CBSE Test Paper 03 Chapter 9 Differential Equations

1. Find the particular solution for $2xy+y^2-2x^2rac{dy}{dx}~=0;~y=2$ when x = 1.

a.
$$y = rac{2x}{1 - \log |x|} (x \neq 0, x \neq e)$$

b. $y = rac{3x}{1 - \log |x|} (x \neq 0, x \neq e)$
c. $y = rac{2x}{1 + \log |x|} (x \neq 0, x \neq e)$
d. $y = rac{5x}{1 + \log |x|} (x \neq 0, x \neq e)$

2. General solution of $x rac{dy}{dx} + 2y = x^2 \log x$ is

a.
$$y = \frac{x^2}{16}(4\log|x| - 1) + Cx^{-2}$$

b. $y = \frac{x^2}{16}(4\log|x| + 1) + Cx^{-3}$
c. $y = \frac{x^2}{16}(4\log|x| + 1) - Cx^{-2}$
d. $y = \frac{x^2}{16}(4\log|x| + 1) + Cx^{-2}$

3. General solution of $y \log y \, dx - x \, dy = 0$.

a.
$$y = e^{-cx}$$

b. $y = e^{cx}$
c. $y^2 = e^{cx}$
d. $y = e^{cx} + e^{-cx}$

4. A first order linear differential equation, Is a differential equation of the form

a.
$$\frac{dy}{dx} = Q$$

b. $\frac{dy}{dx} + Py = Q$
c. $\frac{dy}{dx} + Py = 0$
d. $\frac{dy}{dx} + Px = Q$

- 5. Determine order and degree (if defined) of y' + 5y = 0.
 - a. 1, 1
 - b. 2, 1

c. 1, 2

- d. 1, degree undefined
- 6. The solution of the differential equation ydx + (x + xy)dy = 0 is _____.
- The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is _____.

8. The degree of the differential equation $\frac{d^2y}{dx^2} + e^{\frac{dy}{dx}} = 0$ is _____.

- 9. Write the differential equation obtained by eliminating the arbitrary constant C in the equation representing the family of curves xy = C cos x.
- 10. Write the integrating factor of the following differential equation. $\left(1+y^2
 ight)+(2xy-\cot y)rac{dy}{dx}=0.$
- 11. Verify that the given functions is a solution of the corresponding differential equation $y = \cos x + c; y' + \sin x = 0.$
- 12. Find the general solution: $rac{dy}{dx} = \sqrt{4-y^2} \, (-2 < y < 2).$
- 13. Verify that the function is a sol of the corresponding diff. req. y = x sin x; $xy^1 = y + x\sqrt{x^2 y^2}.$
- 14. Form the differential equation representing the family of ellipses having foci on x axis and centre at the origin.
- 15. Solve the differential equation $x rac{dy}{dx} + y x + xy \cot x = 0, x
 eq 0$.
- 16. Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation: $xy = \log y + C : y' = rac{y^2}{1-xy} (xy
 eq 1)$.
- 17. Verify that the given function (explicit) is a solution of the corresponding differential equation: $y = x \sin x : xy' = y + x \sqrt{x^2 y^2} (x \neq 0 \text{ and } x > y \text{ or } x < -y).$
- 18. Solve the diff. eq $\frac{dy}{dx} = \frac{x(2y-x)}{x(2y+x)}$, if y = 1 when x = 1.

CBSE Test Paper 03 Chapter 9 Differential Equations

Solution

1. a.
$$y = \frac{2x}{1-\log|x|} (x \neq 0, x \neq e)$$

Explanation: Let $y = vx$
 $\frac{dy}{dx} = v + x \frac{dv}{dx}$
Question becomes $v + x \frac{dv}{dx} = \frac{2v + v^2}{2}$
 $x \frac{dv}{dx} = \frac{2v + v^2}{2} - v$
 $x \frac{dv}{dx} = \frac{2v + v^2 - 2v}{2}$
 $2 \int \frac{dv}{v^2} = \int \frac{dx}{x}$
 $\frac{-2}{v} = \log x + c$
When $x = 1 y = 2$ we get
 $\frac{-2x}{y} = \log x + c$
 $\frac{-2}{2} = \log x + c$
 $\frac{-2}{2} = \log x + c$
 $\frac{-2}{2} = \log x - 1$
 $y = \frac{2x}{1 - \log|x|}$
2. a. $y = \frac{x^2}{16} (4 \log|x| - 1) + Cx^{-2}$
Explanation: $\frac{dy}{dx} + \frac{2}{x}y = x \log x$
 $ye \int \frac{2dx}{x} = \int e^{\int \frac{2dx}{x}} x \log x + C$
 $yx^2 = \int x^3 \log x dx + c$
 $yx^2 = \log x \int x^3 dx - \int \int x^3 dx \frac{d}{dx} \log x + c$
 $yx^2 = \log x \frac{x^4}{16} - \int \frac{x^3}{16} dx + c$
 $yx^2 = \frac{x^4}{16} \log x - \frac{x^2}{16} + cx^{-2}$
 $y = \frac{x^2}{16} (4 \log x - 1) + cx^{-2}$

3. b. $y = e^{cx}$ **Explanation:** $y \log y \, dx = x \, dy$ $\int \frac{1}{x} dx = \int \frac{1}{y \log y} dy$

$$egin{aligned} \log |x| &= \log |\log y| + \log C ext{ Since } \int rac{f'(x)dx}{f(x)} &= log |f(x)| + c ext{ and } \ rac{1}{C} &= c ext{ a new constant} \ \log x &= \log (C \log y) \ x &= C \log y \ \log y &= rac{1}{C} x \ \log y &= cx \ y &= e^{cx} \end{aligned}$$

4. b. $\frac{dy}{dx} + Py = Q$

Explanation: Here the degree and order of the equation is 1 and also is of the form $\frac{dy}{dx} + Py = Q$ hence it is linear differential equation in first order

5. a. 1, 1

Explanation: Order = 1, degree = 1. Since the equation has the highest derivative as y' and its power is 1

- 6. $xy = Ae^{-y}$
- 7. Zero
- 8. not defined
- Given Equation of family of curves is xy = C cos x. ... (i)
 On differentiating both sides w.r.t. x, we get

$$egin{aligned} 1 \cdot y + x rac{dy}{dx} &= C(-\sin x) \ \Rightarrow & y + x rac{dy}{dx} &= -\left(rac{xy}{\cos x}
ight) \sin x ext{ [from Eq. (i)]} \ \therefore & y + x rac{dy}{dx} + xy ext{ tan } x = 0 \end{aligned}$$

10. Given differential equation is

$$ig(1+y^2ig)+(2xy-\cot y)rac{dy}{dx}=0.$$

The above equation can be rewritten as

$$(\cot y - 2xy)rac{dy}{dx} = 1 + y^2 \ \Rightarrow rac{\cot y - 2xy}{(1+y^2)} = rac{dx}{dy} \ \Rightarrow rac{dx}{dy} = rac{\cot y}{1+y^2} - rac{2xy}{1+y^2} \ \Rightarrow rac{dx}{dy} + rac{2y}{1+y^2} \cdot x = rac{\cot y}{1+y^2}$$

which is a linear differential equation of the form $rac{dx}{dy}+Px=Q$, here $P=rac{2y}{1+y^2}$ and $Q=rac{\cot y}{1+y^2}$.

Now, integrating factor $= e^{\int p dy} = e^{\int \frac{2y}{1+y^2} dy}$ Put $1 + y^2 = t$ $\Rightarrow 2ydy = dt$ \therefore IF $= e^{\int \frac{dt}{t}} = e^{\log|t|} = t = 1 + y^2$ 11. $y = \cos x + c$ $\Rightarrow y' = -\sin x$ $\Rightarrow y' + \sin x = 0$ Hence verified.

12. Given: Differential equation
$$\frac{dy}{dx} = \sqrt{4 - y^2}$$

 $\Rightarrow dy = \sqrt{4 - y^2} dx$
 $\Rightarrow \frac{dy}{\sqrt{4 - y^2}} = dx$

Integrating both sides,

$$egin{aligned} &\Rightarrow \int rac{dy}{\sqrt{2^2-y^2}} dy = \int 1 dx \ &\Rightarrow \sin^{-1}rac{y}{2} = x + c \ \left[\because \int rac{1}{\sqrt{a^2-x^2}} dx = \sin^{-1}rac{x}{a}
ight] \ &\Rightarrow rac{y}{2} = \sin(x+c) \ &\Rightarrow y = 2\sin(x+c) \ &\Rightarrow y = 2\sin(x+c) \ \end{aligned}$$

$$y^{1} = x \cdot \cos x + \sin x \cdot 1$$

$$\Rightarrow xy^{1} = x^{2} \cos x + x \cdot \sin x$$

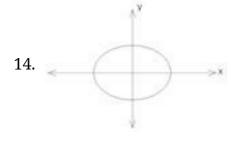
$$xy^{1} = x^{2} \sqrt{1 - \sin^{2}x} + x \cdot \sin x$$

$$xy^{1} = x^{2} \sqrt{1 - \left(\frac{y}{x}\right)^{2}} + x \cdot \sin x \quad [\because \frac{y}{x} = \sin x]$$

$$xy^{1} = x^{2} \sqrt{\frac{x^{2} - y^{2}}{x^{2}}} + x \cdot \sin x$$

$$xy^{1} = x \sqrt{x^{2} - y^{2}} + y$$
Hence proved

Hence proved.



$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \dots (1)$$

diff eq (1) w. r. t. x,we get,
$$\frac{2x}{a^2} + \frac{2y}{b^2} \cdot \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{2y}{b^2} \frac{dy}{dx} = \frac{-2x}{a^2}$$

$$\Rightarrow \frac{y}{x} \cdot \frac{dy}{dx} = \frac{-b^2}{a^2}$$

diff w. r. t. x,we get,

$$egin{array}{l} \left(rac{y}{x}
ight)rac{d^2y}{dx^2}+rac{dy}{dx}igg(rac{xrac{dy}{dx}-y}{x^2}igg)=0 \ \Rightarrow xy\left(rac{d^2y}{dx^2}
ight)+xigg(rac{dy}{dx}igg)^2-yrac{dy}{dx}=0 \end{array}$$

15. According to the question,

Given differential equation is,

 $xrac{dy}{dx}+y-x+xy\cot x=0$

Above equation can be written as

$$xrac{dy}{dx}+y(1+x\cot x)=x$$

On dividing both sides with x, we get

$$egin{aligned} &rac{dy}{dx} + y\left(rac{1+x\cot x}{x}
ight) = 1 \ &\Rightarrow \quad rac{dy}{dx} + y\left(rac{1}{x} + \cot x
ight) = 1 \end{aligned}$$

which is a linear differential equation of the form $\frac{dy}{dx} + Py = Q$, where $P = \frac{1}{x} + \cot x$ and Q = 1. we know that ,

$$\begin{aligned} \mathbf{IF} &= e^{\int Pdx} = e^{\int \left(\frac{1}{x} + \cot x\right) dx} = e^{\log|x| + \log \sin x} \\ \left[\because \int \frac{1}{x} dx = \log|x| \text{ and } \int \cot x dx = \log|\sin x| \right] \\ &= e^{\log|x \sin x|} [\because \log m + \log n = \log mn] \\ &\Rightarrow \mathbf{IF} = x \sin x \\ y \times \mathbf{IF} &= \int (Q \times \mathbf{IF}) dx + C \\ &\therefore \quad y \times x \sin x = \int 1 \times x \sin x dx + C \\ &\Rightarrow \quad yx \sin x = \int x \sin x dx + C \\ &\Rightarrow \quad yx \sin x = x \int \sin x dx - \int \left(\frac{d}{dx}(x) \int \sin x dx\right) dx + C \text{ [using integration by parts]} \\ &\Rightarrow yx \sin x = -x \cos x - \int 1(-\cos x) dx + C \end{aligned}$$

$$\Rightarrow yx \sin x = -x \cos x + \int \cos x dx + C$$

$$\Rightarrow yx \sin x = -x \cos x + \sin x + C$$

On dividing both sides by x sin x, we get

$$y = \frac{-x \cos x + \sin x + C}{x \sin x}$$

$$\therefore \quad y = -\cot x + \frac{1}{x} + \frac{C}{x \sin x}$$

which is the required solution.

16. Given: xy = log y + C ...(i)

To prove:y given by eq. (i) is a solution of differential equation $y' = \frac{y^2}{1-xy}$ (ii) Proof: Differentiating both sides of eq. (i) w.r.t x, we have

$$egin{aligned} &xy'+y\left(1
ight)=rac{1}{y}y'+0\ &\Rightarrow xy'-rac{y'}{y}=-y\ &\Rightarrow y'\left(x-rac{1}{y}
ight)=-y\ &\Rightarrow y'\left(rac{xy-1}{y}
ight)=-y\ &\Rightarrow y'\left(rac{xy-1}{y}
ight)=-y\ &\Rightarrow y'\left(xy-1
ight)=-y^2\ &\Rightarrow y'=rac{-y^2}{xy-1}\ &\Rightarrow y'=rac{-y^2}{-(1-xy)}=rac{y^2}{1-xy} \end{aligned}$$

Hence, function (implicit) given by eq. (i) is a solution of $y'=rac{y^2}{1-xy}.$

17. Given:
$$y = x \sin x ...(i)$$

To prove:y given by eq. (i) is a solution of differential equation $xy' = y + x\sqrt{x^2 - y^2}$...(ii) Proof: From eq. (i), $\frac{dy}{dx}(=y') = x \frac{d}{dx} \sin x + \sin x \frac{d}{dx} x$ = x cos x + sin x L.H.S. of eq. (ii) = xy' = x(x cos x + sin x) = x^2 cos x + x sin x R.H.S. of eq. (ii) = $y + x\sqrt{x^2 - y^2}$ = $x \sin x + x\sqrt{x^2 - x^2 \sin^2 x}$ [from eq. (i)] = $x \sin x + x\sqrt{x^2 (1 - \sin^2 x)}$ = $x \sin x + x\sqrt{x^2 \cos^2 x}$

 $= x \sin x + x \cdot x \cos x$ $= x \sin x + x^2 \cos x$ $=x^2\cos x+x\sin x$: L.H.S. = R.H.S Hence, y given by eq. (i) is a solution of $xy'=y+x\sqrt{x^2-y^2}.$ 18. $\frac{dy}{dx} = \frac{x(2y-x)}{x(2y+x)}$ (i) If y = 1, when x = 1Let y = vx $rac{dy}{dx} = v + x rac{dv}{dx}$ Put $\frac{dy}{dx}$ in eq(i) $v+xrac{dv}{dx}=rac{(2vx-x)}{(2vx+x)}
v+xrac{dv}{dx}=rac{2v-1}{2v+1}
xrac{dv}{dx}=rac{2v-1}{2v+1}-v$ $xrac{dx}{dv} = rac{2v+1}{-2v^2+v-1} \ \int rac{2v+1}{2v^2-v+1} dv = \int -rac{dx}{x}$ $J \frac{\overline{2v^2 - v + 1}}{2} \int \frac{4v + 2}{2v^2 - v + 1} dv = -\int \frac{dx}{x}$ $\frac{1}{2} \int \frac{4v - 1}{2v^2 - v + 1} dv + \frac{1}{2} \int \frac{3}{2v^2 - v + 1} dv = \int -\frac{dx}{x}$ $\frac{1}{2} \int \frac{4v - 1}{2v^2 - v + 1} dv + \frac{3}{4} \int \frac{dv}{(v - \frac{1}{4})^2 + (\frac{\sqrt{7}}{4})^2} = \int -\frac{dx}{x}$ $rac{1}{2} \mathrm{log}(2v^2-v+1) + rac{3}{4}. rac{4}{\sqrt{7}} \mathrm{tan}^{-1}\left(rac{v-rac{1}{4}}{rac{\sqrt{7}}{4}}
ight) = -\log x + \log c$ $rac{1}{2} \log \Bigl(2 rac{y^2}{x^2} - rac{y}{x} + 1 \Bigr) + rac{3}{\sqrt{7}} an^{-1} \Bigl(rac{4y - x}{\sqrt{7}x} \Bigr) = -\log x + \log c$ put x = 1, y = 1 $\log c = rac{1}{2} \log 2 + rac{3}{\sqrt{7}} an^{-1} \left(rac{3}{\sqrt{7}}
ight)$ [as log 1 = 0] Therefore, solution is $rac{1}{2} \mathrm{log} \Big(rac{2y^2 - xy + x^2}{x^2} \Big) + rac{3}{\sqrt{7}} \mathrm{tan}^{-1} \left(rac{4y - x}{\sqrt{7}x}
ight)$ $= -\log x + \frac{1}{2}\log 2 + \frac{3}{\sqrt{7}} \tan^{-1} \frac{3}{\sqrt{7}}$