
88

Composition and Decomposition

 In Chapter 1, we saw that algorithms 
are composed of statements. Statements can 
be grouped into compound statements, giving 
rise to a hierarchical structure of algorithms. 
Decomposition is one of the elementary 
problem-solving techniques.An algorithm 
may be broken into parts, expressing only high 
level details. Then, each part may be refined 
into smaller parts, expressing finer details, or 
each part may be abstracted as a function.

7.1 Notations for Algorithms

 We need a notation to represent 
algorithms. There are mainly three different 
notations for representing algorithms.
• A programming language is a notation 

for expressing algorithms to be executed 
by computers.

• Pseudo code is a notation similar to 
programming languages. Algorithms 
expressed in pseudo code are not 
intended to be executed by computers, 
but for communication among people.

• Flowchart is a diagrammatic notation 
for representing algorithms. They give 

a visual intuition of the flow of control, 
when the algorithm is executed.

7.1.1 Programming language
 A programming 
language is a notation for 
expressing algorithms 
so that a computer can 
execute the algorithm. 
An algorithm expressed 
in a programming language is called a 
program. C, C++ and Python are examples 
of programming languages. Programming 
language is formal. Programs must obey 
the grammar of the programming language 
exactly. Even punctuation symbols must be 
exact. They do not allow the informal style of 
natural languages such as English or Tamil. 
There is a translator which translates the 
program into instructions executable by the 
computer. If our program has grammatical 
errors, this translator will not be able to do 
the translation.

7.1.2 Pseudo-code
 Pseudo code is a mix of programming-
language-like constructs and plain English. 
This notation is not formal nor exact. It uses 
the same building blocks as programs, such 
as variables and control flow. But, it allows 
the use of natural English for statements 
and conditions. An algorithm expressed 
as pseudo code is not for computers to 
execute directly, but for human readers 
to understand. Therefore, there is no need 
to follow the rules of the grammar of a 

CHAPTER 7Unit II Algorithmic Problem
Solving

Learning Objectives

 After learning the concepts in this 
chapter, the students will be able 
• To know the notations used in algorithmic 

techniques.
• To understand Composition and 

Decomposition in algorithmic techniques.

Chapter 7 Page 088-101.indd   88 3/24/2020   9:14:50 AM



89

programming language. However, even 
pseudo code must be rigorous and correct. 
Pseudo code is the most widely used 
notation to represent algorithms.

7.1.3 Flowcharts
 Flowchart is a diagrammatic notation 
for representing algorithms. They show the 
control flow of algorithms using diagrams in a 
visual manner. In flowcharts, rectangular boxes 
represent simple statements, diamond-shaped 
boxes represent conditions, and arrows describe 
how the control flows during the execution of 
the algorithm. A flowchart is a collection of 
boxes containing statements and conditions 
which are connected by arrows showing the 
order in which the boxes are to be executed.
1. A statement is contained in a rectangular 

box with a single outgoing arrow,which 
points to the box to be executed next.

S

2. A condition is contained in a diamond-
shaped box with two outgoing arrows, 
labeled true and false. The true arrow 
points to the box to be executed next if 
the condition is true, and the false arrow 
points to the box to be executed next if the 
condition is false. 

C true

false

3.  Parallelogram boxes represent inputs given 
and outputs produced.

Inputs Outputs

4.  Special boxes marked Start and the End are 
used to indicate the start and the end of an 
execution:

Start End

 The flowchart of an algorithm to 
compute the quotient and remainder after 
dividing an integer A by another integer B is 
shown in Figure 7.1, illustrating the different 
boxes such as input, output, condition, and 
assignment, and the control flow between the 
boxes. The algorithm is explained in Example 
7.4.

Enter

A,B

q,r:=q+1,r-B

q,r:=0,A

r  > B
true

false

r,q

Exit

Figure 7.1: Flowchart for integer division

Flowcharts also have disadvantages. 
(1) Flowcharts are less compact 
than representation of algorithms in 
programming language or pseudo code. 
(2) They obscure the basic hierarchical 
structure of the algorithms. (3) Alternative 
statements and loops are disciplined 
control flow structures. Flowcharts do 
not restrict us to disciplined control flow 
structures.

Chapter 7 Page 088-101.indd   89 3/24/2020   9:14:50 AM



90

7.2 Composition

A statement is a phrase that commands 
the computer to do an action. We have 
already seen assignment statement. It is 
a simple statement, used to change the 
values of variables. Statements may be 
composed of other statements, leading 
to hierarchical structure of algorithms. 
Statements composed of other statements 
are known as compound statements.
 Control flow statements are 
compound statements. They are used 
to alter the control flow of the process 
depending on the state of the process. 
There are three important control flow 
statements:
• Sequential
• Alternative
• Iterative

 When a control flow statement is 
executed, the state of the process is tested, 
and depending on the result, a statement 
is selected for execution.

7.2.1 Sequential statement

 A sequential statement is composed 
of a sequence of statements. The statements 
in the sequence are executed one after 
another, in the same order as they are 
written in the algorithm, and the control 
flow is said to be sequential. Let S1 and 
S2 be statements. A sequential statement 
composed of S1 and S2 is written as

 S1
 S2

In order to execute the sequential 
statement, first do S1 and then do S2.
 The sequential statement given 
above can be represented in a flowchart as 

shown in in Figure 7.2. The arrow from 
S1 to S2 indicates that S1 is executed, and 
after that, S2 is executed. 

S1

S2

Figure 7.2: Sequential control flow

 Let the input property be P, and the 
input-output relation be Q, for a problem. 
If statement S solves the problem, it is 
written as
1.  -- P
2. S
3.  -- Q

If we decompose the problem into two 
components, we need to compose S as a
sequence of two statements S1 and S2 such 
that the input-output relation of S1, say R, 
is the input property of S2.

1. -- P
2. S1
3. -- R
4. S2
5. -- Q

Example 7.1. Let us solve the Farmer, 
Goat, Grass, and Wolf problem of Example 
6.12. We decided to represent the state 
of the process by four variables farmer, 
goat, grass, and wolf, representing the 
sides of the farmer, goat, grass and wolf, 
respectively. In the initial state, all four 
variables have the value L (Left side). In 
the final state, all four variables should 
have the value R (Right side). The goal is 
to construct a statement S so as to move 
from the initial state to the final state.

Chapter 7 Page 088-101.indd   90 3/24/2020   9:14:50 AM



91

1. -- farmer, goat, grass, wolf = L, L,  L, 
L

2. S
3. -- farmer , goat , grass , wolf = R, R, 

R, R
 We have to compose S as a sequence 
of assignment statements such that in 
none of the intermediate states
1. goat and wolf have the same value but 

farmer has the opposite value, or
2. goat and grass have the same value but 

farmer has the opposite value.Subject 
to these constraints, a sequence of 
assignments and the state after each 
assignment are shown in Figure 7.3.

1. -- farmer, goat, grass, wolf = L, L, L, L

2. farmer, goat := R, R

3. -- farmer , goat , grass , wolf = R, R, L, L

4. farmer := L

5.  farmer, goat, grass, wolf = L, R, L, L

6. farmer, grass := R, R

7. -- farmer , goat , grass , wolf = R, R, R, L

8. farmer, goat := L, L

9. -- farmer, goat, grass, wolf = L, L, R, L

10. farmer, wolf := R, R

11. -- farmer , goat , grass , wolf = R, L, R, R

12. farmer : = L

13. -- farmer , goat , grass , wolf = L, L, R, R

14. farmer , goat : = R, R

15. -- farmer , goat , grass , wolf = R, R, R, R

Figure 7.3: Sequence of assignments for 
goat, grass and wolf problem

 Other than lines (1) and (15), in 
line (7), goat and grass have the same 
value, but farmer also has the same value 
as they. In line (9), goat and wolf have the 

same value, but farmer also has the same 
value as they. Thus, the sequence has 
achieved the goal state, without violating 
the constraints.

7.2.2 Alternative statement
 A condition is a phrase that 
describes a test of the state. If C is a 
condition and both

S1 and S2 are statements, then

 if   C
       S1
 else
       S2

is a statement, called an alternative 
statement, that describes the following 
action:

1. Test whether C is true or false.

2. If C is true, then do S1; otherwise do 
S2.

In pseudo code, the two alternatives S1 
and S2 are indicated by indenting them 
from the keywords if and else, respectively. 
Alternative control flow is depicted in the 
flowchart of Figure 2.4. Condition C has 
two outgoing arrows, labeled true and false. 
The true arrow points to the S1 box. The 
false arrow points to the S2 box. Out going 
arrows of S1 and S2 point to the same box, 
the box after the alternative statement.

C S1true

false

S2

Figure 7.4: Alternative control flow

Chapter 7 Page 088-101.indd   91 3/24/2020   9:14:50 AM



92

Conditional statement: Sometimes we 
need to execute a statement only if a 
condition is true and do nothing if the 
condition is false. This is equivalent to the 
alternative statement in which the else-
clause is empty. This variant of alternative 
statement is called a conditional statement. 
If C is a condition and S is a statement, 
then

 if    C
     S

is a statement, called a conditional 
statement, that describes the following 
action:
1. Test whether C is true or false.
2. If C is true then do S; otherwise do 

nothing.
The conditional control flow is depicted 
in the flowchart of Figure 2.5.

C Strue

false

Figure 7.5: Conditional control flow

Example 7.2. Minimum of two numbers: 
Given two numbers a and b, we want to 
find the minimum of the two using the  
alternative statement. Let us store the 
minimum in a variable named result. Let 
a ↓ b denote the minimum of a and b (for 
instance, 4 ↓ 2 = 2, —5 ↓ 6 = -5). Then, 
the specification of algorithm minimum is

 minimum(a, b)
 -- input s : a , b
 -- outputs: result = a ↓ b
Algorithm minimum can be defined as

1. minimum(a, b)
2.     -- a, b
3.     if a < b
4.         result : = a
5.     else
6.          result = b
7.     --  result = a ↓ b

7.2.3 Case analysis

 Alternative statement analyses the 
problem into two cases. Case analysis 
statement generalizes it to multiple cases. 
Case analysis splits the problem into an 
exhaustive set of disjoint cases. For each 
case, the problem is solved independently. 
If C1, C2, and C3 are conditions, and S1, 
S2, S3 and S4 are statements, a 4-case 
analysis statement has the form,

1. case   C1
2.     S1
3. case   C2 
4.     S2
5. case   C3
6.     S3
7. else
8.     S4

 The conditions C1, C2, and C3 are 
evaluated in turn. For the first condition 
that evaluates to true, the corresponding 
statement is executed, and the case analysis 
statement ends. If none of the conditions 
evaluates to true, then the default case S4 
is executed.

1. The cases are exhaustive: at least one 
of the cases is true. If all conditions are 
false, the default case is true.

2. The cases are disjoint: only one of the 
cases is true. Though it is possible for 

Chapter 7 Page 088-101.indd   92 3/24/2020   9:14:50 AM



93

more than one condition to be true, the 
case analysis always executes only one 
case, the first one that is true. If the three 
conditions are disjoint, then the four 
cases are (1) C1, (2) C2, (3) C3, (4) (not 
C1) and (not C2) and (not C3).

Example 7.3. We want an algorithm that 
compares two numbers and produces the 
result as

compare (a, b) =
1-
0
1

if a < b
if a = b
if a > b

We can split the state into an exhaustive 
set of 3 disjoint cases: a < b, a = b, and a> 
b. Then we can define compare() using a 
case analysis.
1. compare(a, b)
2.     case a < b
3.       result := -1
4.     case a = b
5.       result := 0
6.     else -- a > b
7.       result : = 1

7.2.4 Iterative statement
 An iterative process executes 
the same action repeatedly, subject to a 
condition C. If C is a condition and S is a 
statement, then
 while C
     S
is a statement, called an iterative statement, 
that describes the following action:
1. Test whether C is true or false.
2. If C is true, then do S and go back to step 

1; otherwise do nothing.
The iterative statement is commonly 
known as a loop. These two steps, testing 

{

C and executing S, are repeated until C 
becomes false. When C becomes false, the 
loop ends, and the control flows to the 
statement next to the iterative statement. 
The condition C and the statement S 
are called the loop condition and the 
loop body, respectively. Testing the loop 
condition and executing the loop body 
once is called an iteration. not C is known 
as the termination condition. 
 Iterative control flow is depicted in 
the flowchart of Figure 7.6. Condition C 
has two outgoing arrows, true and false. 
The true arrow points to S box. If C is true, 
S box is executed and control flows back 
to C box. The false arrow points to the box 
after the iterative statement (dotted box). 
If C is false, the loop ends and the control 
flows to the next box after the loop.

C Strue

false

Figure 7.6: Iterative control flow

Example 7.4. Construct an iterative 
algorithm to compute the quotient and 
remainder after dividing an integer A by 
another integer B.
 We formulated the specification of 
the algorithm in Example 6.6 as
divide (A , B)
-- inputs: A is an integer and B ≠ 0
-- outputs : q and r such that A = q X B  

+ r and
--   0 ≤ r < B

 Now we can construct an iterative 
algorithm that satisfies the specification.

Chapter 7 Page 088-101.indd   93 3/24/2020   9:14:50 AM



94

 divide (A , B)
-- inputs: A is an integer and B ≠ 0
-- outputs : q and r such that A = q X B 

+ r and
--   0 < r < B
 q, r : = 0, A
 while r ≥ B
      q, r := q + 1, r - B

 The algorithm is presented as a 
flowchart in Figure 7.1.

 We can execute the algorithm step-
by-step for a test input, say, (A, B) = (22, 5). 
Each row of Table 7.1 shows one iteration 
— the evaluation of the expressions and 
the values of the variables at the end of an 
iteration. Note that the evaluation of the 
expression uses the values of the variables 
from the previous row. Output variables q 
and r change their values in each iteration. 
Input variables A and B do not change 
their values. Iteration 0 shows the values 
just before the loop starts. At the end of 
iteration 4, condition (r ≥ B) = (2 ≥ 5) is 
false, and hence the loop ends with (q, r) 
= (4, 2).

iteration q q+1 r r-B A B
0 0 22 22 5
1 1 0+1 17 22-5
2 2 1 + 1 12 17-5
3 3 2+1 7 12-5
4 4 3+1 2 7-5

Table 7.1: Step by step execution of divide 
(22, 5)

Example 7.5. In the Chameleons of 
Chromeland problem of Example 1.3, 
suppose two types of chameleons are equal 
in number. Construct an algorithm that 
arranges meetings between these two types 

so that they change their color to the third 
type. In the end, all should display the same 
color.

 Let us represent the number of 
chameleons of each type by variables a, b 
and c, and their initial values by A, B and C, 
respectively. Let a = b be the input property. 
The input-output relation is a = b = 0 and 
c = A+B+C. Let us name the algorithm 
monochromatize. The algorithm can be 
specified as

 monochromatize(a, b, c)

 -- inputs: a=A, b=B, c=C, a=b

 -- outputs : a = b = 0 , c = A+B+C

 In each iterative step, two chameleons 
of the two types (equal in number) meet 
and change their colors to the third one. For 
example, if A, B, C = 4, 4, 6, then the series 
of meetings will result in

iteration a b c
0 4 4 6
1 3 3 8
2 2 2 10
3 1 1 12
4 0 0 14

Table 7.2: Series of meetings between two 
types of chameleons equal in number.

In each meeting, a and b each decreases by 1, and 
c increases by 2. The solution can be expressed 
as an iterative algorithm.

monochromatize(a, b, c)

 -- inputs: a=A, b=B, c=C, a=b

 -- outputs: a = b = 0, c = A+B+C

  while a > 0

   a, b, c := a-1, b-1, c+2

The algorithm is depicted in the flowchart of 
Figure 7.7.

Chapter 7 Page 088-101.indd   94 3/24/2020   9:14:50 AM



95

a,b,c

a, b, c,: = a-1, b-1, c+2a > 0
True

False
a= b = 0, c = A + B + C

a=b, a=A, b=B, c=C

a,b,c

Figure 7.7: Algorithm monochromatize

7.3 Decomposition

 Problem decomposition is one of the 
elementary problem-solving techniques. 
It involves breaking down a problem into 
smaller and more manageable problems, 
and combining the solutions of the smaller 
problems to solve the original problem.  
Often, problems have structure. We can 
exploit the structure of the problem and 
break it into smaller problems. Then, the 
smaller problems can be further broken until 
they become sufficiently small to be solved 
by other simpler means. Their solutions 
are then combined together to construct a 
solution to the original problem.

7.3.1 Refinement
 After decomposing a problem into 
smaller subproblems, the next step is either 
to refine the subproblem or to abstract the 
subproblem.
1. Each subproblem can be expanded into 

more detailed steps. Each step can be 
further expanded to still finer steps, and 
so on. This is known as refinement.

2. We can also abstract the subproblem. 
We specify each subproblem by its input 
property and the input-output relation. 
While solving the main problem, we 
only need to know the specification of 
the subproblems. We do not need to 

know how the subproblems are solved.

Example 7.6. Consider a school goer's action 
in the morning. The action can be written as

1 Get ready for school

 We can decompose this action into 
smaller, more manageable action steps 
which she takes in sequence:

1 Eat breakfast

2 Put on clothes

3 Leave home

 We have refined one action into a 
detailed sequence of actions. However, each 
of these actions can be expanded into a 
sequence of actions at a more detailed level, 
and this expansion can be repeated. The 
action "Eat breakfast" can be expanded as

1 -- Eat breakfast

2 Eat idlis

3 Eat eggs

4 Eat bananas

 The action "Put on clothes" can be 
expanded as

1 -- Put on clothes

2 Put on blue dress

3 Put on socks and shoes

4 Wear ID card

and "Leave home" expanded as

1 -- Leave home

2 Take the bicycle out

3 Ride the bicycle away

Thus, the entire action of "Get ready for 
school" has been refined as
1 -- Eat breakfast
2 Eat idlis
3 Eat eggs
4 Eat bananas

Chapter 7 Page 088-101.indd   95 3/24/2020   9:14:50 AM



96

5
6 -- Put on clothes
7 Put on blue dress
8 Put on socks and shoes
9 Wear ID card
10
11 -- Leave home
12 Take the bicycle out
13 Ride the bicycle away
 Refinement is not always a sequence 
of actions. What the student does may 
depend upon the environment. How she 
eats breakfast depends upon how hungry 
she is and what is on the table; what clothes 
she puts on depends upon the day of the 
week. We can refine the behaviour which 
depends on environment, using conditional 
and iterative statements.
1 -- Eat breakfast
2 if hungry and idlis on the table
3  Eat idlis
4 if hungry and eggs on the table
5  Eat eggs

6 if hungry and bananas on the table
7  Eat bananas
8
8 -- Put on clothes
10  if Wednesday
11   Put on blue dress
12  else
13  Put on white dress
14 Put on socks and shoes
15 Wear the ID card
16
17 -- Leave home
18 Take the bicycle out
19 Ride the bicycle away
The action "Eat idlis" can be further refined 
as an iterative action:
1 -- Eat idlis
2 Put idlis on the plate
3 Add chutney
4 while idlis in plate
5  Eat a bite of idli 
How "Get ready for school" is refined in 
successive levels is illustrated in Figure 2.8. 

Gross Detailed More detailed
Eat breakfast

Put on clothes

Leave home

Eat idlis

Eat eggs

Eat bananas

Put on blue dress

Put on socks and shoes

Wear ID card

Take the bicycle out

Ride the bicycle away

Figure 7.8: Refinement at various 
levels of details

Put idlis on plate

Add chutney

Eat a bite of idli

Eat a bite of idli

Eat a bite of idli

Chapter 7 Page 088-101.indd   96 3/24/2020   9:14:50 AM



97

The action "Eat breakfast" is depicted in a 
flowchart shown in Figure 2.9.

Enter

Put idlis 
on plate

hungry 
and 

idlis on 
table

true

false

Exit

Add 
chutney

Idli in 
plate?

Eat a bite 
of idli

false

false

Eat 
bananas

Eat eggs

true

false

true

true

hungry 
and 

eggs on 
table

hungry 
and 

banabas 
on table

Figure 7.9: Flowchart for Eat breakfast

Note that the flowchart does not show the 
hierarchical structure of refinement. 

7.3.2 Functions
 After an algorithmic problem is 
decomposed into subproblems, we can abstract 
the subproblems as functions. A function is 
like a sub-algorithm. Similar to an  algorithm, 
a function is specified by the input property, 
and the desired input-output relation.

Main
algorithm

Function
(sub-

algorithm)outputs

inputs

Figure 7.10: Function definition

 To use a function in the main 
algorithm, the user need to know only the 
specification of the function — the function 
name, the input property, and the input-
output relation. The user must ensure that 
the inputs passed to the function will satisfy 
the specified property and can assume 
that the outputs from the function satisfy 
the input-output relation. Thus, users of 
the function need only to know what the 
function does, and not how it is done by 
the function. The function can be used a a 
"black box" in solving other problems.

 Ultimately, someone implements the 
function using an algorithm. However, users 
of the function need not know about the 
algorithm used to implement the function. 
It is hidden from the users. There is no need 
for the users to know how the function is 
implemented in order to use it.

 An algorithm used to implement a 
function may maintain its own variables. 
These variables are local to the function in the 
sense that they are not visible to the user of 
the function. Consequently, the user has fewer 
variables to maintain in the main algorithm, 
reducing the clutter of the main algorithm.

Example 7.7. Consider the problem of 
testing whether a triangle is right-angled, 
given its three sides a, b, c, where c is the 
longest side. The triangle is right-angled, if
  c2 = a2 + b2

 We can identify a subproblem of 
squaring a number. Suppose we have a 
function square(), specified as

square(y)

-- inputs : y

-- outputs : y2

Chapter 7 Page 088-101.indd   97 3/24/2020   9:14:50 AM



98

 we can use this function three times 
to test whether a triangle is right-angled. 
square() is a "black box" — we need not know 
how the function computes the square. We 
only need to know its specification.

y

Square

y2

Figure 7.11: square function

Points to Remember

• Compound statements are composed 
of sequential, alternative and iterative 
control flow statements.

• The value of a condition is true or 
false, depending on the values of the 
variables.

• Alternative statement selects and 
executes exactly one of the two 
statements,depending on the value of 
the condition.

• Conditional statement is executed only 
if the condition is true. Otherwise, 
nothing is done.

• Iterative statement repeatedly evaluates 
a condition and executes a statement 
as long as the condition is true.

• Programming language, pseudo 
code, and flowchart are notations for 
expressing algorithms.

• Decomposition breaks down a 
problem into smaller subproblems and 
combine their solutions to solve the 
original problem.

• A function is an abstraction of a 
subproblem, and specified by its input 
property, and its input-output   relation. 

• Users of function need to know only 
what the function does, and not how 
it is done.

• In refinement, starting from high level, 
each statement is repeatedly expanded 
into more detailed statements in the 
subsequent levels.

Evaluation

SECTION – A
Choose the correct answer
1.   Suppose u, v = 10  ,5 before the assignment. What are the values of u and v after the 

sequence of assignments?

 1 u := v

 2 v := u

1 right_angled(a, b, c)
2 -- inputs: c ≥ a, c ≥ b
3 -- outputs: result = true if c2 = a2 + b2;
4 --     result = false , otherwise
5 if square (c) = square (a) + square (b)
6     result := true
7 else
8     result := false

Chapter 7 Page 088-101.indd   98 3/24/2020   9:14:50 AM



99

 (a) u, v = 5 ,5    (c) u, v = 10 ,5
 (b) u, v = 5 ,10    (d) u, v = 10 ,10

2. Which of the following properties is true after the assignment (at line 3?

 1 --i, j = 0, 0
 2 i, j := i+1, j-1
 3 -- ?
 (a) i+j >0  (b) i+j < 0  (c) i+j =0  (d) i = j

3.  If C1 is false and C2 is true, the compound statement

 1  if C1
 2  S1
 3  else
 4 if  C2
 5  S2
 6  else
 7  S3
 executes 
 (a) S1  (b) S2  (c) S3  (d) none

4.  If C is false just before the loop, the control flows through 

 1  S1
 2  while C
 3 S2
 4  S3
 (a) S1 ; S3      (b)  S1 ; S2 ; S3
 (c)S1 ; S2 ; S2 ; S3    (d) S1 ; S2 ; S2 ; S2 ; S3
5. If C is true, S1 is executed in both the flowcharts, but S2 is executed in

 

C S1true

false

S2

  

C S1true

false

S2

  (1)    (2)

 (a)  (1) only     (b)  (2) only 
 (c)  both (1) and (2)    (d)  neither (1) nor (2)

Chapter 7 Page 088-101.indd   99 3/24/2020   9:14:50 AM



100

6.  How many times the loop is iterated?

  i := 0

  while i ≠ 5

      i := i + 1

 (a) 4  (b) 5  (c) 6  (d) 0
SECTION-B 

Very Short Answers

1. Distinguish between a condition and a statement.

2. Draw a flowchart for conditional statement.

3. Both conditional statement and iterative statement have a condition and a

 statement. How do they differ?

4. What is the difference between an algorithm and a program?

5. Why is function an abstraction?

6. How do we refine a statement?
SECTION-C

Short Answers

1. For the given two flowcharts write the pseudo code.

C S1true

false

S2

  

C S1true

false

S2

2. If C is false in line 2, trace the control flow in this algorithm.

 1 S1

 2 -- C is false

 3 if C

 4 S2

 5 else

 6 S3

 7 S4

Chapter 7 Page 088-101.indd   100 3/24/2020   9:14:51 AM



101

3. What is case analysis?

4. Draw a flowchart for -3case analysis using alternative statements.

5. Define a function to double a number in two different ways: (1) n + n, (2)    2 x n
SECTION - D

Explain in detail

1. Exchange the contents: Given two glasses marked A and B. Glass A is full of apple drink 
and glass B is full of grape drink. Write the specification for exchanging the contents of 
glasses A and B, and write a sequence of assignments to satisfy the specification.

2. Circulate the contents: Write the specification and construct an algorithm to circulate the 
contents of the variables A, B and C as shown below: The arrows indicate that B gets the 
value of A, C gets the value of B and A gets the value of C.

 A B C

3. Decanting problem. You are given three bottles of capacities 5 ,8, and 3 litres. The 8L bottle 
is filled with oil, while the other two are empty. Divide the oil in 8L bottle into two equal 
quantities. Represent the state of the process by appropriate variables. What are the initial 
and final states of the process? Model the decanting of oil from one bottle to another by 
assignment. Write a sequence of assignments to achieve the final state.

4. Trace the step-by-step execution of the algorithm for factorial(4). 

 factorial(n)

 -- inputs : n is an integer , n ≥ 0

 -- outputs : f = n!

  f, i := 1 ,1

  while i ≤ n

      f, i := f × i, i+1

Chapter 7 Page 088-101.indd   101 3/24/2020   9:14:51 AM


	Introduction Folder
	Chapter 1 Page 001-013
	Chapter 2 Page 014-040
	Chapter 3 Page 041-049
	Chapter 4 Page 050-056
	Chapter 5 Page 057-075
	Chapter 6 Page 076-087
	Chapter 7 Page 088-101

