CBSE Test Paper 03 CH-08 Binomial Theorem

Section A

- 1. If the coefficients of 2nd, 3rd and 4th terms in the expansion of $(1+x)^n$ are in A.P. then
 - a. $n^2 9n + 18 = 0$
 - b. $n^2 6n + 12 = 0$
 - c. $n^2 9n + 14 = 0$
 - d. $n^2 5n + 14 = 0$
- 2. Coefficient of a^2b^5 in the expansion of $(a+b)^3(a-2b)^4$ is
 - a. 48
 - b. 24
 - c. 96
 - d. -24
- 3. In Pascal's triangle, each row begins with 1 and ends in
 - a. -1
 - b. 0
 - c. 2
 - d. 1

4. If the 21 st and 22nd terms in the expansion of $(1+x)^{44}$ are equal, find x

a. $\frac{7}{6}$

	b.	$\frac{5}{8}$
	C.	$\frac{7}{8}$
	d.	$\frac{6}{8}$
5.	$\sqrt{\xi}$	$ar{5}\left\{ \left(\sqrt{5}+1 ight) ^{4}-\left(\sqrt{5}-1 ight) ^{4} ight\}$ is
	a.	0
	b.	212
	C.	240
	d.	224

- 6. Fill in the blanks: An approximation of (0.99)⁵, using the first three terms of its binomial expansion is _____.
- 8. Find the middle term in the expansion of $\left(\frac{2}{3}x^2 \frac{3}{2x}\right)^{20}$.
- 9. Find the constant term in the expansion of $\left(x rac{1}{x}
 ight)^{10}$.
- 10. Find the coefficient of x^n in the expansion of $(1 + x) (1 x)^n$.
- 11. Using binomial theorem, evaluate each of the following: $(102)^5$
- 12. Show that the middle term in the expansion of $(1 + x)^{2n}$ is $\frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{n!} 2^n x^n$, where n is a positive integer.
- 13. Expand the given expression $\left(x+rac{1}{x}
 ight)^6$
- 14. Find the middle terms in the expansion of : $\left(3x rac{x^3}{6}
 ight)^7$
- The 3rd, 4th and 5th terms in the expansion of (x + a)ⁿ are respectively 84, 280 and 560.
 Find the values of x, a and n.

CBSE Test Paper 03 CH-08 Binomial Theorem

Solution

Section A

1. (c) $n^2 - 9n + 14 = 0$

Explanation: Given that ${}^{n}C_{1}$, ${}^{n}C_{2}$ and ${}^{n}C_{3}$ are in A.P

Hence we have
$${}^{n}C_{1} + {}^{n}C_{3} = 2.{}^{n}C_{2}$$

 $\Rightarrow n + \frac{n(n-1)(n-2)}{6} = 2 \cdot \frac{n(n-1)}{2}$
 $\Rightarrow n \left[\frac{6+(n-1)(n-2)}{6} \right] = n(n-1)$
 $\Rightarrow 6 + (n-1)(n-2) = 6(n-1)$
 $\Rightarrow n^{2} - 3n + 8 = 6n - 6$
 $\Rightarrow n^{2} - 9n + 14 = 0$

2. (d) -24

Explanation: We have
$$(a + b)^3 (a - 2b)^4 = [{}^3C_0 a^{3} + {}^3C_1 a^2 b + {}^3C_2 a^1 b^2 + {}^3C_3 b^3]$$

 $[{}^4C_0 (a)^4 + {}^4C_1 (a)^3 (-2b) + {}^4C_2 (a)^2 (-2b)^2 + {}^4C_3 (a)^1 (-2b)^3 + {}^4C_4 (-2b)^4]$
 $= (a^3 + 3a^2b + 3a^1b^2 + b^3) (a^4 - 8a^3b + 24a^2b^2 - 32ab^3 + 16b^4)$

Hence we have the sum of the terms containing a^2b^5 are $3a^2b \times 16b^4 - 32ab^3 \times 3a^1b^2 + 24a^2b^2 \times b^3 = a^2b^5(48 - 96 + 24) = -24a^2b^5$ 3. (d) 1

Explanation: The pascal's triangle is given by

4. (c) $\frac{7}{8}$

Explanation: We have the general terms of $(x+a)^n$ is $T_{r+1} = {}^nC_r(x)^{n-r}a^r$

Now consider $(1+x)^{44}$ Here $T_{r+1} = {}^{44} C_r \quad (1)^{44-r}(x)^r$ So, $T_{21} = T_{20+1} = {}^{44} C_{20}(x)^{20}$ and $T_{22} = T_{21+1} = {}^{44} C_{21}(x)^{21}$ Given $T_{21} = T_{22} \Rightarrow {}^{44} C_{20} \quad (x)^{20} = {}^{44} C_{21} \quad (x)^{21}$ $\Rightarrow x = \frac{44}{44C_{21}} = \frac{(44)!}{(20)! \cdot 24!} \frac{(21)! \cdot 23!}{(44)!} = \frac{21}{24} = \frac{7}{8}$ 5. (c) 240 Explanation: $\sqrt{5} \{ (\sqrt{5}+1)^4 - (\sqrt{5}-1)^4 \}$ Let $a = \sqrt{5}$ and b = 1Then $(\sqrt{5}+1)^4 - (\sqrt{5}-1)^4 = (a+b)^4 - (a-b)^4$

$$= [{}^{n}C_{0} a^{4} + {}^{4}C_{1} a^{3}b + {}^{4}C_{2} a^{2}b^{2} {}^{4}C_{3} a^{1}b^{3} + {}^{4}C_{4} b^{4}] - [{}^{4}C_{0} a^{4} - {}^{4}C_{1} a^{3}b + {}^{4}C_{2} a^{2}b^{2} - {}^{4}C_{3} a^{1}b^{3} + {}^{4}C_{4} b^{4}] - [{}^{4}C_{0} a^{4} - {}^{4}C_{1} a^{3}b + {}^{4}C_{2} a^{2}b^{2} - {}^{4}C_{3} a^{1}b^{3} + {}^{4}C_{4} b^{4}] - [{}^{4}C_{0} a^{4} - {}^{4}C_{1} a^{3}b + {}^{4}C_{2} a^{2}b^{2} - {}^{4}C_{3} a^{1}b^{3} + {}^{4}C_{4} b^{4}] - [{}^{4}C_{0} a^{4} - {}^{4}C_{1} a^{3}b + {}^{4}C_{2} a^{2}b^{2} - {}^{4}C_{3} a^{1}b^{3} + {}^{4}C_{4} b^{4}] - [{}^{4}C_{0} a^{4} - {}^{4}C_{1} a^{3}b + {}^{4}C_{2} a^{2}b^{2} - {}^{4}C_{3} a^{1}b^{3} + {}^{4}C_{4} b^{4}] - [{}^{4}C_{0} a^{4} - {}^{4}C_{1} a^{3}b + {}^{4}C_{2} a^{2}b^{2} - {}^{4}C_{3} a^{1}b^{3} + {}^{4}C_{4} b^{4}] - [{}^{4}C_{0} a^{4} - {}^{4}C_{1} a^{3}b + {}^{4}C_{2} a^{2}b^{2} - {}^{4}C_{3} a^{1}b^{3} + {}^{4}C_{4} b^{4}] - [{}^{4}C_{0} a^{4} - {}^{4}C_{1} a^{3}b + {}^{4}C_{2} a^{2}b^{2} - {}^{4}C_{3} a^{1}b^{3} + {}^{4}C_{4} b^{4}] - [{}^{4}C_{0} a^{4} - {}^{4}C_{1} a^{3}b + {}^{4}C_{2} a^{2}b^{2} - {}^{4}C_{3} a^{1}b^{3} + {}^{4}C_{4} b^{4}] - [{}^{4}C_{0} a^{4} - {}^{4}C_{1} a^{3}b + {}^{4}C_{2} a^{2}b^{2} - {}^{4}C_{3} a^{1}b^{3} + {}^{4}C_{4} b^{4}] - [{}^{4}C_{0} a^{4} - {}^{4}C_{1} a^{3}b + {}^{4}C_{2} a^{2}b^{2} - {}^{4}C_{3} a^{1}b^{3} + {}^{4}C_{4} b^{4}] - [{}^{4}C_{0} a^{4} - {}^{4}C_{1} a^{3}b + {}^{4}C_{2} a^{2}b^{2} - {}^{4}C_{3} a^{1}b^{3} + {}^{4}C_{4} b^{4}] - [{}^{4}C_{0} a^{4} - {}^{4}C_{1} a^{3}b + {}^{4}C_{2} a^{2}b^{2} - {}^{4}C_{3} a^{1}b^{3} + {}^{4}C_{4} b^{4}] - [{}^{4}C_{0} a^{4} - {}^{4}C_{1} a^{3}b + {}^{4}C_{2} a^{2}b^{2} - {}^{4}C_{3} a^{2}b^{4}] - [{}^{4}C_{0} a^{4} - {}^{4}C_{1} a^{4} - {}^{4}C_{1} a^{4} - {}^{4}C_{1} a^{2}b^{4} - {}^{4}C_{1} a^{4} - {}^$$

$${}^{4}C_{4} b^{4}$$
]

$$= 2 [{}^{4}C_{1} a^{3}b^{+4}C_{3} a^{1}b^{3}]$$

$$= 2 [4a^{3}b + 4a^{1}b^{3}] = 8ab [a^{2} + b^{2}]$$

$$\therefore (\sqrt{5} + 1)^{4} - (\sqrt{5} - 1)^{4} = 8 \cdot \sqrt{5} \cdot 1 [(\sqrt{5})^{2} + 1^{2}] = 48\sqrt{5}$$
Hence $\sqrt{5} \{(\sqrt{5} + 1)^{4} - (\sqrt{5} - 1)^{4}\} = \sqrt{5}.48\sqrt{5} = 240$

- 7. decision
- 8. Here n = 20, which is an even number. So, $\left(\frac{20}{2} + 1\right)^{\text{th}}$ term i.e. 11th term is the middle term.

Hence, the middle term = $T_{11} = T_{10+1} = {}^{20}C_{10}\left(\frac{2}{3}x^2\right)^{20-10}\left(-\frac{3}{2x}\right)^{10} = {}^{20}C_{10}x^{10}$.

9. We have, $\left(x - \frac{1}{x}\right)^{10}$

$$T_{r+1} = {}^{10}C_r(x){}^{10-r}\left(\frac{-1}{x}\right)^r = {}^{10}C_r x{}^{10-r}\frac{(-1)^r}{x^r} = (-1)r {}^{10}C_r x{}^{10-2r}.....(i)$$

We have to find constant term i.e., the term independent of x. For this, put 10 - 2r = 0 \Rightarrow r = 5

On putting r = 5 in Eq. (i), we get

 $T_{5+1} = (-1)^5 \ {}^{10}C_5 x^{10-2(5)}$

$$= (-1) \times \frac{10!}{5!5!} = (-1) \times \frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2 \times 1} \times 1$$
$$= -252$$

Hence, constant term in the expansion of $\left(x-rac{1}{x}
ight)^{10}$ is - 252.

- 10. Coefficient of x^{n} in (1 + x) (1 x)ⁿ
 - = Coefficient of x^n in $(1 x)^n$ + Coefficient of x^{n-1} in $(1 x)^n$

=
$$(-1)^{n} {}^{n}C_{n}$$
 + $(-1)^{n-1} {}^{n}C_{n-1}$

11. $(102)^5 = (100 + 2)^5$

Using binomial theorem, we have

$$(100+2)^5 = {}^5C_0(100)^5 + {}^5C_1(100)^4(2) + {}^5C_2(100)^3(2)^2$$

 $+ {}^5C_3(100)^2(2)^3 + {}^5C_4(100)(2)^4 + {}^5C_5(2)^5$
= $(100)^5 + 5(100)^4(2) + 10(100)^3(2)^2 + 10(100)^2(2)^3 + 5(100)(2)^4 + (2)^5$
= $1000000000 + 100000000 + 4000000 + 80000 + 8000 + 32$
= 11040808032

12. As 2n is even, the middle term in the expansion of $(1 + x)^{2n}$ is $(\frac{2n}{2} + 1)$ th i.e., (n + 1)th term, which is given by

$$\begin{split} \mathbf{T}_{n+1} &= {}^{2n} \mathbf{C}_{n}(1)^{2n-n}(\mathbf{x})^{n} = {}^{2n} \mathbf{C}_{n} \mathbf{x}^{n} = \frac{(2n)!}{n!(2n-n)!} \cdot \mathbf{x}^{n} \\ &= \frac{(2n)!}{n!n!} \cdot \mathbf{x}^{n} \\ &= \frac{2n(2n-1)(2n-2)\cdots 4\cdot 3\cdot 2\cdot 1}{n!n!} \cdot \mathbf{x}^{n} \\ &= \frac{1\cdot 2\cdot 3\cdot 4\cdots (2n-2)(2n-1)(2n)}{n!n!} \cdot \mathbf{x}^{n} \\ &= \frac{[1\cdot 3\cdot 5\ldots (2n-1)][2\cdot 4\cdot 6\cdots (2n)]}{n!n!} \cdot \mathbf{x}^{n} \\ &= \frac{[1\cdot 3\cdot 5\cdots (2n-1)][2\cdot (2\cdot 2)\cdot (2\cdot 3)\cdots (2\cdot n)]\cdot \mathbf{x}^{n}}{n!n!} \\ &= \frac{[1\cdot 3\cdot 5\cdots (2n-1)]2^{n}[1\cdot 2\cdot 3\cdots n]}{n!n!} \cdot \mathbf{x}^{n} \\ &= \frac{[1\cdot 3\cdot 5\cdots (2n-1)]2^{n} \cdot n!}{n!} \cdot \mathbf{x}^{n} \end{split}$$

13. Using binomial theorem for the expansion of $\left(x + \frac{1}{x}\right)^6$ we have $\left(x + \frac{1}{x}\right)^6 = {}^6C_0(x)^6 + {}^6C_1(x)^5\left(\frac{1}{x}\right) + {}^6C_2(x)^4\left(\frac{1}{x}\right)^2 + {}^6C_3(x)^3\left(\frac{1}{x}\right)^3$

$$egin{aligned} &+^6C_4(x)^2ig(rac{1}{x}ig)^4+^6C_5(x)ig(rac{1}{x}ig)^5+^6C_6ig(rac{1}{6}ig)^6\ &=x^6+6\cdot x^5\cdotrac{1}{x}+15\cdot 4x^4\cdotrac{1}{x^2}+20\cdot x^3\cdotrac{1}{x^3}+15\cdot x^2\cdotrac{1}{x^4}+6\cdot x\cdotrac{1}{x^5}+rac{1}{x^6}\ &=x^6+6x^4+15x^2+20+rac{15}{x^2}+rac{6}{x^4}+rac{1}{x^6} \end{aligned}$$

14. Hence n = n7, which is odd number.

So,
$$\left(\frac{7+1}{2}\right)^{th}$$
 and $\left(\frac{7+1}{2}+1\right)^{th}$ i.e 4th and 5th terms are two middle terms
 $\therefore T_4 = T_{3+1} = {}^7 C_3(3x)^{7-3} \left(-\frac{x^3}{6}\right)^3 = (-1)^3 7 C_3(3x)^4 \left(\frac{x^3}{6}\right)^3$
font-family : Tahoma font - size: $8px \Rightarrow T_4 = -35 \times 81x^4 \times \frac{x^9}{216} = -\frac{105x^{13}}{8}$
and $T_5 = T_{4+1} = {}^7 C_4(3x)^{7-4} \left(-\frac{x^3}{6}\right)^4 = {}^7 C_4(3x)^3 \left(-\frac{x^3}{6}\right)^4$
 $\Rightarrow T_5 = 35 \times 27x^3 \times \frac{x^{12}}{1296} = \frac{35x^{15}}{48}$
Hence, the middle terms are $-\frac{105x^{13}}{8}$ and $\frac{35x^{15}}{48}$

15. It is given that: $T_3 = 84$, $T_4 = 280$ and $T_5 = 560$

We have,
$$\frac{T_{r+1}}{T_r} = \frac{{}^{n}C_r x^{n-r} a^r}{{}^{n}C_{r-1} x^{n-r+1} a^{r-1}} = \frac{n-r+1}{r} \cdot \frac{a}{x}$$

 $\therefore \frac{T_4}{T_3} = \frac{n-2}{3} \cdot \frac{a}{x} \text{ and } \frac{T_5}{T_4} = \frac{n-3}{4} \cdot \frac{a}{x}$
 $\Rightarrow \frac{280}{84} = \frac{n-2}{3} \cdot \frac{a}{x} \text{ and } \frac{560}{280} = \frac{n-3}{4} \cdot \frac{a}{x} [T_3 = 84, T_4 = 280 \text{ and } T_5 = 560]$
 $\Rightarrow \frac{10}{3} = \frac{n-2}{3} \cdot \frac{a}{x} \text{ and } \frac{2}{1} = \frac{n-3}{4} \cdot \frac{a}{x}$
 $\Rightarrow \frac{a}{x} = \frac{10}{n-2} \text{ and } \frac{a}{x} = \frac{8}{n-3}$
 $\Rightarrow \frac{10}{n-2} = \frac{8}{n-3} \Rightarrow 10n - 30 = 8n - 16 \Rightarrow n = 7$
Putting $n = 7$ in $\frac{a}{x} = \frac{10}{n-2}$, we get
 $\frac{a}{x} = \frac{10}{5} \Rightarrow 2x = a$
Now, $T_3 = 84$
 $\Rightarrow {}^{n}C_2 x^{n-2} a^2 = 84$
 $\Rightarrow {}^{7}C_2 x^5 (2x)^2 = 84 [\because a = 2x \text{ and } n = 7]$
 $\Rightarrow 21 \times 2^4 \times x^7 = 84 \Rightarrow x^7 = 1 \Rightarrow x = 1$
 $\therefore a = 2x = 2 \times 1 = 2$
Hence, $n = 7$, $a = 2$ and $x = 1$.