with colchicine, then it becomes (a) Tetraploid (b) Diploid (c) Triploid (d) Monoploid

303.	The formation of mu	ltivalents at meiosis in diplo	oid organism is due to			
	(a) Monosomy	(b) Inversion				
	(c) Deletion	(d) Reciprocal transloc	cation			
304.	Alkaptonuria is cause	ed due to				
	(a) Dominant autoso	omal gene	(b) Recessive auto	somal gene		
	(c) X linked recessiv	ve gene	(d) X linked domin	nant gene		
305.		number of chromosome in t Klinefelter's syndrome in th	-	y a normal sperm) that resulted		
	(a) 23	(b) 22	(c) 21	(d) 24		
306.				omes of XO type give rise to a e of sex chromosomes form		
	(a) Normal female		(b) Normal male			
	(c) Klinefelter's syn	drome	(d) Turner's syndro	ome		
307.	In Turner's syndrome	e, people are				
	(a) Externally femal	es, chromatin negative	(b) Externally mal	es, chromatin positive		
	(c) Externally males	s, chromatin negative	(d) Externally fem	ales, chromatin positive		
308.	In Klinefelter syndrome, people are					
	(a) Externally femal	es, chromatin positive	(b) Externally fem	ales, chromatin negative		
	(c) Externally males	s, chromatin positive	(d) Externally mal	(d) Externally males, chromatin negative		
309.	Match list I with list	II and select the correct ans	wer using code given b	elow		
	List I (syndrome)					
	(1) Patau's syndrom	e				
	(2) Klinefelter's syn					
	(3) Down's syndrom					
	(4) Turner's syndror					
	List II (Chromosom	al abnormality)				
	(A) 44 + XXY = 47					
	(B) $44 + X = 45$					
	(C) $46 + 1 = 47$ Chromo					
	(D) $46 + 1 = 47$ Chrom	osome 21 st				
	Code	1.2.2.4	1024	1024		
	(a) $\begin{array}{c} 1 & 2 & 3 & 4 \\ A & B & C & D \end{array}$	(b) $DCBA$	(c) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ C & B & D & A \end{pmatrix}$	(d) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ C & A & D & B \end{pmatrix}$		
310.	"Philadelphia chrom	osome" is found in the patie	ent suffering from			
	(a) Insomnia	(b) Leukaemia	(c) Hepatitis	(d) Albinism		
311. T	The genotype of a boy	having sexual characters of	a girl is			
	(a) XXX	(b) XXY	(c) XO	(d) XYY		
312.	Disorders of amino a	cid metabolism results in				

	(a) Alkaptonuria	(b) Phenylketonuria	(c) Albinism	(d) All of the above		
313.	-	genetic change which bree	eds true in an organism is	visualised in the principle		
	of					
	(a) Natural selection	· · · · · ·	(c) Variations	(d) Mutations		
314.		ple of point mutation is for				
	(a) Night blindness	(b) Thalassemia	•	(d) Sickle-cell anaemia		
315.	Normally DNA molecu status, owing to rearrang		lowever, these bases can	exist in alternative valency		
	(a) Point mutation		(b) Analogue substituti	on		
	(c) Frame-shift mutation	on	(d) Tautomerisational	mutation		
316.	The process of genetic r	nutation is				
	(a) Reversible	(b) Irreversible	(c) Partially reversible	(d) Continuous		
317.\	Which of the following di	scoveries resulted in a Nol	bel Prize			
	(a) Genetic engineering	5				
	(b)X-rays induce sex-linked recessive lethal mutations					
(c) Cytoplasmic inheritance (d) Recombin				inked genes		
318.	Identify the following p CUA AUA to UUG CU		UAU ACC UAU to UAU AAC CUA and UUG			
				ame shift respectively		
			(d) Frame shift and tran	nsition respectively		
319.	Mutations are responsib	le for				
	(a) Increasing the popu	lation rate	(b) Variations in organisms			
	(c) Constancy in organ	isms	(d) For beneficial changes in organisms			
320.	Which one of the follow	ving is not a mutagen				
	(a) 5-bromouracil	(b) Acetic acid	(c) Nitrous acid	(d) Gamma radiation		
321.	The frequency of a muta	ant gene in a population is	expected to increase, if th	e gene is		
	(a) Recessive	(b) Dominant	(c) Sex linked	(d) Favourably selected		
322.	Mutation rates are affec	ted by				
	(a) Temperature		(b) X-rays			
	(c) Gamma and beta ra	diation	(d) All of the above			
323.	Transition type of gene	mutation is caused when				
	(a) GC is replaced by T	TA (b)CG is replaced by	GC			
	(c)AT is replaced by C	G (d)AT is replaced by	GC			
324.	The reason why some n	nutations which are harmfu	ll do not get eliminated fr	om the gene pool, is that		
	(a) They have future su	rvival value				
	(b)They are recessive a	and carried by heterozygo	us individuals			
	(c) They are dominant	and show up more freque	ntly			

(d) G	enetic	drift	occurs	because	of a	small	population area	
-------	--------	-------	--------	---------	------	-------	-----------------	--

325. In man the mutation disease, aniridia (Congenital absence of iris) occurs due to

(a) Dominant mutation (b) Recessive mutation (c) Lethal mutation (d) Iso-alleles

326. The point mutations A to G, C to T, C to G and T to A in DNA are

(a) Transition, transition, transversion and transversion respectively

(b) Transition, transversion, transition and transversion respectively

- (c) Transversion, transition and transition respectively
- (d) All four are transition

327. Which one of the following mutation partially or fully reverses the harmful effects of previous mutation

(a) Indirect suppression (b) Intergenic mutation

(c) Intragenic mutation (d) Suppressor mutations

328. Muller was awarded Nobel prize in 1946 for his work on

(a) Protein synthesis (b) Chemistry of nucleic acids

(c) Cancer (d) X-ray induced mutations

329. Hyperchromism is presence of

(a) Some chromosome more than once

(c) Variable chromosomes in nucleus

330. Mutation refers to sudden change in

(b) Maturation time (a) Phenotype

- (b) Some type of chromosome less than once
- (d) None of the above

(c) metabolic rate

(d) Genetic make up

331. Match the columns

Column I	Column II		
a Down's syndrome	p An additional sex chromosome		
b Cri-du-chat syndrome	q Loss of a part of chromosome 5		
c Klinefelter's syndrome	<i>r</i> Absence of sex chromosome		
d Turner's syndrome	s Presence of an extra		
	chromosome		
	t Presence of two extra		
	chromosomes		

(a) a-s, b-q, c-p, d-r (b) a-t, b-s, c-p, d-q (c) a-s, b-q, c-q, d-r (d) a-s, b-q, c-r, d-p

332. Mutation caused by a mutagen is

(a) Induced (b) Natural

333. *X*-rays cause mutation by

(a) Transition (b) Transversion

(c) Spontaneous

(c) Deletion

(d) Chemical mutation

(d) Base substitution

334.	The gene that controls t	the rate of mutation of ano	ther gene is	
	(a) Regular gene	(b) Inducer gene	(c) Mutable gene	(d) Mutator gene
	Huntington's chorea is			
335.	(a) Common in Korea			
		ion causing involuntary s	haking of legs arms he	ad
	(c) Disease of kidney	ion causing involuntary s.	naking of 1025, arms, ne	uu
	(d) Related to diabetes			
336.		e with another purine or a	pyrimidine with another	pyrimidine is
00	(a) Transition	(b) Transversion	(c) Insertion	(d) Deletion
337.	A point mutation comp	rising substitution of purin	e with pyrimidine is	
	(a) Transition	(b) Transversion		(d) Translocation
338.	Frame shift mutation of	ccurs when		
	(a) Base is deleted or a	added	(b) Base is added	
	(c) Base is deleted		(d) Anticodons are no	ot present
339.	In gene mutation, adent	ine is replaced by guanine.	It is known as	
	(a) Substitution	(b) Point mutation	(c) Transition	(d) Transversion
340.	Nullisomy is the term u	used for the condition when	n an organism has	
	(a) An additional chro	mosome	(b) One chromosome	less than normal
	(c) A complete set of c	chromosomes except one	homologous pair	
	(d) None of the above			
341.		wing is responsible for me		
		(b) XX and XXX		(d) XX and XO
342.		te to trisomy of 21^{st} chrom	-	
	(a) Nondisjunction du		-	uring sperm formation
		hromosome during mitos	is of zygote	
	(d) Either (a) or (b)	a agains due to		
343.	Rearrangement of gene (a) Translocation and		(b)Translocation and	deficiency
		•		
	(c) Deletion and defici	-	(d) Translocation and	Iniversion
344.	C	_		
	(a) Variations	(b) Adaptations	(c) Evolution	(d) Mutations
345.	-	What shall be tetrasomic n		(1) 10
	(a) 22	(b) 40	(c) 20	(d) 19
346.	Recessive mutation is r	-		
	(a) Homozygous male		(b) Heterozygous ma	le

(c) Heterozygous female (d) Homozygous female **347.** Fertilization between 22A + XX egg and 22A + Y sperm will result in(a) Down's syndrome (b) Patau's syndrome (c) Turner's syndrome (d) Klinefelter's syndrome **348.** Marfan's syndrome is characterised by (a) Dislocation of eye lens (b) Hypermobility of joints (c) Slender body, elevated limbs and susceptibility to heart diseases (d) All the above 349. Allele for cystic fibrosis occurs over (a) 21 Chromosome (b) 14 Chromosome (c) 7 Chromosome (d) 4 chromosome 350. Gene of sickle cell anaemia is carried by (a) Sex cell (b) Sex chromosome (c) Autosome (d) Bone cell 351. The possibilities of the hereditary and evolutionary changes are greatest in the species, which are reproduced by (a) Fission (b) Budding (c) Asexual means (d) sexual means **352.** Pleiotropy is the term that refers to the situation in which a gene influences more than one trait. Its example is given by (a) Sickle cell anaemia (b) Haemophilia (c) Colour blindness (d) Only (a) and (b) 353. Which one of the following conditions though harmful in itself, is also a potential saviour from a mosquito borne infectious disease (a) Pernicious anaemia (b) Leukaemia (c) Sickle-cell anaemia (d) Thalassemia 354. Tay-Sach's disease is an example of (a) Dominant X-linked trait (b) Autosomal recessive trait (c) Autosomal dominant trait (d) Recessive sex-linked trait 355. 'Philadelphia chromosome' is reported from the patients suffering from (a) PKU (b) CML (c) Liver dysfunction (d) Kidney stone 356. In sickle-cell anaemia, which of the following amino acids is substituted (a) Glutamic acid by valine in β -chain (b) Valine by glutamic acid in β -chain (c) Glutamic acid by valine in α -chain (d) Valine by glutamic acid in α -chain 357. In man albinism is due to non-synthesis of melanin in the absence of (b) Tyrosinase (a) Lysine (c) Luciferase (d) Melanase 358. An albino lady marries a normal man having one gene for albinism. They have 3 daughters and 1 son. The son will be (a) Normal (b)Either normal or albino (c) Half albino half normal

(d)Normal in childhood but turns albino on becoming adult

- **359.** Knowing that albinism is determined by a recessive gene in man, presence of albinism in children born to a couple proves that
 - (a) Both the father and the mother are heterozygous for albinism
 - (b) The father is homozygous normal but the mother is heterozygous or vice versa
 - (c) The father is homozygous for albinism but the mother is heterozygous or vice versa
 - (d) (a) and (c) are correct

SEX DETERMINATION

Basic Level

360.	In man, sperms contain	autosomes and		
	(a) Only Y chromosom	ne	(b)Only X chromosom	e
	(c) Both X and Y chron	mosomes	(d) Either X or Y chron	mosomes
361.	Sex of the unborn mam	mal can be predicted by		
	(a) Placental biopsy		(b) Examining the chor	rion
	(c) Amniocentesis		(d) Examining the mot	her's blood
362.	A family has five girls a	and no son, probability of s	on as the 6th child will be	
	(a) 50%	(b) 75%	(c) Full	(d) No chance
363.	The average ratio of m total world of human po		based on XX and XY typ	be of sex determination, in
	(a) 3 : 1	(b) 1 : 3	(c) 1 : 4	(d) 1 : 1
364.	Total number of autoso	mes in fertilized egg of ma	n is	
	(a) 44	(b) 22	(c) 23	(d) 46
365.	In man, the composition	n of female destined zygote	eis	
	(a) $22 + X$	(b) $44 + XX$	(c) $22 + Y$	(d) $44 + XY$
366.	An unfertilized human	egg contains		
	(a) Two X chromosom	es	(b)One X and Y chrom	nosome
	(c) One Y chromosome	e only	(d) One X chromosome	e only
367.	A male child would be	-		
	(a) Father is healthier t			
		nal constitution of child is	XX	
	(c) Mother feeds well of			
	. ,	nal constitution of child is		_
368.	-	e half of the body male and		
		(b) Hermaphrodite	(c) Super female	(d) Intersex
369.	Male child will be born			
	(a) Father is sexually n			
	(b)Sperm of male with	<i>Y</i> chromosome fertilized	the egg	

	(c) Sperm of male with	n X chromosome fertilized	l the egg	(d)None of the above
370.	Genic balance theory w	as proposed by		
	(a) Bridges	(b) Morgan	(c) Bovery	(d) Lyon
371.7	The formation of a male	child depends on the sperm	is because	
	(a) Sperms may be X a	and Y	(b) Sperms are all Y	
	(c) The eggs from the	other ovary may be Y	(d) Sperms are more a	ctive
372.	In human chromosoma	l condition of male is	-	
	(a) 44 AA + XO	(b) 44 AA + XX	(c) 44 AA + XY	(d) 44 AA + XXY
373.	Genetic identity of a hu	man male is determined by	/	
	(a) Autosome	(b) Nucleolus	(c) Sex chromosome	(d) Cell organelles
374.	How many chromosom	es are present in an unferti	lized egg	
	(a) 22 autosomes and	one sex chromosome		
	(b) 22 pairs of autosom	nes and one sex chromoso	me	
	(c) 44 autosomes and	one pair of sex chromoson	ne (d)Total 22 chromo	osomes
375.	The male human is repr	resent by sex chromosomes	3	
	(a) XX	(b) XO	(c) XY	(d) YY
376.	Sex of a human child is	determined by		
	(a) Size of the egg at t	he time of fertilization	(b) Size of sperm at th	e time of fertilization
	(c) Sex chromosome c	of father	(d) Sex chromosome of	of mother
377.	The sex determination	pattern in honeybee is calle	d	
	(a) Female haploidy	(b) Haplodiploidy	(c) Gametic diploidy	(d) Gametogony
378.	Free martin condition i	s found in		
	(a) Man	(b) Sheep, goat etc.	(c) Rabbit	(d) Frog
379.	The chromosome in fer	nales are		
	(a) XX	(b) XY	(c) YY	(d) XXY
380.	The chromosomes resp	onsible for the determination	on of sex are called	
	(a) Autosomes	(b) Allosomes	(c) Multiple alleles	(d) Heterosis
381.	In human zygote, the m	ale sex is determined by w	hether	
	(a) Mother gets good n	nutrition	(b) Father is stronger t	han mother
	(c) Strength of male cl		(d) The presence of Y	chromosome
382.	Determination of sex of			
	(a) Nature of sperm	(b) Nature of egg	(c) Health of father	(d) Age of mother
383.	•	o between the number of ine the sex is known as	X-chromosomes and nu	umber of complete sets of
	(a) Chromosome theor	y of sex determination		
	(b) Genic balance theo	ry of sex determination		
	(c) Hormonal balance	theory of sex determination	on	
	(d) Environmental sex	determination theory		
1				

384.	There are five daughters	s and no son in a family. It	may be due to	
	(a) Father produced on	ly X containing sperms	(b) Father produced no	sperms at all
	(c) Y type sperms are v	veaker and not effective		
	(d) By chance each time	e X sperms fertilized the e	egg	
385.	Free martin is an examp	le of		
	(a) Hormonal control o	f sex	(b) Sex reversal by gen	e
	(c) Environmental cont	rol of sex	(d) None of the above	
386.	The theory relevant to o	rganism possessing inherit	ed potential to transform	male to female is
	(a) Chromosomal theor	У	(b) Genic balance theor	ry
	(c) Chromosomal and g	gene theory	(d) Hormonal theory	
38 7.	Lethal genes are those w	vhich		
	(a) Cause death of the i	ndividual in which they a	re present	
	(b) Cause death of hom	ozygous infant being form	ned	
	(c) Cause death of hete	rozygous infant being for	med	
	(d)None of the above			
388.	Recessive character are	expressed		
	(a) Only when they are	present on X-chromosom	nes of male	
	(b) Only when they are	present on both the X-ch	romosomes of female	
	(c) No any autosome		(d)On one the chromo	osomes of female
389.	Hinny and mule are the	example of		
	(a) Test cross	(b) Dihybrid cross	(c) Back cross	(d) Reciprocal cross
390.	A fruitfly exhibiting bot	h male and female traits is		
	(a) Heterozygous	(b) Gynandromorph	(c) Hemizygous	(d) Gynander
391.	What is the true in case	of Honey Bee		
	(a) Male diploid, femal	e haploid	(b)Male diploid, female	-
	(c) Male haploid, femal	le haploid	(d)Male haploid, fema	le diploid
392.	An autosome is			
	(a) Chromosome half		(b) Sex Chromosome	
	(c) Chromosome other		(d) None of the above	
393.	In human zygote male se	ex is determined by		
	(a) Strength of father		(b) Nutrition of mother	
		uired chromosome pair	(d) None of the above	
394.	Genetic identity of huma	-		
	(a) Nucleolus	(b) Cell organelles	(c) Autosomes	(d) Sex chromosomes
395.	In humans, sex is determ	nined by		
	(a) Y- chromosome		(b) X- chromosome	
	(c) A and X-chromoson	mes	(d) A and Y-chromoson	mes

396.	Allosomes are the name	e of		
	(a) Sex chromosomes			
	(b) Swellings on the ch			
		er than the ones which dete	ermine sex	(d) Nucleolus
	organising regions of c		a proposed by	
397.		is for sex determination wa (b) Darwin	(c) Correns	(d) Pridage
008	(a) Morgan Which one is homogam		(c) Contens	(d) Bridges
390.	(a) Human child	(b) Human embryo	(c) Human male	(d) Human female
399.		carries half the chromosom		(u) Human Temare
399.	(a) <i>Amoeba</i>	(b) <i>Gorilla</i>	(c) Honey Bee	(d) Geometrid Moth
400.	Sex is determined in hu		(0) 1101109 200	
	(a) By ovum	8-	(b) At time of fertilizat	ion
	(c) 40 days after fertili	zation	(d) Before fertilization	
401.	Barr body in mammals			
	(a) All the hetero chron	matin in female cell		
		hromosomes in somatic ce	ells of female	
		matin in male and female		
	(d)The chromosome in			
402.	Lyon hypothesis deals			
•		n (b)Genetic compatib	ility	
	· · · · · · · · · · · · · · · · · · ·	ility (d)Number of barr be	•	
403.	-	ks are of what significance		ists
	-	resence of abnormal sex c		
		resence of more than one		lls
	(c) They indicate male			
	•	esence of sex linked traits		
404.		liva test in Olympic games		are associated with
	(a) Male autosome	JI G	(b) Female autosome	
	(c) Female sex chromo	osome	(d) Male sex chromoso	ome
405.	Barr bodies are		、 /	
		e (b) Not influenced by sta	ains (c)Chromatin positi	ive (d)Poorly staining
406.	How many barr bodies	•	(), F	(2)
	(a) One	(b) Two	(c) Three	(d) Four
407-	Sex chromosomes are f			
- ~/•	(a) Testes	(b) Ovaries	(c) Kidney and liver	(d) All of the above

408.	The number of Y chrom	atin corresponds to :		
	(a) Number of X-chron	nosomes	(b) Number of Y-chron	nosomes
	(c) One less than numb	per of X-chromosomes	(d) One more than nur	nber of X-chromosomes
409.	Sex determining chromo	osomes are called :		
	(a) Heterosomes	(b) Autosomes	(c) Centrosomes	(d) Spherosomes
410.	Barr body is found in :			
	(a) Male somatic cells		(b) Male germinal cells	5
	(c) Female somatic cell	S	(d) Female germinal ce	ells
411.	According to Lyon hypoth	nesis, one of the two X-chr	omosomes in each femal	e somatic cell is known as
	(a) Barr body	(b) Karyotypic body	(c) Phenotypic body	(d) Genotypic body
412.	Balance theory of sex de	etermination holds good for	r :	
	(a) Humans	(b) Drosophila	(c) Grasshoppers	(d) Allium cepa
413.	In Drosophila, the sex	is determined by :		
	(a) The ratio of pairs of	X-chromosomes to the p	airs of autosomes	
	(b) Whether the egg is t	fertilized or develops part	henogenetically	
	(c) The ratio of number	of X-chromosomes to the	e sets of autosomes	
	(d) X and Y-chromoson	nes		
414.	Super male and super fe	male type of determination	n of sex in <i>Drosophila</i> is	based on :
	(a) Biodiversity	(b) Genic balance	(c) Uniformity	(d) Oxygen balance
415.	According to genic bala	nce theory, $\frac{X}{A} = 1.5 Drosop$	<i>phila</i> individual will be :	
	(a) Male	(b) Female	(c) Intersex	(d) Super female
416.		man male contain single	Barr body, the genetic c	omposition of the persons
	would be			/ •/ •
	(a) XYY	(b) XXY	(c) XO	(d) XXXY
417.		hromosome will have the f	-	
A 7	(a) One	(b) Two	(c) Three	(d) Four
	ance Level	, hadre galla and talean from		
418.	(a) Buccal epithelium	x, body cells are taken from	(b) Buccal epithelium	and root of hair
	(c) Gonads		(d) Root of hairs	
410		on in Drosonkila when th		elled proembryo will have
419.	one of the following chr		e two cens in the two-co	ened proemoryo win nave
	(a) $2A + XX$ in one cell	and $2A + X$ in the other	(b) $2A + X$ in both the	cells
	(c) $2A + XXX$ in both the	ne cells	(d) All of the above	
420.	Loss of a X chromosome	e in a particular cell during	its development, results	into

		(a) Diploid individual	(b) Triploid individual	(c) Gynandromorphs	(d) (a) and (b) both
	421.	The male of grasshoppe	ers and moths posses two se	ets of autosomes and	
		(a) X and Y chromoson	mes	(b) Only X chromoson	ne
		(c) Only Y chromosom	ne	(d) Neither X nor Y ch	romosome
	422.	Mule is an offspring of			
		(a) Male and female do	onkey	(b) Cow and ox	
		(c) Male ass and mare		(d) Male horse and fem	nale ass
	423.	Animal which remains	male initially, then changes	s to female (Tapeworm pr	roglottides) is called
		(a) Protandrous	(b) Apomixis	(c) Profixation	(d) None of the above
	424.	In melandrium the sex of	letermination type is		
		(a) XX-XY type	(b) XX-XO type	(c) ZZ-ZW type	(d) XY-XO type
	425.	In human beings XX-ge	enotype is		
		(a) Always female	(b) Can be male or fema	le	
		(c) Always male	(d)Commonly female w	ith 5 per lakh being male	2.
	426.	Frequency of XY-genot	type being female in human	n beings is	
		(a) 1.0%	(b) 0.1%	(c) 0.001%	(d) 0.00001%
	427.	In crocodiles male sex i	s predominant at		
		(a) Low temperature		(b) Intermediate tempe	erature
		(c) High temperature		(d) Ratio of genetically	y determined
	428.	In common Turtles the	females are predominant at	t	
		(a) Below 28°C		(b) Above 33°C	
		(c) Between 28°-33°C		(d) Sex is genetically d	letermined
	429.	The males of roundwork			
		(a) One Y-chromosom	e	(b) One chromosome l	
		(c) Two similar sex chi		(d) Distinct sex chrom	osomes
	430.		ne complement occurs in		
		(a) Cockroach	(b) Honey Bee	(c) Human beings	(d) Chimpanzee
	431.		n sex determination was pr		
			(b) Henking	(c) Mc Clung	(d) Morgan
	43 2 .	•	XY sex determination was		
		(a) Henking	(b) Wilson and Stevens	(c) Johannsen	(d) Punnet
	433 .		constitution determines		
		(a) Maleness	(b) Femaleness	(c) Intersex	(d) Both A and C
	434 ∙		is found in male Grasshop	-	(1) 3737
		(a) XY	(b) X	(c) YY	(d) XX
1					

	(a) Substances sec	creted by proboscis	(b) Electrolytes in wa	ater
	(c) Oxygen in env	• -	(d) Carbon dioxide in	
436.		balance theory, $\frac{X}{A} = 1.5$ will r	nake the individual	
	(a) Male	(b) Metafemale	(c) Intersex	(d) None of the above
437.	In Drosophila, XX	Y is female. In human it repre	esents an abnormal male b	Decause
	(a) Y-chromosom	e induces male traits in huma	ans	
	(b) Y-chromosom	e is essential for female sex-i	in Drosophila	
	(c) Y-chromosom	es is not essential for male se	ex in humans	(d) None of the above
438.	Probability of all for	our sons to a couple is		
	(a) 1/4	(b) 1/8	(c) 1/16	(d) 1/32
439.	XY sex chromoson	mes were discovered by		
	(a) Gregor Johann	Mendel (b)M.J.D. White	(c) Nettie Stevens	(d) Robert Brown
440.	Drosophila meland	ogaster possesses		
	(a) 3 pairs autosor	nes + 1 pair sex chromosome	es	
	(b) 2 pairs autosor	nes + 2 pairs sex chromosom	nes	
	(c) 1 pair autosom	es + 3 pairs sex chromosome	es	
	(d) 2 pair autosom	es + 1 pair sex chromosomes	S	
441.	Male XX and fema	ale XY develop sometimes du	e to	
	(a) Hormonal imb	alance	(b) Aneuploidy	
	(c) Deletion		(d) Transfer of segme	ent between X and Y
442.	Barr body is absen	t in normal female in		
	(a) Skin cells	(b) Leucocytes	(c) Oogonia	(d) Secretory cells
443 .	The males of grass	hoppers and bugs possess two	sets of autosomes and :	
	(a) Only Y-chrom	osome	(b) Only X-chromoso	ome
	(c) X and Y-chron	nosome	(d) Neither X nor Y-	chromosome
444.		n who has done amniocentes likely to be associated with the		rr body in her embryo. The
	•	rome (b) Down's syndrome	-	rome (d)Patau's syndrome
445.	-	bnormal individual showing ty	-	-
	(a) Only a male w	ith one X-chromosome		
	(b) Only a female	with two X-chromosomes		
	(c) Only a male ha	aving two X-chromosomes		
1	-	or a female having three X-ch	romosomes	

446. In recent years, DNA sequence (nucleotide sequence) of mt-DNA and Y-chromosome were considered for the study of human evolution, because:

- (a) Their structure is known in greater detail
- (b) They can be studied from the samples of fossil remains
- (c) They are small, and therefore, easy to study
- (d) They are uniparental in origin and do not take part in recombination
- 447. Match List I and List II and select the correct answer using the codes given below the list :

	List I		List II
(peculiari sperm)	ity of male-determining		(Organism in which it is seen)
(A)	No sperm is needed at all	(1)	Grasshopper
(B)	Necessarily with a Y- chromosome	(2)	Honeybee
(C)	With haploid set of autosomes	(3)	Birds
(D)	With W-chromosome	(4)	Drosophila
		(5)	Human

Answer codes :

	(a) $A = 2, B = 1, C = 3,$	D = 4	(b)A = 5, B = 2, C = 4,	D = 3	
	(c) $A = 3, B = 5, C = 1,$	D = 4	(d)A = 2, B = 5, C = 1,	D = 3	
448.	In human female, Barr b	odies are formed by			
	(a) Inactivation of moth	ner's X chromosome	(b) Inactivation of fathe	er's X chromosomes	
	(c) Inactivation of both	mother's and father's X ch	nromosomes		
	(d) Inactivation of eithe	er mother's or father's X ch	nromosome		
449.	A medical technician wi	hile observing a human blo	ood smear under the micr	coscope notes the presence	
	of Barr body close to	the nuclear membrane	in the WBC. This indi	cates that persons under	
	investigation is		H]	Kerala CET (Med.) 2003]	
	(a) Colour blind	(b) Haemophilic	(c) Normal female	(d) Normal male	
450.	In the buccal cavity slic	le cell of an individual we	e get a dark stained body	y near nuclear membrane.	
	The genotype of the inc	lividual may be		[DPMT 1983]	
	(a) XX	(b) XY	(c) XYY	(d) XXX	
451.	The number of Barr bod	ies in Turner syndrome is			
	(a) 0	(b) 1	(c) 2	(d) 3	
452.	A woman has a child wi	th klinefelter's syndrome. I	Number of barr bodies pre	esent in the child is [Har. P	MT
	(a) One	(b) Two	(c) Three	(d) None of the above	
	A 1 1	a fath an waa allein a maamia	a a man who is alking W	What manantian of normal	
45 3 .	A normal woman whose	e lather was albino marrie	s a man who is aldino. v	vnat proportion of normal	
453 ∙		ted among their offsprings	s a man who is aldino. v	[CBSE PMT 1994]	
453.	and albino can be expect			[CBSE PMT 1994]	

				Sex Linked Inheritance
		Basic	e Level	
54.	If a normal woman m	arries a colourblind man, 1	their [KCET 1994; MP]	PAT 1995; MP PMT 2002]
	(a) All son will be co colourblind and sons	blourblind and daughters is normal	normal (b)	All daughters will be
olo	(c) All children will urblind	be normal		(d) All children will be
55.	A haemophilic man n be haemophilic	narries a normal homozyge	ous woman. What will be	the probability of his sons to [CPMT 1999]
	(a) 0%	(b) 25%	(c) 100%	(d) 50%
;6.	The genes, which are	confined to differential rea	gion of Y chromosome onl	ly, are called
	[A	IIMS 1998; MP PMT 20	00; CBSE PMT 1994; C	PMT 2003; MP PAT 1995]
	(a) Mutant linked	(b) Autosomal	(c) Holandric	(d) Completely sex-
57.	•	-	• •	double recessive condition. In the gene is present on [AIIN
	(a) Any autosome		(b) X chromosome of	f female
	(c) X chromosome o X chromosome	f male	(d)	Either on autosome or
58.	•	ys transmitted directly from pmosome carries the gene f		nd from their sons to all their [MP PMT 1997, 2000]
	(a) Autosomes	(b) X chromosome	(c) Y chromosome	(d) None of the above
9.	A colurblind daughter	r is born when	[M]	P PMT 1998; KCET 2002]
	(a) Father is colourb	lind, mother is normal	(b) Mother is colourb	olind, father is normal
	(c) Mother is carrier,	father is normal	(d) Mother is carrier,	father is colourblind
	Which disease is gene	etically linked		[MP PMT 1999]
0.	(a) Haemophilia	(b) Dysentery	(c) Plague	(d) Tuberculosis
0.		dness in man are located o	n [CPM]	T 1979, 84; MP PMT 2003]
	Genes for colour bline			
		nly (b) Y chromosome on	ly (c) Either X or Y chr	comosome (d) Both
51.	(a) X chromosome o X and Y chromosom	le		romosome (d) Both 1986; CBSE PMT 1994, 99;
51.	(a) X chromosome o X and Y chromosom	marries a normal man, the		1986; CBSE PMT 1994, 99;
51.	(a) X chromosome oX and Y chromosomIf a colour blind lady(a) Normal daughter	marries a normal man, the	ir children will be [BHU 1 (b) Normal sons and	1986; CBSE PMT 1994, 99;
61.	 (a) X chromosome o X and Y chromosom If a colour blind lady (a) Normal daughters (c) Colour blind sons daughters 	marries a normal man, the s and normal sons s and carrier daughters	ir children will be [BHU 1 (b) Normal sons and	1986; CBSE PMT 1994, 99; carrier daughters

	(a) Sex linked	(b) Sex influenced	(c) Sex limited	(d) None	of the above
5.	Sex linked disease is				
	[CPMT 1978, 82, 87,	90, 95, 99 2003 AFMC 1	985,96, 2001; BHU 1984,	85, 86; Pb I	PMT 2000; J&
			MP	PMT 1994	, DPMT 1985
	(a) Haemophilia	(b) Colourblindness	(c) Sickle-cell anaemi	a (d) Both ((a) and (b)
66.	Doctor's son				[CPMT 1972]
	(a) Will always be a (d)	doctor (b) Will not be a doctor at	Will never be a doctor all	(c) Can	be a doctor
67.	The character of organ	nism is said to be sex linked	d when its gene is carried of	on	[CPMT 1982]
	(a) Y chromosomes		(b) X chromosome of	male or fem	nale
	(c) X and Y chromos	omes	(d)	A particu	lar autosome
68.	Haemophilia is a disea				T 1975, 78, 82
	(a) Hereditary and se deficiency of calcium			(b) Cause	ed by
	(c) Caused by deficie	-	(d)	None of t	
69.	Red green colour blin				; DPMT 1982
	(a) Excessive drinkin chromosome	g of alcohol	(b)	Inheritan	ce through X
	(c) Over activity of a deficiency	drenal		(d) Vitam	iin A
70.	In which of the follow	ving colour blindness is inh	erited	[N	IP PMT 2000
	(a) In males only of the above	(b) In female only	(c) In both males and	females	(d) None
71.		gous for the colour is cross ite offsprings in the ratio o		sive homozy	gous. Progeny [DPMT 1983]
	(a) All black	(b) All albino	(c) 1 : 1	(d) 3 : 1	
72.	In human beings, sex (a) Before fertilization (b) During 6th week (c) At the time of fert	n of ovum of foetal life when androg	ens are produced	[]	/IP PMT 1990
		h weeks of foetal life whe	en gonads differentiate int	o testis and	ovary
7 3 .	-	volved in the inheritance of	•		SE PMT 1999
	(a) Colourblindness		(c) Sickle-cell anaemi	-	
74.		aemophilia and his mother			
			0, 2000; DPMT 1992; AI	IMS 1999: I	Pb PMT 1999 ⁻
	(-) 250((b) 50%	(c) 75%	(d) 100%	
	(a) 25%	(0) J0/0	(0) 1 J / 0	(u) 100/0	

	(a) Autosome	(b) Y- chromosome	(c) X- chromosome	(d) Both (b) and (c)
176.	A man receives his X cl	hromosomes from		
	(a) His mother only		(b) His father only	
	(c) Both his mother an and his father	d father		(d) Either his mother
77.		romosome with gene for lowing individual will act c	-	chromosome with normal [MP PMT 1992]
	(a) XY	(b) x x	(c) $\overline{x}\overline{x}$	(d) $\overline{\mathbf{x}}\mathbf{x}$
7 8.	The female children of	a haemophilic man and a	carrier woman are likely to	be [MP PMT 1992]
	(a) All haemophilic		(b) Half haemophilic a	nd half carriers
	(c) All carriers		(d) Half normal and ha	alf carriers
7 9 .	The daughter born to ha	aemophilic father and norr	nal mother could be	[AIIMS 1992]
	(a) Normal	(b) Carrier	(c) Haemophilic	(d) None
80.	What is the cause of ha	emophilia		[MP PMT 1998]
	(a) Chromosomal aber (d)	ration All the above	(b) Somatic mutation	(c) <i>X</i> -linked mutation
81.	A man who carries a se	x linked gene on his 'Y' ch	romosome will transmit th	his gene to [NCERT 1977]
	(a) Half of his sons	(b) Half of his daughter	s (c) All his sons	(d) All his daughters
82.	Female rarely experien	ce the physiologic defect	of haemophilia because t	hey do so only when they
	are		L.	[MP PMT 1990]
	(a) Heterozygous for the	he defect		(b) Homozygous for the
	defect			(b) Homozygous for the
	defect (c) Carrier for the defe		(d)	Wives of haemophilic
usb			(d)	
	(c) Carrier for the defe	ect	(d)	
	(c) Carrier for the defe ands	ect ne which	(d) (b)	
	(c) Carrier for the defeandsA pleiotropic gene is or(a) Affects one charact	ect ne which		Wives of haemophilic
.83.	(c) Carrier for the defeandsA pleiotropic gene is or(a) Affects one characters	ect ne which ter	(b)	Wives of haemophilic
.83.	 (c) Carrier for the defeands A pleiotropic gene is or (a) Affects one characters (c) (a) and (b) both 	ect ne which ter	(b)	Wives of haemophilic Affects more than one [CPMT 1995]
.83. .84.	 (c) Carrier for the defeands A pleiotropic gene is or (a) Affects one characters (c) (a) and (b) both Example of quantitative (a) Colour of skin 	ect ne which ter e inheritance is (b) Colourblindness	(b)(d) None of the above(c) Klinefelter's syndromic	Wives of haemophilic Affects more than one [CPMT 1995] ome (d) Alkaptonuria
.83.	 (c) Carrier for the defeands A pleiotropic gene is or (a) Affects one characters (c) (a) and (b) both Example of quantitative (a) Colour of skin 	ect ne which ter e inheritance is (b) Colourblindness	(b)(d) None of the above(c) Klinefelter's syndromic	Wives of haemophilic Affects more than one [CPMT 1995]
83. 84. 85.	 (c) Carrier for the defeands A pleiotropic gene is or (a) Affects one characters (c) (a) and (b) both Example of quantitative (a) Colour of skin Haemophilic man marr (a) All girls haemophilic If a haemophilic man 	ect ne which ter e inheritance is (b) Colourblindness ies a normal woman. Thei (b) All normal	 (b) (d) None of the above (c) Klinefelter's syndrom r offsprings will be [CBSI (c) All haemophillic (heterozygous) for haemophilic 	Wives of haemophilic Affects more than one [CPMT 1995] ome (d) Alkaptonuria E PMT 1999; MP PMT 19
483. 484. 485.	 (c) Carrier for the defeands A pleiotropic gene is or (a) Affects one characters (c) (a) and (b) both Example of quantitative (a) Colour of skin Haemophilic man marr (a) All girls haemophilic If a haemophilic man 	ect ne which ter e inheritance is (b) Colourblindness ies a normal woman. Thei (b) All normal marries a woman carrier	 (b) (d) None of the above (c) Klinefelter's syndrom r offsprings will be [CBSI (c) All haemophillic (heterozygous) for haemophilic 	Wives of haemophilic Affects more than one [CPMT 1995] ome (d) Alkaptonuria E PMT 1999; MP PMT 19 (d) All boys
183. 184. 185.	 (c) Carrier for the defeands A pleiotropic gene is or (a) Affects one characters (c) (a) and (b) both Example of quantitative (a) Colour of skin Haemophilic man marr (a) All girls haemophilic If a haemophilic man (a) 100% 	ect ne which ter e inheritance is (b) Colourblindness ies a normal woman. Thei (b) All normal marries a woman carrier ughter would be haemophi	 (b) (d) None of the above (c) Klinefelter's syndrom r offsprings will be [CBSI (c) All haemophillic (heterozygous) for haemophilic 	Wives of haemophilic Affects more than one [CPMT 1995] ome (d) Alkaptonuria E PMT 1999; MP PMT 19 (d) All boys ophilia, what would be the [BHU 1990]

488.	Colour blindness is caus	sed by a single			[CPI	MT 1990]	
	(a) Dominant gene in w	voman	(b) Dominant gene in	man (c)	Rece	essive	
	gene in man	(d) Recessive gene in wo	oman				
489.	In human beings, the co	lour of skin is controlled by	У	[BHU 19	83; KC	ET 2002]	
	(a) Multiple alleles	(b) Lethal genes	(c) Polygenic effect	(d) Nor	ne of the	e above	
490.	Colour blindness in mar	n is		[N	CERT	1976, 79]	
	(a) Due to deficiency o visual purple of retina	f vitamin A	(b)	Due	to abs	sence of	
abno	(c) Due to absence of r ormality	ods in retina	(d)	А	sex	linked	
491.	Sex linked inheritance w	vas discovered by			[CPI	MT 1990]	
	(a) Mc Clung	(b) Mendel	(c) Landsteiner	(d) Mo	rgan		
492.	One of the following is:	not true to haemophilia			[KC	ET 2003]	
	(a) Royal disease	(b) Bleeder's disease	(c) X-linked disease	(d) Y-li	inked di	sease	
493 .	Haemophilia is			[CPMT	1992, 93]	
	(a) Autosomal	(b) <i>Y</i> -linked	(c) Z-linked	(d) X-li	nked		
494.	If mother is carrier for may be seen in	colour blindness and fat	her is normal, then in t	the offspr	ings thi	is disease	
			[CPMT 1992; DPM]	Г 1993; С	BSE PI	MT 1999]	
	(a) All the sons		(b) All the daughters				
	(c) 50% sons and 50%	daughters (carrier)	(d) All the sons and no	ot in daug	hters		
495.	Which one of the follow	ving diseases belongs to the	e same category as colour	rblindness	s in man	DPMT 1	986;
	(a) Nightblindness	(b) Presbyopia	(c) Diabetes incipidus	(d) Hae	mophil	ia	
496.	Which one is ineffective	e against antibiotics			[NCE	RT 1976]	
	(a) Bacterial infected w throat	vound		(b) Bac	terial	infected	
	(c) Haemophilia		(d) Bacterial infected	gonorrhoe	ea		
497.	When a single gene infl	uences more than one trait	it is called	[C	BSE PI	MT 1998]	1
	(a) Pleiotrophy	(b) Epistasis	(c) Pseudo dominance	e (d) Nor	ne of the	e above	
498.	Sex linked characters ar	e generally	[(CPMT 19	80; DPI	MT 1985]	
	(a) Lethal	(b) Recessive	(c) Dominant	(d) Not	inherite	ed	
499 .	Haemophilia is a genetic				[AFN	MC 1998]	
	(a) Blood clots in blood	d vessels		(b) The	re is	delayed	
	coagulation of blood			11.0			1
500	(c) Blood is coagulate Blood does not stop com	ning out of wound in	(d) Blood cell count fa	1115		MS 2000]	1
500.	(a) Tetanus	(b) Malaria	(c) Haemophilia	(d) AII		[16 2000]	
	()	(-)	(),pinna	(<i>w</i>) / 11L	~		
1							1

	A 321'1 1 ' /	•, •		
501.	An X-linked recessive tr			[CPMT 1997]
	(a) Colour blindness syndrome	(b) Hunter's syndrome	(c) Sickle-cell anaemia	(d) Leishman's
502.	An example of sex influ	enced inheritance is		[APMEE 2002]
	(a) Haemophilia	(b) Baldness	(c) Colourblindness	(d) Down's syndrome
503.	A child gets sex-linked t	raits from		[Bih. PMT 1994]
	(a) Father above	(b) Mother	(c) Both father and mot	her (d) None of the
504.	A single recessive allele	which can express its effect	ct should occur on	[AIIMS 1992]
	(a) Any autosome chromosome of male	(b) Any chromosome	(c) X- chromosome of t	female (d) X-
505.	A colour blind son is bo	rn to normal parents. It sho	ows that	
	(a) The father was heter genotypically homozyg	rozygous for colour blindi gous	ness (b)	The mother was
a rec	(c) The mother was het essive gene for the disor	erozygous for colour blind rder	dness	(d) Both parents carried
	C C	ed from father to daughter a	and from there to grandsor	n. It is
J eo.	(a) Holandric inheritano	-	Holongenic inheritance	
	inheritance	(d) Dominant inheritance		(1)
507.	Colour blindness is disc because the factor is loca	ease in which the factor i ated on	is usually transmitted to	children by woman. It is
	(a) An autosome	(b) X-chromosome	(c) Y-chromosome	(d) Cytoplasm
508.	The sex linked character	rs are those		
l	(a) Which are related to chromosomes	o sexual physiology	(b) The genes of whi	ich are present on sex
	(c) Which appear either	r in male or in female	(d) Which are controlle	d by sex hormones
509.	In protanopia, a person c	cannot distinguish		
	(a) Green colour colour	(b) Red colour	(c) Blue colour	(d) Blue and green
510.	The 'Christmas disease'	patient lacks antihaemophi	lic :	[KCET 2003]
	(a) Factor IX	(b) Factor XI	(c) Factor VIII	(d) Homogentisic acid
	oxidase			
511.V	Which of the following wi	ill be colour blind		[MP PMT 1991]
	(a) XY	(b) X ^C X	(c) XX	(d) $X^{C}X^{C}$
512.	One of the genes present	t exclusive on the X-Chron	nosome in human is con-	cerned with [AIIMS 2003]
	(a) Baldness		(b) Night blindness	
	(c) Red-green colour bl			(d) Facial
513.	hair/Moustaches in mal Turner's syndrome is	e		[Har. PMT 2000]

	(a) Trisomy of 18th ch chromosome	iromosome	(b)	Trisomy	of	21st
	(c) Absence of one sex	<pre>c chromosome</pre>	(d) An autosomal reces	sive condi	ition	
514.	Colour blindness result	s from	[MP]	PMT 1996	6; AFMC	C 1997
	(a) Inverted retina	(b) Absence of rods	(c) Absence of eye lids	(d) Abno	ormal cor	nes
515.	In 1956, an XXXY typ	e of abnormality was seen	in there patients which is		[DPM]	T 1996
	(a) Male phenotype	(b) Female genotype	(c) Female phenotype	(d) Gyna	indromor	ph
516.	-	common in males because	e it is a	[CB	SE PMI	[1990]
		ried by X-chromosome	(b) Recessive trait carri	-		
		ried by X-chromosome	(d) Dominant trait carri	ied by Y-c	chromosc	ome
17. <i>F</i>		andric gene will transmit it		() A 11	1 •	C 1
	(a) All his male offspr	-	1/2 his male offspring	(c) All	his	female
	offspring	(d) 1/2 his female offsp	ring			
18.	An example for holand		(a) Hac	-	AMCE7	2002
	(a) Epidermolysis	(b) Turner's syndrome	(c) Haemophilia	(d) Webł	bed toes	
19.	A diseased man marrie	es a normal woman. They	get three daughters and fi	ve sons. A	Il the day	ughters
19.		es a normal woman. They were normal. the gene of			Il the dat SE PMT	-
19.		were normal. the gene of	this disease is Sex linked recessive		SE PM1	2002
	were diseased and sons (a) Autosomal domina character	were normal. the gene of ant (b) (d) Sex linked dominan	this disease is Sex linked recessive	[CB (c) Sex	SE PMI	2002 Iimited
	were diseased and sons (a) Autosomal domina character	were normal. the gene of ant (b) (d) Sex linked dominant han, associated with sex ch	this disease is Sex linked recessive t	[CB (c) Sex	SE PMT	T 2002 limited BSE P
	were diseased and sons (a) Autosomal domina character Mental retardation in m (a) Reduction in <i>X</i> cor	were normal. the gene of ant (b) (d) Sex linked dominan han, associated with sex ch nplement	this disease is Sex linked recessive t	[CB (c) Sex usually du (b) Increa	SE PMI	2002 limited BSE P
;20.	 were diseased and sons (a) Autosomal domination character Mental retardation in m (a) Reduction in X consciously complement (c) Moderate increase 	were normal. the gene of ant (b) (d) Sex linked dominan han, associated with sex ch nplement	this disease is Sex linked recessive at iromosomal abnormality is (d) Large increase in <i>Y</i>	[CB (c) Sex usually du (b) Increa	SE PMI	2002 limited BSE P n 2
20.	 were diseased and sons (a) Autosomal domination character Mental retardation in m (a) Reduction in X consciously complement (c) Moderate increase 	were normal. the gene of ant (b) (d) Sex linked dominan han, associated with sex ch nplement in <i>Y</i> complement taches and beard in human	this disease is Sex linked recessive at romosomal abnormality is (d) Large increase in <i>Y</i> a males are examples of Sex-linked traits	[CB (c) Sex usually du (b) Increa	SE PMI ne to [C. ase in ent SE PMI	2002 limited BSE P n 2 T 2003
20. 21.	 were diseased and sons (a) Autosomal domination character Mental retardation in m (a) Reduction in X correction (b) Reduction in X correction (c) Moderate increase Pattern baldness, mousting transition 	were normal. the gene of (d) Sex linked dominant nan, associated with sex chan plement in <i>Y</i> complement taches and beard in human aits (b)	 this disease is Sex linked recessive at aromosomal abnormality is (d) Large increase in <i>Y</i> a males are examples of Sex-linked traits 	[CB (c) Sex usually du (b) Increa complement [CB	SE PMT ne to [C: ase in ent SE PMT limited	2002 limited BSE P h 2 2003 traits
20. 21.	 were diseased and sons (a) Autosomal domination character Mental retardation in mathematical retardation in mathematical retardation in mathematical retardation in <i>X</i> complement (c) Moderate increase Pattern baldness, mouse (a) Sex-determining transition (d) A child receives (a) 25% genes form himitian 	were normal. the gene of ant (b) (d) Sex linked dominant han, associated with sex chan plement in <i>Y</i> complement taches and beard in human aits (b) Sex differentiating trait	this disease is Sex linked recessive at romosomal abnormality is (d) Large increase in Y males are examples of Sex-linked traits (b) 50% genes form his	[CB (c) Sex usually du (b) Increa complema [CB (c) Sex	SE PMT ne to [C: ase in ent SE PMT limited SE PMT	2002 limited BSE P h 2 T 2003 traits
20. 21. 22.	 were diseased and sons (a) Autosomal domination character Mental retardation in mathematical retardation in mathema	were normal. the gene of ant (b) (d) Sex linked dominant han, associated with sex channel nplement in <i>Y</i> complement taches and beard in human aits (b) Sex differentiating trait s father (d) 100% genes from hand	this disease is Sex linked recessive at romosomal abnormality is (d) Large increase in Y males are examples of Sex-linked traits (b) 50% genes form his	[CB (c) Sex usually du (b) Increa compleme (c) Sex 1977; CB s father	SE PMT ne to [C: ase in ent SE PMT limited SE PMT (c)	2002 limited BSE P n 2 2003 trait 1995 75%
20. 21. 22.	 were diseased and sons (a) Autosomal domination character Mental retardation in m (a) Reduction in X correction complement (c) Moderate increase Pattern baldness, mousting transform (d) A child receives (a) 25% genes form his genes form his father 	were normal. the gene of ant (b) (d) Sex linked dominant han, associated with sex channel nplement in <i>Y</i> complement taches and beard in human aits (b) Sex differentiating trait s father (d) 100% genes from hand	this disease is Sex linked recessive at romosomal abnormality is (d) Large increase in Y males are examples of Sex-linked traits S [CPMT (b) 50% genes form his is father	[CB (c) Sex usually du (b) Increa complema (c) Sex 1977; CB father	SE PMT ne to [C: ase in ent SE PMT limited SE PMT (c)	S 2002 limited BSE P n 2 2003 trait 1995 75% vility o
20. 21. 22.	 were diseased and sons (a) Autosomal domination character Mental retardation in mathematical retardation in mathema	were normal. the gene of ant (b) (d) Sex linked dominant han, associated with sex channel nplement in <i>Y</i> complement taches and beard in human aits (b) Sex differentiating trait s father (d) 100% genes from hand	this disease is Sex linked recessive at romosomal abnormality is (d) Large increase in Y males are examples of Sex-linked traits S [CPMT (b) 50% genes form his is father	[CB (c) Sex usually du (b) Increa complema (c) Sex 1977; CB father	SE PMT ne to [C: ase in ent SE PMT limited SE PMT (c) d. Probab	S 2002 limited BSE P n 2 2003 trait 1995 75% vility o
20. 21. 22.	 were diseased and sons (a) Autosomal dominal character Mental retardation in m (a) Reduction in X corrector complement (c) Moderate increase Pattern baldness, mouse (a) Sex-determining tr (d) A child receives (a) 25% genes form his father A husband and wife has their first daughter to be (a) 25% 	were normal. the gene of ant (b) (d) Sex linked dominan han, associated with sex chan plement in <i>Y</i> complement taches and beard in human aits (b) Sex differentiating trait s father (d) 100% genes from have normal vision but father e colour blind	this disease is Sex linked recessive at romosomal abnormality is (d) Large increase in Y males are examples of Sex-linked traits S [CPMT (b) 50% genes form his is father ers of both of them were c (c) 75%	[CB (c) Sex usually du (b) Increa compleme (c) Sex 1977; CB father olour bline [CB	SE PMT ne to [C: ase in ent SE PMT limited SE PMT (c) d. Probab	2002 limited BSE P n 2 2003 trait 2003 trait 1995 75% ility o 1990
20. 21.	 were diseased and sons (a) Autosomal dominal character Mental retardation in m (a) Reduction in X correspondent (c) Moderate increase Pattern baldness, mouse (a) Sex-determining trans (d) A child receives (a) 25% genes form his father A husband and wife has their first daughter to be (a) 25% One way of determining 	were normal. the gene of ant (b) (d) Sex linked dominant nan, associated with sex channel numbers in <i>Y</i> complement taches and beard in human aits (b) Sex differentiating trait s father (d) 100% genes from his ave normal vision but father e colour blind (b) 50% g sex-linked inheritance is ther and daughter resemble	this disease is Sex linked recessive at romosomal abnormality is (d) Large increase in Y males are examples of Sex-linked traits (b) 50% genes form his is father ers of both of them were c (c) 75%	[CB (c) Sex usually du (b) Increa compleme (c) Sex 1977; CB father olour bline [CB	SE PMT ne to [C: ase in ent SE PMT limited SE PMT (c) d. Probab SE PMT [CPMT	2002 limited BSE P h 2 2003 traits 1995 75% oility o 1990

525.		•	-	in a marriage of normal man	
	marrying a normal woman, whose father was colour blind[KCET 2003(a) All sons are normal and all daughters are colourblind				
		e e			
		l daughters are colourblin			
		olurblind and all daughte		1	
		lourblind and all daughte			
526.		ound more in males than in		[MP PMT 1992]	
		ning the single affected X	K chromosome are colou	ir blind	
		nales are colour blind			
	-	ected Y chromosome are			
Val	(d) Affected X chron promosome	nosome has much high a	affinity to Y chromosom	ne as compared to unaffected	
-		Son huorra oplora montos	a ladri hatanamiraana fan l	harry colour dominant What	
527.	will be the fate of their		a lady neterozygous for	brown colour dominant. What	
	will be the fate of the			[BHU 1986]	
	(a) All brown	(h) Three brown	(a) Two brown		
	(a) All brown		(c) Two brown	· · /	
528.		• •		nal female fruit fly, the males [CBSE PMT 1997]	
	-	will enter egg cell in the j			
	(a) $1:1$	(b) $2:1$	(c) 3 : 1	(d) 7 : 1	
529.	Haemophilia A is due		(h) Calaium	(a) D laama	
	(a) Antihaemophilic thromboplastin	(d) X chromosome	(b) Calcium	(c) Plasma	
520	•		nd straight hair father 8 (children are born. The ratio of	
530.	curly and straight hair	•	la strangint nan Taulor, 0 v		
	curry und straight han		[(CPMT 1980; MP PMT 2001]	
	(a) 6 : 2	(b) 2 : 6	(c) 4 : 4	(d) 3 : 5	
531.	When can a women b			[CPMT 1991]	
551		lourblind and mother is c	carrier (b)	If her father is normal	
	and mother is carrier		(0)		
	(c) If her father is co	lourblind and the mother	is normal	(d) If her father is	
norn	nal and the mother is o				
532.	Holandric genes are				
	(a) Genes located on	X chromosomes			
	(b) Genes located on	the homologous segmen	t of Y chromosome		
	(c) Genes located on	non-homologous segme	nt of Y chromosome		
	(d) Genes located on				
533.			e female in F_1 generation	and to males in F_2 generation	
	is called as		C	č	
	(a) Mendelian inherit	tance	(b)	Criss-cross inheritance	
1					

	(c) Sex linked inheritance	2e	(d)	Extra-chromosomal
534.		blind marries a colourblin		humans. A normal woman s born to these parents what [JIPMER 2002]
	(a) 25 percent	(b) 50 percent	(c) 75 percent	(d) 100 percent
535.	A normal woman whose be expected and in what		arries a normal man. W	hat kinds of children would
				[MP PMT 1997]
	(a) Daughters normal, 5	0% of sons colourblind	(b) Daughters normal	, all sons colourblind
	(c) 50% of daughters co	lourblind, all sons norma	l (d) All daughters colo	ourblind, sons normal
536.	Genes of colour blindnes	s are carried in		[BHU 1985]
	(a) Eye cells	(b) Sex cells	(c) Body cells	(d) Heterosomes
537.	A colourblind man has a	colourblind sister but a no	ormal brother than phen	otype of its parents is [CPM
	(a) Father colourblind an	nd mother normal	(b) Father normal and	l mother colourblind
	(c) Father and mother be	oth are colourblind	(d) Father and mother	r both are normal
538.	the disease. A heterozy		nozygous normal wom	the people actually develop an; what proportion of the [AIIMS 1982]
	(a) 1/5	(b) 1/10	(c) 1/15	(d) 1/20
539.	A man known to be vict bleeder. Then it is expect	-	es a normal woman wh	ose father was known to be
			[AIIMS 1985; Pb PM	T 1999; CBSE PMT 2000]
	(a) All their children wil	ll be bleeders	(b)	
	will be bleeders		(0)	Half of their children
		hildren will be bleeders		
540.	(c) One fourth of their c	hildren will be bleeders blue-eyed (recessive) wo	(d) None of their chil	
540.	(c) One fourth of their c Expected children of a	hildren will be bleeders blue-eyed (recessive) wo	(d) None of their chil	dren will be bleeder
540.	(c) One fourth of their c Expected children of a	hildren will be bleeders blue-eyed (recessive) wo	(d) None of their chil	dren will be bleeder (dominant) man who had a [CBSE PMT 1991]
540.	(c) One fourth of their c Expected children of a blue-eyed mother are like	hildren will be bleeders blue-eyed (recessive) wo	(d) None of their chil man and brown-eyed (dren will be bleeder (dominant) man who had a [CBSE PMT 1991] d one brown-eyed
	 (c) One fourth of their c Expected children of a blue-eyed mother are like (a) All brown-eyed (c) All blue-eyed 	hildren will be bleeders blue-eyed (recessive) wo ely to be	 (d) None of their chil man and brown-eyed (b) One blue-eyed an (d) Three blue-eyed a 	dren will be bleeder (dominant) man who had a [CBSE PMT 1991] d one brown-eyed
	 (c) One fourth of their c Expected children of a blue-eyed mother are like (a) All brown-eyed (c) All blue-eyed All the sons are haemop 	hildren will be bleeders blue-eyed (recessive) wo ely to be hilic and daughters are n	 (d) None of their chil man and brown-eyed (b) One blue-eyed an (d) Three blue-eyed a ormal of a haemophilic 	dren will be bleeder (dominant) man who had a [CBSE PMT 1991] d one brown-eyed and one brown-eyed c mother and normal father.
541.	 (c) One fourth of their c Expected children of a blue-eyed mother are like (a) All brown-eyed (c) All blue-eyed All the sons are haemop This character is (a) X-linked recessive 	hildren will be bleeders blue-eyed (recessive) wo ely to be hilic and daughters are n (b) <i>Y</i> -linked recessive	 (d) None of their chil man and brown-eyed (b) One blue-eyed an (d) Three blue-eyed a ormal of a haemophilic (c) X-linked dominan 	dren will be bleeder (dominant) man who had a [CBSE PMT 1991] d one brown-eyed and one brown-eyed c mother and normal father. [CBSE PMT 1996] at (d) Y-linked dominant
541.	 (c) One fourth of their c Expected children of a blue-eyed mother are like (a) All brown-eyed (c) All blue-eyed All the sons are haemop This character is (a) X-linked recessive 	hildren will be bleeders blue-eyed (recessive) wo ely to be hilic and daughters are n (b) <i>Y</i> -linked recessive relative and cousins is no	 (d) None of their chil man and brown-eyed (b) One blue-eyed an (d) Three blue-eyed a ormal of a haemophilic (c) X-linked dominan 	dren will be bleeder (dominant) man who had a [CBSE PMT 1991] d one brown-eyed and one brown-eyed c mother and normal father. [CBSE PMT 1996]

	(c) More chances are the there for multiple birthe	nere for <i>Rh</i> blood group a s	nomalies	(d) More	chances	are
543 .	All sons of a couple are	colourblind because			[CPMT 1	980]
	(a) Mother is homozyg	ous colourblind	(b) Mother is heterozy	gous and fa	ther norma	al
	(c) Mother is heterozyg	gous and father colourblin	d(d) Mothers is normal	and father c	colourblind	1
54 4 .	A colour blind son will	born when		[C]	PMT 1992	, 93]
	(a) Mother is normal an	nd father normal	(b) Mother is colour bl	lind and fat	her normal	l
	(c) Mother is normal an	nd father is colour blind	(d) All the cases are co	orrect		
54 5 .	A colour blind man mar	ries the daughter of a colo	ur blind person. Then in	their progen	y[AIIMS	1983, 92
	(a) None of their daugh	nters are colour blind	(b) All the sons are col	lour blind		
	(c) All the daughters ar	e colour blind	(d) Half of their sons a	re colour b	lind	
546.	Person whose father is Their children will be	colourblind marries a lad	y whose mother is daug	hter of a co	lourblind 1	man.
			[0	CPMT 1984	; DPMT 1	993]
	(a) All normal		(b) All colour blind			
	(c) All sons colour blin some colour blind	d	(d)	Some son	ns normal	and
547.	Normally all genes of chromosome. This indic	ccur in pairs occupying ates that	position on the X chr	omosome a	and not of [CPMT 1]	
	(a) Y chromosome is la	arger than X chromosome				
	(b) Entire set of gene of	n X is different from thos	e on Y chromosome			
	(c) X chromosome is la	arger than Y chromosome	9			
	(d) X chromosome is d	ominating with Y chromo	osome			
548.	The expression of genes	for the production of milk	t in only females is a		[AIIMS 1	993]
	(a) X linked character genes	(b) Y linked character	(c) Sex limited genes	(d) Sex	influer	nced
549.	Haemophilia is caused of	lue to lack of			[AIIMS 1	992]
	(a) ADH	(b) AHF	(c) STH	(d) ACTH		
550.	A boy is colour blind, i colour blind in his famil	n his two sisters one is co v		rier (normal). Then wh [CPMT 1]	
	(a) Father His grand father	(b) His grand father and	mother	(c) Mothe	-	_
551.	Hypertrichosis (hairy pi	nnae) is trait linked to		Ľ	APMEE 1	9991
00	(a) X-chromosome	(b) Y-chromosome	(c) Autosomes		of the above	
552.	× /	If the sons are haemophili	· · /			
00-	located on				SE PMT 1	
	(a) X-chromosome of f father	ather			omosome	of
1						

	(c) One X-chromosome chromosomes of mothe		(d)	Both	the	X-
553.	Christmas disease is and	other name of	[CBSE F	PMT 2003, 0	CET Chd.	2003]
	(a) Sleeping sickness	(b) Down's syndrome	(c) Hepatitis	(d) Hae	mophilia B	
554·	Colour blindness is due	to one			[CPMT	1990]
	(a) Recessive allele in a allele in males	females (b) (d) Recessive allele in n	Dominant allele in fe	emales (c)	Domina	nt
555.	Deficiency of VIII facto	or leads to		[]	Har. PMT	2001]
	(a) Haemophilia A	(b) Haemophilia B	(c) Haemophilia C	(d) Hae	mophilia D	,
556.		ye colour is recessive X-lin	•			
	-	with red eyed male. The fe (b) 50%		•		
	(a) 100%	(b) 50%	(c) 25%	(d) Zero		
557.		s a normal woman. The co are normal. The gene of th			the daughte BSE PMT	
	(a) Sex-linked recessiv character	ve(b) Sex linked dominant	t (c) Autosomal charac	cter(d) Sex	li	mited
558.	Queen Victoria of Engla	and was			[KCET	2000]
	(a) Haemophilic carrier	r (b) Colour blind	(c) AIDS patient	(d) Deat	f	
559.	A colour blind girl is rai	re because she will be borr	n only when	[C]	BSE PMT	1991]
	(a) Her mother and ma	ternal grand father were c	colour blind			
	(b) Her father and mate	ernal grand father were co	olour blind			
		ur blind and father has not				
		al vision but grand parents				
560.	In colour blindness red,	green and other colours a	ppear			
	(a) White	(b) Yellow	(c) Grey	(d) Pink	<u> </u>	
561.	· · /	ich all colour appear grey i	•	× .		
	(a) Monochromatism	(b) Dichromatism	(c) Protanopia	(d) Deu	teronopia	
562.	A cross between white	eyed female and red eyed cross gives rise to white ey	l male Drosophila gives	s red eyed fe	emales and	
	(a) Loss of sex chromo fly				ation in fe	
	•	two X-chromosomes in fe	emale (d)	None of	f the above	
563.	Laws of inheritance we		~ /		[AFMC	2000]
	(a) Doron	(b) Donoran	(c) Mendel	(d) Mor	-	
564.	A heterozygous individu	ual carrying recessive sexl	inked gene is called		0	
	(a) Carrier	(b) Crossing over	(c) Transmitter	(d) Albi	no	
		s more common in men tha				

500.		arried to a man having h f this daughter to show hy	• 1		giner and	one s	on.
	(a) 0%	(b) 25%	(c) 50%	(d) 75	%		
567.	One child is heamophilit the following information	c (sex-linked trait) wherea on is most appropriate	as his fraternal ty		mal. Whi C BSE P N		
	(a) The haemophilic ch monozygotic twin	ild is male	(b)	The	child	is	а
	(c) The mother must ha	ve been heterozygous	(d) The other	child is a femal	e and the	fathe	r is
haem	nophilic						
568.	The errors in meiosis that	at produces a 47,XYY kar	yotype is best de	escribed by			
	(a) Meiosis division I o	f maternal oogenesis	(b) Meiosis di	vision II of mate	ernal ooge	enesis	
	(c) Meiosis division I o spermatogenesis	f paternal spermatogenes	sis(d) Meiosis	division II	of	pater	nal
569.	In humans, male XXY a	and female XXXX occur of	due to	[CBSE PN	MT 20	00]
	(a) Euploidy above	(b) Aneuploidy	(c) Autosoma	l syndrome (d)) Non	e of	the
570.	• • •	pertrichosis), a trait carr will inherit the trait from		n his Y-chromo	some. W	hat is	the
	$\langle \rangle 00 \langle$	(b) 25%	(c) 50%	(d) 10	0%		
	(a) 0%	(0) 2370	(0) 5070	(u) 10	070		
571.N		d select the correct answe		()			

	LIST I		LIST II
(C	haracter of man)		(Example)
(A	Sex-linked	(1	Baldness
))	
(B	Sex-influenced	(2	Acquired immune
))	deficiency syndrome
(C	Sex-limited	(3	Kilinefelter's
))	syndrome
		(4	Haemophilia
)	
		(5	Beard in man
)	

Answer codes :

(a) $A = 4, B = 1, C = 5$	(b) $A = 5, B = 3, C = 2$
(c) $A = 5, B = 1, C = 3$	(d) $A = 4, B = 3, C = 2$

572.	72. Red-green colour blindness in humans is governed by sexlinked recessive gene. A normal woman whose father was colour blind marries a colour blind man. What proportion of their daughters is expected to be colour blind [CBSE PMT 1999]									
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{3}{4}$		(d) All					
573.	A woman with two g chromosomes marries a (a) Haemophilic and c		one of the X- E PMT 1998]							
	(b) All sons and daugh	ters haemophilic and colo	ur blind							
	(c) 50% haemophilic o	laughters and 50% colour	blind daugł	nters						
	(d) Among sons 50% l	naemophilic and 50% haer	nophilic co	lour blind						
574 .	Mr. Kapoor has <i>Bb</i> autosomal gene pair and <i>d</i> allele sex-linked. What shall be the proportion of <i>Bd</i> in sperms [CBSE PMT 1993]									
	(a) 0	(b) $\frac{1}{4}$	(c) $\frac{1}{8}$		(d) $\frac{1}{2}$					
575.	Haemophilia is most lil	kely originated as a result or	f							
	(a) A gene mutation in	the X-chromosome	(b) The ci	rossing over o	f two sex cl	nromosomes				
	(c) A nondisjunction of	of chromosome number 21	(d) The	separation	of two	homologous				
chro	mosomes			_		_				
576.	. Chromosomal analysis reveals a 47,XXY Karyotype. Which of the following descriptions best fits this abnormality									
	(a) Autosomal trisomy		(b) Sex chromosome triploidy							
	(c) Sex chromosome a syndrome	neuploidy	(d)		A female	with turner's				
5 77•	It is well known that Queen Victoria of England was a carrier for haemophilia. Since this is an X-linked disease, it can be predicted that									
						[CPMT 1993]				
	(a) All of her sons would have disease									
	(b) All her daughters would have been carriers									
	(c) Her father must definitely have had haemophilia									
	(d) Haemophilia would have occurred in more of her male than her female descendents									
578.	If a man and a woman daughter to be colour b	n and a woman both having colour blind fathers marry, the percentage probability of their fir								
					[]	Vardha 2003]				
	(a) 25%	(b) 50%	(c) 100%		(d) 0%					
					Pedig	ree analysis				
		Basic L	evel							

7 9 .	Most studies on human genetics have been made through				[MP PMT 1990]					
	(a) Genetic engineering		(b)	Eugenics						
	(c) Microscopic studies	(d) Pedigree charts								
80.	The symbol of empty circles used in pedigree analysis represents									
	(a) Normal female	(b) Normal male	(c) Affected female	(d) A	Affected m	ale				
581.	Brachydactyly signifies			[(CET BV Pı	ine 19	998			
	(a) Abnormally short knees (b)long toes(d) Abnormally short find		Abnormally long fin	igers ((c) Abn	ormal	ly			
82.	. Syndactyly refers to [CET BV Pune 1						998			
	(a) Split fingers	(b) Fused fingers	(c) Split toes	(d) fused toes						
83.	Presence of extra finger	[Haryana PMT 1				994]				
	(a) Marfan's syndrome	(b) Polydactyly	(c) Brachydactyly	(d) I	None of the	abov	ve			
584.	Polydactyly in man due to [J & K CET (Med.) 2					ed.) 20	002			
	(a) Autosomal dominar linked dominant gene	nt gene (d) Sex linked recessive	(b) Autosomal reces gene	sive gen	e (c)	Sex	X			
85.	Which one of the follow	ving is a dominant trait								
	(a) Albinism	(b) Sickle cell anaemia	(c) Phenylketonurea	(d) I	Polydactyly	7				
86.	An abnormality not due	to recessive genes is			[AN	AU 20	001			
	(a) Phenylketonurea		(b) Alkeptonurea							
	(c) Polydactyly		(d) Tay-sach's syndrome							
	Twins & I.Q.									
	Basic Level									
87.	Differences in twins sug	gest			[NCE	RT 19	983			
	(a) Incomplete dominance influenced by many genes		(b)	That	t phenot	ype	is			
	(c) That single gene may produce multiple effects (d) That they develop from two different eggs									
88.	Two offspring developed in the same uterus but from fertilization of two different ova are [AFMC 200 (a) Dizygotic twins (b) Monozygotic twin (c) Fraternal twins (d) Both (a) and (c)									
80	(a) Dizygotic twins Identical twins are produ	(c) Fraternal twins	(d) Both (a) and (c) [BHU 1982; MP PMT 2001]							
ăΟ.	Identical twins are produced when (a) One fertilized egg divided into 2 blastomeres fertilized two eggs			(b) One		sperms				

	(c) One egg fertilized w	with two sperms	(d) Two eggs are ferti	lized
590.	Fraternal twins are prod	uced when	[NCE]	RT 1976; CPMT 1990, 91]
	(a) A fertilized egg div	ided into two	(b)	An egg is fertilized by
	two sperm			
		wo set of chromosomes		
591.	If in a child of 10 years		of 14 years child that I.Q	. of this child would be [CPMT
	(a) 140	(b) 100	(c) 160	(d) 110
592.			and these are borne at	tached are remain so even
	after. Such twins are known			
	(a) Fraternal	(b) Dizygotic	(c) Identical	(d) Siamese
593 .	I.Q. is the ratio of menta	-		[CPMT 1983]
	(a) Chronological age 1		(b) Chronological age	-
_	(c) Chronological age J	plus 100		(d) Chronological age
	iplied by 100			
594 .	The I.Q. of a genius ran	-		[CPMT 1980]
	(a) 70-89	(b) 90-109	(c) 110-139	(d) 140-more
595 .	Identical twins are			[AFMC 1986]
		(b) Homozygous	(c) Monozygotic	(d) Dizygotic
596.		ogeny is produced when an	individual	[AFMC 1994]
	(a) Practices self-fertili	zation		(b) Produces identical
	gametes			
	(c) Practices reproduct	ion	(d)	Practices in breeding
	without meiosis	1		
597.	Conjoint twins are also			[CBSE PMT 1988]
			(c) Dizygotic twins	
598.	Monozygotic twins are			[CPMT 1996]
	(a) No cleavage takes p			
	(b) Two ova are fertiliz			
	(c) Incomplete cleavag			
		om first cleavage of zygot	e become independent	
599.				[AIIMS 1996]
	(a) Two sperms fertiliz	e tour ova	(b)	Two sperms fertilize
	two ova	1 6	(1)	
	-	e single ovum from two si	ites (d)	None of the above
600.	Free-martins are commo			
	(a) Birds	(b) Drosophila	(c) Cattle	(d) Human beings
601.	Free-martins condition i			
	(a) Dizygotic twins	(b) Monozygotic twins	(c) Both of these	(d) None of the above
602.	In free-martin condition			[CBSE PMT 1994]
1				

	(a) Both female and m	ale are sterile	(b)	Both	female	and	male
	are normal (c) Female is sterile an	d male is normal	(d) Male is sterile and	female	is norma	al	
603.	Free martin is an examp	ble of			[MP F	MT	2000]
	(a) Sex reversal (a) and (c)	(b) Transformer gene	(c) Hormonal control o	of sex	(d)	В	oth
			Eugenie	cs, Eup	ohenics,	Euthe	enics
		Basic L	level				
604.	Improvement of human	race by improving the env	vironment is called [MP P	мт 19	998: CBS	SE PI	MT 1990:
004.	(a) Euphenics	(b) Eugenics	(c) Euthenics		one of th		
605.	'Eugenics' pertains to	(b) Eugenies	(c) Euthemes [CPMT 19	. ,			
		ankind by improving his h	-	· · ·	reservati		_
	sperms for artificial ins	semination					
	(c) Study of human gen	netics		(d) C	ontrollin	g siz	e of a
	human family			<i>I</i> T 100	•• . MD T		10021
606.	Euphenics is				2; MP F		
	(a) Improvement of hu human race by genetic	man race by better enviro engineering	nment	(b) In	nprovem	ent	of
	(c) Treatment of comm	nunicable diseases	(d) Treatment of inheri	table d	iseases		
607.	Improvement of genetit training is called	ic characters and present	day generation on the b	asis of	best nu		
	•	(b) Euphanics	(c) Euthenics	(d) G	erontolo		1773]
608.	-	fungus is used in experime		(-) -			1998]
	(a) Rhizopus	(b) <i>Mucor</i>	(c) Neurospora	(d) <i>C</i>	laviceps		
609.	This organism has been	used very much in genetic	· · · ·	. ,	[K	CET	1991]
	(a) Rana tigrina (frog)		(b) Domestic fly				
	(c) Domestic lizard		(d) Fruit fly (Drosophi	la mela	inogaste	r)	
610.	Who is called 'father of	eugenics'					
	(a) Galton	(b) Griffith	(c) Garrod	(d) G	oldschm	idt	
611.7	The process of improving	, human race genetically is	called[Orissa JEE 1992;	BCE(CE 1996	; AFN	MC 2000]
	(a) Eugenics	(b) Euphenics	(c) Euthenics	(d) A	ll of the	abov	e
612.	Eugenics is the study of	2		[CBSE F	MT	1992]
	(a) Evolution	(b) Human genetics	(c) Development	(d) M	lodern ge	enetic	es
613.		ng with heredity and varia			[MP F	MT	1998]
	(a) Palaeontology	(b) Evolution	(c) Genetics	(d) Eo	cology		
		Advar	nce				

614.	The genetic ratio is	termed as		[DPMT 1982]
	(a) Dominant	(b) Genotype	(c) Phenotype	(d) Alleles
615.	Sir Archibald is ass	ociated with		
	(a) Eugenics	(b) Euthenics	(c) Genetics	(d) Human genetics
616.	The best method of	improve the genetic quality o	f mankind is	[CPMT 1974; AFMC 1976]
	(a) Marriage restric	ction	(b) Sterilization	
	(c) Control of imm defectives	igration	(d)	Sexual separation of
617.	Who of the following	ng is concerned with biochem	ical genetics	
	(a) Beadle	(b) Galton	(c) Garrod	(d) Mendel
618.	Under certain condi cell, these are referr		ined cell-like structur	res but not true organization of a
				[MP PMT 1994]
	(a) Microbes	(b) Coacervates	(c) Eobionts	(d) Protists
619.	Random genetic dri	ft in a population probably res	sults from	[CBSE PMT 2002, 03]
	(a) Large population variable individual		(b)	Highly genetically
	(c) Interbreeding w rate	vithin small isolated population	on (d)	Constant low mutation
620.	In a random mating frequency in a non-		which of the followin	g brings about a change in gene
				[CBSE PMT 2003]
	(a) Migration	(b) Mutation	(c) Random drift	
621.	e e	(b) Mutation iseases is studied under	(c) Random drift	
621.	e e		(c) Random drift(c) Euphenics	(d) Selection
	Curing of genetic d	iseases is studied under	(c) Euphenics	(d) Selection (d) Dysgenics
	Curing of genetic d (a) Genetics Genetic drift	iseases is studied under	(c) Euphenics [CBSE P]	(d) Selection (d) Dysgenics
	Curing of genetic di (a) Genetics Genetic drift (a) Is an orderly ch population	iseases is studied under (b) Eugenics	 (c) Euphenics [CBSE P] (b) Products green 	(d) Selection (d) Dysgenics MT 1992; KCET (Med.) 1998]
622.	Curing of genetic di (a) Genetics Genetic drift (a) Is an orderly ch population	iseases is studied under (b) Eugenics ange in gene frequencies hange in gene frequencies	 (c) Euphenics [CBSE P] (b) Products green 	(d) Selection (d) Dysgenics MT 1992; KCET (Med.) 1998] eatest fluctuations in large n common with inbreeding
622.	Curing of genetic di (a) Genetics Genetic drift (a) Is an orderly ch population (c) Is the random c An allele is said to b	iseases is studied under (b) Eugenics ange in gene frequencies hange in gene frequencies	 (c) Euphenics [CBSE P] (b) Products gree (d) Has nothing in 	(d) Selection (d) Dysgenics MT 1992; KCET (Med.) 1998] eatest fluctuations in large n common with inbreeding [CBSE PMT 1992]
622.	Curing of genetic di (a) Genetics Genetic drift (a) Is an orderly ch population (c) Is the random c An allele is said to b (a) It is expressed of	iseases is studied under (b) Eugenics ange in gene frequencies hange in gene frequencies be dominant if	 (c) Euphenics [CBSE P] (b) Products gree (d) Has nothing in 	(d) Selection (d) Dysgenics MT 1992; KCET (Med.) 1998] eatest fluctuations in large n common with inbreeding [CBSE PMT 1992]
622.	Curing of genetic di (a) Genetics Genetic drift (a) Is an orderly ch population (c) Is the random c An allele is said to b (a) It is expressed of (b) It is expressed of	iseases is studied under (b) Eugenics ange in gene frequencies hange in gene frequencies be dominant if only in both homozygous and only in second generation	 (c) Euphenics [CBSE P] (b) Products gree (d) Has nothing in d heterozygous cond 	(d) Selection (d) Dysgenics MT 1992; KCET (Med.) 1998] eatest fluctuations in large n common with inbreeding [CBSE PMT 1992]
622.	Curing of genetic di (a) Genetics Genetic drift (a) Is an orderly ch population (c) Is the random c An allele is said to b (a) It is expressed of (b) It is expressed of (c) It is expressed of	iseases is studied under (b) Eugenics ange in gene frequencies hange in gene frequencies be dominant if only in both homozygous and	 (c) Euphenics [CBSE P] (b) Products gree (d) Has nothing in d heterozygous condentiation 	(d) Selection (d) Dysgenics MT 1992; KCET (Med.) 1998] eatest fluctuations in large n common with inbreeding [CBSE PMT 1992]
622. 623.	Curing of genetic di (a) Genetics Genetic drift (a) Is an orderly ch population (c) Is the random c An allele is said to b (a) It is expressed of (b) It is expressed of (c) It is expressed of (d) It is expressed of	iseases is studied under (b) Eugenics ange in gene frequencies hange in gene frequencies be dominant if only in both homozygous and only in second generation only in heterozygous combination	 (c) Euphenics [CBSE P] (b) Products gree (d) Has nothing in d heterozygous cond ation 	(d) Selection (d) Dysgenics MT 1992; KCET (Med.) 1998] eatest fluctuations in large n common with inbreeding [CBSE PMT 1992]

[AIIMS 1983]

[CBSE PMT 1998]

(a) Count chromosomes and find out the variations in number in the population

(b) Examine DNA and see if the population shows any variation

(c) Measure the variation and see if they are continuous or discontinuous

(d) Cross individuals of both extremes and see if the offsprings and parents show the same range of variations

625. Genetic drift operates only in

(a) Island population (b) Smaller population (c) Larger population (d) Mendelian population

Genetic engineering and tissue culture **Basic** Level 626. Genetically engineered insulin can be obtained by (a) Recombinant DNA technique with the help of E. coli (b) Two coded insulin genes separated then incorporated into bacteria (c) The extraction of cow's and pig's pancreas (d) Technique not developed till now 627. Trade name of genetically engineered insulin is (a) Anulin (b) Beta insulin (c) Humulin (d) Gilbert's insulin 628. Which of the following organelles is related with genetic engineering (d) Plasmids (a) Golgi apparatus (b) Lysosomes (c) Mitochondria 629. Restriction endonuclease is used in (a) Genetic engineering (b) Tissue culture (c) Cell fractionation (d) Regeneration of tissues 630. The term genetic engineering is used for [MP PMT 2003] (a) Blotting technique (b) RNA reaction technique (c) Protein synthesis technique (d) Recombinant DNA technique 631. Genetic engineering is the (a) Formation of new gene artificially (b) Formation of RNA from DNA artificially (c) Modification of genes artificially Formation of DNA (d) from non DNA material 632. The interferon of other animals (a) Cannot be used in human (b) Can be used in human (c) Can only be used in that particular animal (d) (a) and (c) both

33.	The genetic study of hu	man beings is done by		[CPMT 1	994]
	(a) Genetic chart	(b) Genetic engineering	(c) Eating of food	(d) Vertebral colum	n
34 .	The viruses infect the h	ost cells. By the induction	n of viruses the host cel	ls produce the	
	(a) Antigens	(b) Oncogens	(c) Interferon	(d) Carcinogens	
35.	Gene synthesis is relate	ed to			
	(a) V. Baer	(b) H.G. Khorana	(c) L. Pasteur	(d) C. Linnaeus	
36.	Who among the follow	ing scientists is associated	d with the discoveries in	n genetic engineering	
	(a) Khorana	(b) Watson	(c) Crick	(d) Messelson	
37.	Which of the following	enzyme is used to join D	NA fragments		
	(a) Terminase	(b) Endonuclease	(c) Lygase	(d) DNA polymeras	se
38.	Father of DNA finger p	printing is			
	(a) Sunder Lal Bhugun	a(b) Wishwanath	(c) Jeffreys	(d) Rockfeller	
39.	For DNA finger printin	g, DNA is obtained from			
	(a) White blood corpus	cles (b)	Hair root cells	(c) Body secretion	(d)
40.	It is now possible to broke	eed plants and animals of	desired characters through	ugh	
	(a) Tissue culture engineering	(b) Genetic engineering	(c) Ikebana technique	(d) Chromosome	
µ1.	Genetic engineering is			[DPMT 1	996]
	(a) Plastic surgery	(b) Addition or removal	of genes	(c) Study of e	extra
	nuclear genes(d)	All the above			
42.	DNA finger printing ca	n resolve		[MP PMT 1	998]
	(a) Identification of a p	erson	(b) Paternity dispute	(c) Maternity disput	te(d)
	•	used in genetic engineeri	ng because they		
CB	SE PMT 1995; BHU 20				
	(a) Can join DNA frag	ments		(b) Cut DNA at spe	cific
	base sequence				
	(c) Cut DNA at variabl			(d) Are proteo	lytic
	enzymes which degrad	-	• • • •		
14 .		r and vehicle DNAs are jo	•		
	(a) DNA polymerase I		(c) DNA ligase	(d) DNA polymeras	
4 5 .		cular scissors of DNA are			rdha
	(a) Endonucleases	(b) Polymerases	(c) Ligases	(d) Trascriptases	
46.	First successful animal				
	(a) Dolly goat	(b) Dolly sheep	(c) Molly goat	(d) Molly sheep	
4 7•		ans are famous for discov	-		
	(a) Gene therapy vaccine	(b) Restriction enzyme	(c) Humulin	(d) Second genera	ation
48.	Genetically engineered	bacteria are being used in	n commercial productio	n of [CBSE PMT 199	96; DI
	(a) Melatonin	(b) Testosterone	(c) Human insulin	(d) Thyroxine	

649. calle	When the genotype of an organism is improved ed	l by the addition of fore	eign genes the process is [AFMC 1999]
	(a) Biotechnology (b) Tissue culture	(c) Genetic engineering	g (d) Genetic diversity
650.	"Tissue culture" means		[MP PMT 1993]
	(a) Cultivation of tissue in laboratory through for	mation of new cells	
	(b) Introduction of new tissue in an animal body		
	(c) A technique for maintaining fragments of cell	Is alive after their remova	al from an organism
	(d) Maintaining tissue alive by immersing it parti	ally in a nutrient fluid	
	Chromosomal abnormality of an unborn baby (nique called	while in mother's womb	b) can be found out by a [MP PMT 1990, 95]
	(a) Amniocentesis (b) CAT scanning	(c) Ultrasound	(d) Tissue culture
652.	The primary biological importance of sex in orga	nism is that it	[MP PMT 1990]
	(a) Is essential for organismic reproduction	(b) Is essential for cellu	lar reproduction
	(c) Causes new mutation to occur in offspring	(d) Promotes genetic va	ariability in offspring
653.	A genetic marker is		
used	(a) An enzyme used to cut DNA to find out a gene	(b)	A radioactive probe
	(c) A nucleotide sequence near a particular gene	(d) A place where a	restriction enzyme cuts
D J T			
DNA	A		
	A Gene library refers to		[Orissa JEE 2003]
			[Orissa JEE 2003]
	Gene library refers to	oks	[Orissa JEE 2003]
	Gene library refers to (a) DNA fragments maintained in agarose gel		[Orissa JEE 2003]
	Gene library refers to(a) DNA fragments maintained in agarose gel(b) Photographs of DNA fragments printed in bo	a bank	[Orissa JEE 2003]
	Gene library refers to (a) DNA fragments maintained in agarose gel (b) Photographs of DNA fragments printed in bo (c) DNA sequence information maintained in dat (d) DNA fragments of a genome maintained by c	a bank loning in cultured cells	
654.	Gene library refers to (a) DNA fragments maintained in agarose gel (b) Photographs of DNA fragments printed in bo (c) DNA sequence information maintained in dat (d) DNA fragments of a genome maintained by c	a bank loning in cultured cells	[AMU 2002]
654.	Gene library refers to (a) DNA fragments maintained in agarose gel (b) Photographs of DNA fragments printed in bo (c) DNA sequence information maintained in dat (d) DNA fragments of a genome maintained by c Cryopreservation refers to germplasm protection (a) Low temperature treatment	a bank loning in cultured cells	[AMU 2002]
654. 655. varie	Gene library refers to (a) DNA fragments maintained in agarose gel (b) Photographs of DNA fragments printed in bo (c) DNA sequence information maintained in dat (d) DNA fragments of a genome maintained by c Cryopreservation refers to germplasm protection (a) Low temperature treatment eties (c) Energy flow through each tropic level	ta bank cloning in cultured cells by (d) Both (b) and (c)	[AMU 2002] (b) Breeding with wild
654. 655. varie	Gene library refers to (a) DNA fragments maintained in agarose gel (b) Photographs of DNA fragments printed in bo (c) DNA sequence information maintained in dat (d) DNA fragments of a genome maintained by c Cryopreservation refers to germplasm protection (a) Low temperature treatment	ta bank cloning in cultured cells by (d) Both (b) and (c)	[AMU 2002] (b) Breeding with wild
654. 655. varie	Gene library refers to (a) DNA fragments maintained in agarose gel (b) Photographs of DNA fragments printed in bo (c) DNA sequence information maintained in dat (d) DNA fragments of a genome maintained by c Cryopreservation refers to germplasm protection (a) Low temperature treatment eties (c) Energy flow through each tropic level	ta bank cloning in cultured cells by (d) Both (b) and (c)	[AMU 2002] (b) Breeding with wild [MP PMT 1993]
654. 655. varie 656.	Gene library refers to (a) DNA fragments maintained in agarose gel (b) Photographs of DNA fragments printed in bo (c) DNA sequence information maintained in dat (d) DNA fragments of a genome maintained by c Cryopreservation refers to germplasm protection (a) Low temperature treatment eties (c) Energy flow through each tropic level <i>Escherichia coli</i> is used in biological researches (a) It is easy to handle (c) It can be easily cultured	a bank loning in cultured cells by (d) Both (b) and (c) because	[AMU 2002] (b) Breeding with wild [MP PMT 1993]
654. 655. vario 656. mult	Gene library refers to (a) DNA fragments maintained in agarose gel (b) Photographs of DNA fragments printed in bo (c) DNA sequence information maintained in dat (d) DNA fragments of a genome maintained by c Cryopreservation refers to germplasm protection (a) Low temperature treatment eties (c) Energy flow through each tropic level <i>Escherichia coli</i> is used in biological researches (a) It is easy to handle (c) It can be easily cultured iply in the host	a bank loning in cultured cells by (d) Both (b) and (c) because	[AMU 2002] (b) Breeding with wild [MP PMT 1993] (d) It can easily
654. 655. vario 656. mult	Gene library refers to (a) DNA fragments maintained in agarose gel (b) Photographs of DNA fragments printed in bo (c) DNA sequence information maintained in dat (d) DNA fragments of a genome maintained by c Cryopreservation refers to germplasm protection (a) Low temperature treatment eties (c) Energy flow through each tropic level <i>Escherichia coli</i> is used in biological researches (a) It is easy to handle (c) It can be easily cultured iply in the host Southern blot technique is related to	a bank loning in cultured cells by (d) Both (b) and (c) because (b) It is easily available	[AMU 2002] (b) Breeding with wild [MP PMT 1993] (d) It can easily [Kerala PMT 2002]
654. 655. varie 656. mult 657.	Gene library refers to (a) DNA fragments maintained in agarose gel (b) Photographs of DNA fragments printed in bo (c) DNA sequence information maintained in dat (d) DNA fragments of a genome maintained by c Cryopreservation refers to germplasm protection (a) Low temperature treatment eties (c) Energy flow through each tropic level <i>Escherichia coli</i> is used in biological researches (a) It is easy to handle (c) It can be easily cultured iply in the host Southern blot technique is related to (a) Blood test (b) DNA profiling	a bank loning in cultured cells by (d) Both (b) and (c) because	[AMU 2002] (b) Breeding with wild [MP PMT 1993] (d) It can easily
654. 655. varie 656. mult 657.	Gene library refers to (a) DNA fragments maintained in agarose gel (b) Photographs of DNA fragments printed in bo (c) DNA sequence information maintained in dat (d) DNA fragments of a genome maintained by c Cryopreservation refers to germplasm protection (a) Low temperature treatment eties (c) Energy flow through each tropic level <i>Escherichia coli</i> is used in biological researches (a) It is easy to handle (c) It can be easily cultured iply in the host Southern blot technique is related to (a) Blood test (b) DNA profiling Southern blotting is used to identify	a bank cloning in cultured cells by (d) Both (b) and (c) because (b) It is easily available (c) ELISA test	(d) It can easily [Kerala PMT 2002] (d) Sonography
654. 655. varie 656. mult 657.	Gene library refers to (a) DNA fragments maintained in agarose gel (b) Photographs of DNA fragments printed in bo (c) DNA sequence information maintained in dat (d) DNA fragments of a genome maintained by c Cryopreservation refers to germplasm protection (a) Low temperature treatment eties (c) Energy flow through each tropic level <i>Escherichia coli</i> is used in biological researches (a) It is easy to handle (c) It can be easily cultured iply in the host Southern blot technique is related to (a) Blood test (b) DNA profiling Southern blotting is used to identify (a) DNA in a cell (b) RNA in a cell (c) Energy flow through each tropic level (c) It can be easily cultured (c) It can be easily c	a bank cloning in cultured cells by (d) Both (b) and (c) because (b) It is easily available (c) ELISA test	[AMU 2002] (b) Breeding with wild [MP PMT 1993] (d) It can easily [Kerala PMT 2002]

	(a) Autoradiography	(b) Membrane filter	(c) DNA hybridizati	on (d) Gel electrophoresis
60.	Plasmids are		[EAMCE	T 1996; CBSE PMT 2002]
	(a) Outgrowth of mito- membrane	chondria		(b) Outgrowth of cell
	(c) Outgrowth of nucle circular material	ear membrane	(d)	Extrachromosomal
661.	One of the most useful	l methods for identifying	a specific gene is the	
	(a) Southern blot	(b) Western blot	(c)Northern blot	(d) None of the above
62.	A collection of an orga	anism's DNA fragments t	hat are stored in a host	organism is called a
	(a) Plasmid	(b) DNA clone	(c) DNA library	(d) DNA restriction site
63.	DNA fingerprint canno	ot be prepared from		
	(a) RBC	(b) Sperm	(c) WBC	(d) Inner lining of
hee				
64.	-	s used for gene transfer in		[DPMT 2003]
	(a) <i>E. coli</i>		(b) Acetobacter	
1.1100	(c) Bacillus thuringien	isis	(d)	Agrobacterium
	efaciens How are RFLPs detect	tad		
005.		ieu		
	(a) By doing standard	Mendelian cross	(b) By amplifying th	e DNA using PCP
		Mendelian cross		-
chro	(c) By observing DNA	A of different lengths on a		e DNA using PCR By looking at the
	(c) By observing DNA mosome in the microsc	A of different lengths on a cope	a gel (d)	-
	(c) By observing DNA mosome in the microsc Which of the followin	A of different lengths on a cope g is the best way to deter	a gel (d) mine paternity	By looking at the [AIIMS 2000]
666.	(c) By observing DNA mosome in the microsc	A of different lengths on a cope	a gel (d) mine paternity	By looking at the
566. cour	(c) By observing DNA mosome in the microscWhich of the following(a) Gene counting	A of different lengths on a cope g is the best way to deter (b) Protein analysis	a gel (d) mine paternity	By looking at the [AIIMS 2000]
666. cour	(c) By observing DNA mosome in the microscWhich of the following(a) Gene countingnting	A of different lengths on a cope g is the best way to deter (b) Protein analysis	a gel (d) mine paternity	By looking at the [AIIMS 2000] ing (d) Chromosome [KCET 2001]
566. Cour 567.	 (c) By observing DNA mosome in the microsc Which of the following (a) Gene counting nting Thermal cycler is used (a) Radioactivity 	A of different lengths on a cope g is the best way to deter (b) Protein analysis I in this reaction	a gel (d) mine paternity (c) DNA fingerprint (c) Polymerase chair	By looking at the [AIIMS 2000] ing (d) Chromosome [KCET 2001] n reaction (d)
566. Cour 567.	 (c) By observing DNA mosome in the microsc Which of the following (a) Gene counting nting Thermal cycler is used (a) Radioactivity 	A of different lengths on a cope g is the best way to deter (b) Protein analysis l in this reaction (b) Chemical reaction g enzymes is used in poly	a gel (d) mine paternity (c) DNA fingerprint (c) Polymerase chain ymerase Chain Reaction	By looking at the [AIIMS 2000] ing (d) Chromosome [KCET 2001] n reaction (d)
566. cour 567. 568.	 (c) By observing DNA mosome in the microsc Which of the following (a) Gene counting Thermal cycler is used (a) Radioactivity Which of the following (a) Taq polymerase 	A of different lengths on a cope g is the best way to deter (b) Protein analysis l in this reaction (b) Chemical reaction g enzymes is used in poly (b) Vent polymerase	a gel (d) mine paternity (c) DNA fingerprint (c) Polymerase chain ymerase Chain Reaction (c) Both of these	By looking at the [AIIMS 2000] ing (d) Chromosome [KCET 2001] n reaction (d) n (PCR)
666. cour 667.	 (c) By observing DNA mosome in the microsc Which of the following (a) Gene counting Thermal cycler is used (a) Radioactivity Which of the following (a) Taq polymerase 	A of different lengths on a cope g is the best way to deter (b) Protein analysis l in this reaction (b) Chemical reaction g enzymes is used in poly (b) Vent polymerase	a gel (d) mine paternity (c) DNA fingerprint (c) Polymerase chain ymerase Chain Reaction (c) Both of these	By looking at the [AIIMS 2000] ing (d) Chromosome [KCET 2001] n reaction (d) n (PCR) (d) None of the above
666. cour 667. 668.	 (c) By observing DNA mosome in the microsc Which of the following (a) Gene counting Thermal cycler is used (a) Radioactivity Which of the following (a) Taq polymerase Which of the following 	A of different lengths on a cope g is the best way to deter (b) Protein analysis l in this reaction (b) Chemical reaction g enzymes is used in poly (b) Vent polymerase g is a recent application o (b) ELISA test	a gel (d) mine paternity (c) DNA fingerprint (c) Polymerase chain ymerase Chain Reaction (c) Both of these of genetic engineering in (c) Gravidex test	By looking at the [AIIMS 2000] ing (d) Chromosome [KCET 2001] n reaction (d) n (PCR) (d) None of the above n diagnostic technique[BHU
666. cour 667. 668.	 (c) By observing DNA mosome in the microsc Which of the following (a) Gene counting (a) Gene counting Thermal cycler is used (a) Radioactivity Which of the following (a) Taq polymerase Which of the following (a) PCR 	A of different lengths on a cope g is the best way to deter (b) Protein analysis l in this reaction (b) Chemical reaction g enzymes is used in poly (b) Vent polymerase g is a recent application of (b) ELISA test	a gel (d) mine paternity (c) DNA fingerprint (c) Polymerase chain ymerase Chain Reaction (c) Both of these of genetic engineering in (c) Gravidex test	By looking at the [AIIMS 2000] ing (d) Chromosome [KCET 2001] n reaction (d) n (PCR) (d) None of the above n diagnostic technique[BHU (d) ABC blood groups
566. cour 567. 568. 568.	 (c) By observing DNA mosome in the microsce Which of the following (a) Gene counting (a) Gene counting Thermal cycler is used (a) Radioactivity Which of the following (a) Taq polymerase Which of the following (a) PCR Polymerase chain reace (a) DNA amplification 	A of different lengths on a cope g is the best way to deter (b) Protein analysis l in this reaction (b) Chemical reaction g enzymes is used in poly (b) Vent polymerase g is a recent application of (b) ELISA test	a gel (d) mine paternity (c) DNA fingerprint (c) Polymerase chain ymerase Chain Reaction (c) Both of these of genetic engineering in (c) Gravidex test [P] (c) DNA proof readi	By looking at the [AIIMS 2000] ing (d) Chromosome [KCET 2001] n reaction (d) n (PCR) (d) None of the above n diagnostic technique[BHU (d) ABC blood groups b PMT 2003; CPMT 2003]
5666. cour 5667. 5668. 5569.	 (c) By observing DNA mosome in the microsce Which of the following (a) Gene counting (a) Gene counting Thermal cycler is used (a) Radioactivity Which of the following (a) Taq polymerase Which of the following (a) PCR Polymerase chain reace (a) DNA amplification 	A of different lengths on a cope g is the best way to deter (b) Protein analysis l in this reaction (b) Chemical reaction g enzymes is used in poly (b) Vent polymerase g is a recent application of (b) ELISA test ction is concerned with h (b) DNA repairing	a gel (d) mine paternity (c) DNA fingerprint (c) Polymerase chain ymerase Chain Reaction (c) Both of these of genetic engineering in (c) Gravidex test [P] (c) DNA proof readi	By looking at the [AIIMS 2000] ing (d) Chromosome [KCET 2001] n reaction (d) n (PCR) (d) None of the above n diagnostic technique[BHU (d) ABC blood groups b PMT 2003; CPMT 2003] ng (d) DNA replication
566. cour 567. 568.	 (c) By observing DNA mosome in the microsce Which of the following (a) Gene counting (a) Gene counting Thermal cycler is used (a) Radioactivity Which of the following (a) Taq polymerase Which of the following (a) PCR Polymerase chain reace (a) DNA amplification The transfer of genetice (a) Replication 	A of different lengths on a cope g is the best way to deter (b) Protein analysis l in this reaction (b) Chemical reaction g enzymes is used in poly (b) Vent polymerase g is a recent application of (b) ELISA test etion is concerned with h (b) DNA repairing c material of one bacteriu	a gel (d) mine paternity (c) DNA fingerprint (c) Polymerase chain (c) Polymerase chain (c) Both of these of genetic engineering in (c) Gravidex test [PI (c) DNA proof readi m to another is called (c) Transcription	By looking at the [AIIMS 2000] ing (d) Chromosome [KCET 2001] In reaction (d) In (PCR) (d) None of the above In diagnostic technique[BHU (d) ABC blood groups b PMT 2003; CPMT 2003] Ing (d) DNA replication [CPMT 1996]

73.	Transfer of DNA from	bacterium to another thro	ough cell to cell contact i	s known as [Keral :	a PMT
	(a) Conjugation	(b) Transduction	(c) Transcription	(d) Transformation	n
74.	The uptake of naked D	NA by a bacterium is call	ed		
	(a) Cloning	(b) Conjugation	(c) Transduction	(d) Transformation	n
75.	Genetically engineered	bacteria are being used in	n commercial production	of [CBSE PMT 1	996; D
	(a) Melatonin	(b) Thyroxine	(c) Testosterone	(d) Human insuli	1
76.	A clone is a group of in	ndividuals obtained throug	gh [JIPN	MER 1999; AFMC	: 1999]
rop	(a) Hybridization agation	(b) Self pollination	(c) Cross pollination	(d) Vegetative	
77.	For producing the worl	d's first animal clone Dol	ly, which cells were used	d [BHU	2003]
	(a) Sperm cells	(b) Brain cells	(c) Udder cells	(d) Blood cells	
8.	The technique by whic	h 'Dolly' the sheep obtain	ed is termed as	[CBSE PM]	[1999]
nro	(a) Cloning by gene tra mosome transfer	nnsfer		(b) Cloning	by
	(c) Cloning by nuclear	transfer		(d) None of the al	bove
<i>'</i> 9.	A new method of harve	esting stem cells is known	as	[JIPMER	2002]
	(a) Cloning	(b) Sporogony	(c) Entrapping	(d) Schizogony	
0.	Clonal cell lines can be	e obtained by	-	[MP PM]	2000]
	(a) Tissue system	(b) Tissue culture	(c) Tissue fractionation	n (d) Tissue	
omo	ogenization				
81.	How many genes are the	nere in a human sperm cel	1		
	(a) 23	(b) 46	(c) 30,000	(d) 5,000-10,000	
2.	An extrachromosomal	DNA which can be used a	as vector in gene cloning	is called [JKCMF	EE 2003
	(a) Axon	(b) Intron	(c) Plasmid	(d) Transposon	
3.	The basis of DNA fing	erprinting is		[CBSE PM]	[1996]
	(a) Availability of clon	ed DNA			
	(b) Knowledge of hum	an karyotype			
	(c) Phenotypic differen	nce between individuals			
	(d) Occurrence of RFL	P (Restriction Fragment I	ength Polymorphism)		
4.	RFLPs distributed thro	ughout human genome ar	e useful for		
	(a) Gene mapping	(b) DNA fingerprints	(c) Both of these	(d) None of the al	bove
5.	In genetic engineering,	the term vector is applied	l for	[DPMT	2003]
	(a) Plasmid	(b) Bacteria	(c) Sources of DNA	(d) Cell which red	ceive
36.	Genes which confer an	tibiotic resistance on bact	eria are located on	[MP PM]	[1998]
	(a) RNA	(b) Plasmid	(c) Polysome	(d) Circular	DNA
ole	cule				
\$7.	Restriction endonuclea	ses cut	[BHU	1995; Orissa JEE	2003]

DNI	(a) Double stranded D	NA (b) Double stranded RNA	Single stranded DNA	(c) Single strand	ed
RNA			matarial		
688.		rry which type of genetic r		(d) Matabalia canag	
	-	(b) Useless genes	(c) Nonessential genes	-	
689.	-	forms chemical scissors		[Kerala PMT 199	'/]
_	(a) <i>Eco</i> RI	(b) <i>Hind</i> III	(c) <i>Bam</i> HII	(d) All of the above	
690.	Electrophoresis is used	to			
	(a) Clone genes		(b) Cut DNA into fragm		•
func	(c) Separate fragments	of DNA		(d) Match gene with	its
				[BHU 200	21
691.	Genetic engineering is	NP 00			5]
	(a) Making artificial ge	ol by using microorganisr	na		
		NA of one organism to that			
	•	nbs, diagnostic instrument			
600		per of genes contained in the			031
692.	(a) 80,000	(b) 40,000	(c) 1,00,000	(d) 30,000	J J
600		ly used in genetic engineer		[KCET 200	31
093.	-	clease and polymerase	-	-	5]
	(c) Endonuclease and I		(b) Restriction endonac		nd
Poly	merase			(u) Ligase a	ild
•		volves addition of deletio	n of genes is	[AFMC 200	2]
	(a) Gene therapy	(b) Gene splicing	-	g (d)Artificial synthe	esis
695.	Apart from DNA in the	e bacterial nucleoid, there		-	
	(a) Plasmid	(b) Mesosome	(c) Chromosome	(d) None of the above	
696.	In plasmid R gene is re	sponsible for		[AMU 200	1]
	(a) Exchange of genetie	c material between two pa	rtners	(b) Drug resistance	
	(c) Locomotion		(d) All of the above		
697.	Introduction of foreign	genes for improving gene	otype is called	[Pb PMT 200	3]
	(a) Vernalization	(b) Tissue culture	(c) Biotechnology	(d) Genetic engineerir	ıg
698.	Advancement in geneti	c engineering has been po	ossible due to	[BCECE 200	1]
	(a) Oncogenes	(b) Transposons	(c) Exonucleases	(d) Endonucleases	
699.	Manipulation of DNA	in genetic engineering bec	ame possible due to the	discovery of [CBSE PN	AT 200
	(a) Primase	(b) DNA ligase	(c) Transcriptase	(d) Restriction	
endo	onuclease				
700.	Which of the following	g produce DNA fragment	with "sticky ends"		
	(a) DNA ligase	(b) Restriction enzymes	(c) DNA polymerase	(d) All of the above	
701.	Which is a genetic vect	tor		[AFMC 199	7]
1					

	(a) Plastid	(b) Plasmid	(c) Mosquito	(d) All of the above
02.	'Cloning' is meant		(h) To man days of h CII.	[AFMC 1997]
		hotype of the organism	(b) To produced hGH §	
	(c) To replace the original is the transfer	of normal genes into body	v calls to correct a geneti	(d) All of the above
03.	(a) Gene therapy	(b) Gene mutation		on (d)Nucleic acid hybrid
04	Plasmid	(b) Gene initiation	(c) Reverse transcription	[RPMT 1998]
04.		cell wall of bacteria	(b) Is a structure which	
	_	ound inside the nucleus	(d) Is the genetic part in	
nicr	oorganisms		(d) Is the general part is	
		Advan	nce	
05.	Genetic engineering m			[CMC Vallore 1993]
	(a) Manipulation of cel		(b)	Test tube babies
	-	ll cytochromes		
06.				to as [MP PMT 1994]
	(a) Transcription	(b) Cloning		(d) DNA amplification
07.	_			ne is known as [MP PMT
	(a) Transferase	(b) Northern blotting	-	(d) Southern blotting
08 .		ly used in genetic engined	-	[CPMT 2003]
	(a) Anopheles	(b) Dragon fly	(c) Dragon lizard	(d) Fruit fly
'09 .	Recombinant DNA tec			[BHU 1999]
	(a) C. Darwin	(b) Stanley Cohen	(c) Herbert Boyer	(d) Both (b) and (c)
10.	ANDI is cloned			[KCET 2002]
	(a) Sheep	(b) Bull	(c) Monkey	(d) Cat
11.	How many amino acid	s are present in the human	n insulin	
	(a) 21	(b) 30	(c) 31	(d) 51
12.	In human type(s) of int	erferon present is (are)		
	(a) Leucocytic	(b) Fibroblastic	(c) Immune interferon	(d) All of the above
13.	The interferon which is	s synthesised by WBC is	known as	
	(a) Fibroblastic interfer		Immune interferon	(c) Leucocytic
nter	feron	(d) None of the above		
14.	-	g correctly defines a trans	-	[CBSE PMT 1995]
		has foreign DNA and RN o the nucleus of the zygot		ecause of an injection of ped
		nas foreign DNA in all i te from which it is develo		njection of DNA into the

	(d) A small circular DNA molecule capable of se	lf replication and that ca	n carry	genes into host
	(c) DNA molecule incorporated in the bacteria ch	nromosome		
	(b) DNA molecule present in mitochondria			
	(a) Bacteriophage	_		
725.		-	MT 19	92; CPMT 1994]
	(d) Cleaving and rejoining DNA segments with li	-		
	(c) Cleaving DNA segments with 'ligase' and rejo		•	
	(b) Cleaving DNA segments with 'endonuclease'		'ligase'	
	(a) Cleaving and rejoining DNA segments with 'e	endonuclease' alone		_
724.	Construction of recombinant DNA involves			[KCET 2002]
	(a) Skin disease (b) Care of skin	(c) Cosmetics	(d) Fin	ger printing
723.			- *	
-	(a) Polymerase chain reaction	(b) Nesslerisation		thern blotting (d)
722.	Process used for amplication or multiplication of	•	is	
	(c) DNA segments having radioactive isotopes	(d) X-ray scanners		
, -=•	(a) Highly sensitive electron microscope	(b) UV beams		
721.		(P
	(c) Regulation of plant growth hormones	(d) Enhancing photosyr		
/ 201	(a) Protoplasmic culture	(b)	DNA f	inger printing
720.	VNTR is employed for	(a) Divisinger printing		[AMU 2002]
	(c) Cistron - triplet	(d) DNA finger printing	$\sigma = DN^{2}$	Aprofiling
/19.	(a) Gene pool - genome	(b) Codon - gene	uning	
719.	Which one of the following pairs of terms/names			[AIIMS 2003]
/10.	(a) Carbohydrate (b) Fat	(c) Hybridoma	(d) Pro	tein
718.	-			
	(e) T.H. Morgan	(c) Robert Briggs	(u) Ian	vv mmut
717.	The first mammal clone 'Dolly' was created by(a) Gregor Mendel(b) Thomas King	(c) Robert Briggs	(d) Ian	Wilmut
	(a) Tissue culture (b) Gene differentiation The first mammal alone 'Dolly' was greated by	(c) Gene manipulation	(u) All	[Kerala 2002]
716.		(a) Concernationalistica	-	BSE PMT 2000]
	(a) Discovery of DNA (b) Discovery of DNA lig	gase		covery of <i>t</i> RNA(d
715.	C C			5; Manipal 1997]
	nuclei of some of the cells in adulthood		-	
	(d) An animal which has foreign DNA in all its	s cells because of an in	jection	of DNA into the
	nuclei of some of the cells of the blastocyst			

=06	The plasmid pBR 322 t	used in biotechnology is		[EAMCET 2002]
/20.	(a) Yeast		(c) Parasite	2
		(b) M ₃₂ phage	(c) Falasite	(d) Cloning vehicle
727.	What is the function of			(b) Allows calls to take
up fo	(a) Helps to amplify the oreign DNA	e DNA		(b) Allows cells to take
	(c) Destroys cells that c	lo not contain cloned DN	A (d)	Carries cloned DNA,
enab	oling it to replicate in hos	st cells		
7 28. pare		d through which of the fo	ollowing processes are no	ot exactly similar to their [AFMC 2002]
	(a) Sexual reproduction	u (b)	Dizygotic twins	(c) Asexual
repro	oduction	(d) Parthenogenesis		
729.	In DNA segment the pr	obe blinds is identified by	its size by using a techn	ique called [AMU 2002]
	(a) DNA probe	(b) DNA denaturation	(c) DNA polymorphism	n (d)None of the above
730.	Which one of the follow	wing can give a compleme	entary and palindromic se	equence [EAMCET 2003]
	(a) 5'-ATATCC-3'	(b) 5'-CCGAAT-3'	(c) 5'-GAATTC-3'	(d) 5'-AGGTTC-3'
731.	What are true of plasmi	ds		[CBSE PMT 2001]
	(a) They are found in v	iruses		(b) They are main part
of cl	hromosomes			
	(c) They are widely use	ed in gene transfer	(d) They contain gene f	or vital activities
732.	•	e present in several micro mes do not destroy the co	0 0	NA at specific sites and [AMU 2003]
	(a) The cellular DNA d	oes not have the specific	sites	
	(b) The susceptible spec	cific sites are masked by p	protein	
	(c) The restriction enzy	me susceptible sites are n	nodified by cellular enzy	mes
	(d) The restriction enzy	mes and DNA occupy dif	ferent compartments	
733.	In transgenics, expressi	on of transgene in target t	issue is determined by	[CBSE PMT 2004]
	(a) Reporter	(b) Enhancer	(c) Transgene	(d) Promoter
734.	•	as evidence in a murder DNA fingerprint shows	trial look something like	e supermarket bar codes.
	(a) The order of bases i	n a particular gene		
	(b) The order of genes a	along particular gene		
	-	of a specific gene in a gen	omic library	
		ious-sized fragments from		
735.	-	-		llowing sequence[Kerala PM
/00*	(a) GAATTC	(b) AAGTTC	(c) AAGCTT	(d) GTATATC
726		ence where <i>Eco</i> RI cuts is		[Kerala PMT 2003]
/30.	ine speeme Divisequ		<i>,</i>	

	(a) ATTCGA TAAGCT	(b) GAATTC CTTAAG	(c) GCTTAA CGAATT	(d) GTTCAA CAAGTT
737.	Which one of the follow	wing pairs of terms/na	mes mean one and the	e same thing [AIIMS 2003]
	(a) Codon	- Gene		
	(b) Cistron	- Triplet		
	(c) Gene pool	- Genome		
	(d) DNA fingerprinting	- DNA profiling		
738.	Restriction endonucleas	· ·		[CBSE PMT 2004]
0	(a) Are synthesized bac		lefense mechanism	
	(b) Are present in mam	-		the cell dies
	(c) Are used in genetic	-		
	(d) Are used for <i>in vitra</i>		C	
739.	Which statement is corr	ect for bacterial trans	duction	[CBSE PMT 2002]
	(a) Bacteria obtain its I	ONA directly		
	(b) Bacteria obtain DNA	A from other external	source	
	(c) Transfer of genes fr	om one bacterium to	another bacterium by c	conjugation
	(d) Transfer of some ge	nes from one bacteriu	im to another bacterium	m through virus
740.	A biologist isolated a g	gene from a human c	ell, attached it to a pla	asmid and inserted the plasmid
	into a bacterium. The b	acterium made a new	protein, but it was no	othing like the protein normally
	produced in a human ce	ell. Why		
	(a) The gene contained	introns		(b) The gene did not
nave	sticky ends			
	(c) The biologist should	l have cloned the gen	e first (d)	The bacterium had
	rgone transformation			
741.	-	-	hat contains genes from	m several other disease-causing
	microorganisms. They	-	(1)	. ,
	(a) As a compact genor	nic library	(b)	In a vaccine against
seve	ral diseases	human cana tharany	(d) To perfect a	arm worfers weepen with pe
	(c) As a gene vector for	numan gene merapy	(u) to perfect a g	germ-warfare weapon with no
ntio		ers to		
	DNA fingernrinting ref	015 10		[CBSE PMT 2004]
	DNA fingerprinting ref	· identification of find	erprints of individuals	
	(a) Techniques used for	•	*	
	(a) Techniques used for(b) Molecular analysis	of profiles of DNA sa	mples	
	(a) Techniques used for(b) Molecular analysis(c) Analysis of DNA sa	of profiles of DNA sa imples using imprintin	mples ng devices	
742.	(a) Techniques used for(b) Molecular analysis(c) Analysis of DNA sa(d) Techniques used for	of profiles of DNA sa imples using imprinting molecular analysis o	mples ng devices	of DNA
742.	 (a) Techniques used for (b) Molecular analysis (c) Analysis of DNA sa (d) Techniques used for The following can be defined and the following can be defin	of profiles of DNA sa imples using imprinting molecular analysis of escribed as clones	mples ng devices f different specimens o	of DNA
742.	 (a) Techniques used for (b) Molecular analysis (c) Analysis of DNA sa (d) Techniques used for The following can be de (a) The mother of the sh 	of profiles of DNA sa imples using imprinting molecular analysis of escribed as clones heep Dolly and Dolly	mples ng devices f different specimens o	of DNA
	 (a) Techniques used for (b) Molecular analysis (c) Analysis of DNA sa (d) Techniques used for The following can be day (a) The mother of the sa (b) Identical twins arisis 	of profiles of DNA sat imples using imprinting molecular analysis of escribed as clones heep Dolly and Dolly ng out of a single egg	mples ng devices f different specimens o	of DNA [AMU 2003]
742.	 (a) Techniques used for (b) Molecular analysis of (c) Analysis of DNA sa (d) Techniques used for The following can be do (a) The mother of the sh (b) Identical twins arisis (c) A colony of bacteria 	of profiles of DNA sat imples using imprinting molecular analysis of escribed as clones heep Dolly and Dolly ng out of a single egg	mples ng devices f different specimens o	of DNA [AMU 2003]
742.	 (a) Techniques used for (b) Molecular analysis (c) Analysis of DNA sa (d) Techniques used for The following can be day (a) The mother of the sa (b) Identical twins arisis 	of profiles of DNA sat imples using imprinting molecular analysis of escribed as clones heep Dolly and Dolly ng out of a single egg	mples ng devices f different specimens o	of DNA [AMU 2003]

ANSWER

ASSIGNMENT (BASIC & ADVANCE LEVEL)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a	c	a	c	c	d	d	a	c	c	b	a	a	c	c	a	b	a	c	d
21	22	23	24	25	26	2 7	28	29	30	31	32	33	34	35	36	37	38	39	40
b	c	b	a	c	a	d	c	b	b	d	b	a	d	d	c	a	a	a	b
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	b	a	d	a	c	c	b	c	a	d	c	b	c	b	c	a	b	b	d
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
a	a	c	b	d	a	a	a	b	c	c	d	c	c	c	d	d	c	d	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
с	d	a	d	b	c	c	c	b	a	c	a	b	c	b	c	d	d	a	b
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
С	a	с	d	с	a	a	a	с	a	с	b	a	d	b	d	с	b	a	с
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
с	c	d	a	b	b	d	c	d	b	a	b	d	d	c	c	c	d	a	d
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
с	d	d	b	a	b	a	c	c	c	a	a	a	a	d	a	a	c	a	d
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
d	d	d	b	b	a	c	c	a	d	d	d	d	b	b	b	a	a	b	c
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
b	b	a	b	b	b	c	a	b	a	С	a	c	d	c	c	a	d	d	b
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
d	b	d	b	b	a	c	a	b	c	c	c	a	a	d	d	d	d	b	c
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
b	d	b	c	d	C	C	b	a	d	b	b	a	a	c	d	c	d	d	a
241	242	243	244	245	246	24 7	248	249	250	251	252	253	254	255	256	25 7	258	259	260
С	d	a	a	c	c	d	c	a	a	b	a	a	d	c	b	b	d	d	b
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	2 77	278	279	280
С	c	a	a	b	d	d	d	a	a	c	d	c	b	a	c	d	c	a	b
281	282	283	284	285	286	28 7	288	289	290	291	292	293	294	295	296	29 7	298	299	300
d	c	d	b	c	c	a	c	d	d	d	b	a	d	c	b	c	a	a	a
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
a	a	d	b	d	d	a	c	d	b	b	d	d	d	d	b	b	d	b	b
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
d	d	d	b	a	a	d	d	a	d	a	a	c	d	b	a	b	a	c	C

341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
с	d	d	d	a	c	d	d	c	c	d	a	c	b	b	a	b	a	d	d
361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380
с	a	d	a	b	d	d	a	b	a	a	c	c	a	c	c	b	b	a	b
381	382	383	384	385	386	38 7	388	389	390	391	392	393	394	395	396	39 7	398	399	400
d	a	b	d	a	b	b	b	d	b	d	c	c	d	a	a	c	d	c	b
401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420
b	d	b	c	c	a	d	b	a	c	a	b	c	b	d	b	c	b	a	c
421	422	423	424	425	426	4 27	428	429	430	431	432	433	434	435	436	43 7	438	439	440
b	c	a	a	d	c	c	b	b	a	c	b	b	b	a	b	a	c	c	a
441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460
d	c	b	c	d	d	d	a	c	a	a	a	a	c	a	c	c	c	d	a
461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480
a	c	c	a	d	c	b	a	b	c	c	c	d	b	d	a	d	b	b	с
481	482	483	484	485	486	48 7	488	489	490	491	492	493	494	495	496	49 7	498	499	500
С	b	b	a	b	c	a	c	c	d	d	d	d	c	d	c	a	b	b	c
501	502	503	504	505	506	50 7	508	509	510	511	512	513	514	515	516	517	518	519	520
a	b	c	d	c	c	b	b	b	a	d	c	c	d	a	a	a	d	d	b
521	522	523	5 2 4	525	526	52 7	528	529	530	531	532	533	534	535	536	53 7	538	539	540
С	b	d	a	d	a	a	a	a	C	a	c	b	b	a	d	a	d	b	b
541	542	543	544	545	546	54 7	548	549	550	551	552	553	554	555	556	55 7	558	559	560
a	b	a	b	d	d	c	c	b	a	b	c	d	d	a	a	b	a	b	c
561	562	563	564	565	566	567	568	569	570	571	572	573	574	575	576	5 77	578	579	580
a	C	c	a	c	a	c	d	b	d	a	b	d	b	a	c	d	a	d	a
581	582	583	584	585	586	58 7	588	589	590	591	592	593	594	595	596	59 7	598	599	600
d	b	b	a	d	c	d	d	a	d	a	d	d	d	c	b	b	d	b	С
601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620
a	c	d	c	a	b	c	c	d	a	a	b	c	b	d	d	a	b	c	c
621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637	638	639	640
С	C	a	d	b	a	C	d	a	d	c	d	b	C	b	a	c	C	d	b
641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	656	657	658	659	660
b	d	b	c	a	b	b	с	с	a	a	d	c	d	a	c	b	a	d	d
661	662	663	664	665	666	667	668	669	670	671	672	673	674	675	676	677	678	679	680
a	с	a	d	c	c	c	c	a	a	d	b	a	d	d	d	С	c	a	b
681	682	683	684	685	686	687	688	689	690	691	692	693	694	695	696	697	698	699	700
с	с	d	b	a	b	a	с	d	с	с	d	b	с	a	b	d	d	d	b
701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720
b	a	a	d	d	с	с	d	d	с	d	d	c	b	b	c	d	d	d	b
721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740
С	a	d	b	d	d	d	a	d	С	С	С	d	d	a	b	d	a	d	a
741	742	743																	
b	b	d																	
l .																			