2. Functions.

 (\rightarrow) Means step continued on new line.

For example:

ii)
$$i\frac{(4+3i)}{(1-i)} = \frac{4i+3i^2}{1-i} \times \frac{1+i}{1+i}$$

ii) $i\frac{(4+3i)}{(1-i)} = \frac{4i+3i^2}{1-i} \times \frac{1+i}{1+i}$

Exercise no 2.1 1) Check if the following relations are function:

Solution:

Yes, the given relation in ordered pair form is as follows:

 $\{(2,-3),(1,1),(0,2),(-1,1),(-2,5)\}$ -

Here, we observe that the first components of ordered pairs in the above relation are distinct

distinct.

Hence , it represents a function. b)

Solution:

No, the given relation in ordered pairs in form is as follows:

 $\{(p,a),(q,c),(r,b),(r,d),(s,e)\}$

Here we observe that the first components of ordered pairs are not distinct in the above relation.

Hence, it does not represent a function.

Solution:

No, from arrow diagram we observe that there is an elements ie - 2 \in A such that it does not have any image in B

2. Which sets of ordered pairs represent function from $A = \{1, 2, 3, 4\}$ to $B = \{-1, 2, 3, 4\}$

1, 0, 1, 2, 3}? Justify

a) {(1, 0),(3,3),(2,-1),(4,1),(2,2)}

Solution:

No, This relation is not a function. Since the first element of ordered pairs (2,-1) and (2,2) i.e. 2 is related to two elements -1 and 2

b) {(1,2),(2,-1),(3,1),(4,3)}

Solution:

Yes, domain of given relation is set A = $\{1, 2, 3, 4\}$ and co –domain set B = $\{-1, 0, 1, 2, 3\}$

Here we observe that each element of domain set A is related to one and only one element in co-domain set B.

Hence, given relation is function.

c) {(1, 3), (4, 1), (2, 2)}

Solution: No, here we observe that $3 \in A$ is not related to any elements in B.

Hence, give relation is not a function.

d) {(1, 1), (2, 1), (3, 1), (4, 1)}

Solution:

Yes, here we observe that each elements of domain set A is related to one and only one element in co-domain set B.

Hence, Given relation is function.

```
3. If f(m) = m^2 - 3m + 1, Find
```

(a) f(0) (b) f(-3)

(c)
$$f\left(\frac{1}{2}\right)$$
 (d) $f(x+1)$ (e) $f(-x)$

Solution:

Let $f(m) = m^2 - 3m + 1$

(a)f(0)

 $= o^2 - 3(0) + 1 = 1$

(b)
$$f(-3) =$$

 $\rightarrow (-3)^2 - 3(-3) + 1$
 $= 9 + 9 + 1 = 19$
(c) $f(\frac{1}{2}) = (\frac{1}{2})^2 - 3(\frac{1}{2}) + 1$
 $= \frac{1}{4} - \frac{3}{2} - + 1$
 $= \frac{5}{2} - \frac{3}{2} = -\frac{1}{4}$
(d) $f(x + 1) = (x + 1)^2$
 $\rightarrow -3(x + 1) + 1$
 $= x^2 + 2x + 1 - -$
 $\rightarrow 3x - 3 + 1$
 $= x^2 - x - 1$
(e) $f(-x) = (-x)^2 - -$
 $\rightarrow 3(-x) + 1$
 $= x^2 + 3x + 1$
4. Find x, if $g(x) = 0$, where
(a) $g(x) = \frac{5x - 6}{7}$
(b) $g(x) = \frac{18 - 2x^2}{7}$
(c) $g(x) = 6x^2 + x - 2$
Solution:

Since $g(x) = 0$
$(a) g(x) = \frac{5x - 6}{7}$
$=\frac{5x-6}{7}=0$
= 5x-6 = 0
$= x = \frac{6}{5}$
(b) $g(x) = \frac{18 - 2x^2}{7}$
$=\frac{18-2x^2}{7}=0$
$= 18 - 2x^2 = 0$
$= 9 - \mathbf{x}^2 = 0$
$= x = \pm 3$
(c) $g(x) = 6x^2 + x - 2$
$= 6x^2 - 3x + 4x - 2 = 0$
$= 6x^2 - 3x + 4x - 2 = 0$
= 3x(2x-1) + 2(2x-1) = 0
= (2x-1)(3x-2) = 0
= 2x-1=0 or 3x+2=0
$=\frac{1}{2} \text{ or } \mathbf{x} = -\frac{2}{3}$
5. Find x, if $f(x) = g(x)$,
where $f(x) = x^4 + 2x^2$,

 $g(x)=11x^2 \\$

Solution:

 $f(x) = x^4 + 2x^2,$ $g(x) = 11x^2$ Since f(x) = g(x)= $x^4 + 2x^2 = 11x^2$ $= x^4 - 9x^2 = 0$ $= x^{2}(x^{2} - 9) = 0$ $= x^{2} = 0 \text{ or } x^{2} - 9 = 0$ $= x = 0, x = \pm 3$ 6. If $f(x) = \{x^2 + 3,$ $x \le 2$ 5x + 7, $x \ge 2$, then find a) f(3) b) f(2) c) f(0) Solution: Given: $f(x) = \{x^2 + 3,$ $x \le 2$ $5x + 7, x \ge 2$ f(3) = 5(3) + 7= 15 + 7 = 22b) $f(2) = 2^2 + 3$

$\rightarrow = 4 + 3 = 7$ c) $f(0) = 0^2 + 3 = 3$ 7. If $f(x) = \{4x - 2, x \le -3$ 5, - 3 < x > 3 , then find $x^2, x \ge 3$ a) f(-4) b) f(-3) c) f(1) d) f(5) Solution: Given: $f(x) = \{4x - 2,$ x ≤ - 3 5, - 3 < x > 3 , then find $x^2, x \ge 3$ a) f(-4) = 4(-4) - 2 = -18 b) f(-3) = 4(-3) - 2 = -14c) f(1) = 5d) $f(5) = 5^2 = 25$ 8. If f(x) = 3x+5, g(x) = 6x - 1,then find a) (f+g)(x)

b) (f-g)(2)

c) (fg)(3)

d) (f/g)(x) and its domain.

Solution:

Given: f(x) = 3x+5, g(x) = 6x - 1, a) (f+g)(x) = f(x) + g(x)=(3x+5)+(6x-1)= 9x + 4b) (f-g)(2) = f(2) - g(2)= [3(2) + 5] - [6(2) - 1]= [6+5] - [12-1]= 11 - 11 = 0c) $(fg)(3) = f(3) \times g(3)$ $= [3(3)+5] \times [6(3)-1]$ $= 14 \times 17$ = 238d) $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ $\left(\frac{f}{g}\right)(x) = \frac{3x+5}{6x-1}$ $\left(\frac{f}{a}\right)$ (x) is defined for all x € R except at denominator = 0

Here denominator = 6x - 1 = 0

 $= x = \frac{1}{6}$ Hence domain of $\left(\frac{f}{g}\right)$ (x) is $R - \{\frac{1}{6}\}$ 9. If $f(x) = 2x^2 + 3$, g(x) = 5x - 2 then find a) fog b) gof c) fof d) gog Solution: $\text{Given: } \mathbf{f}(\mathbf{x}) = 2\mathbf{x}^2 + 3,$ g(x) = 5x - 2a) fog = fog(x) $= f[g(x)] = 2[g(x)]^{2} + 3$ $= 2(5x-2)^2 + 3$ = 2(25-20x+4) + 3 $= 50x^2 - 40x + 11$ b) gof = (gof)(x) = g[f(x)]= 5[f(x)] - 2

 $= 5(2x^2 + 3) - 2$

=
$$10x^{2} + 13$$

c) fof = (fof)(x) = f[f(x)]
= $2[f(x)]^{2} + 3$
= $2(2x^{2} + 3)^{2} + 3$
= $2(4x^{2} + 12x^{2} + 9) + 3$
= $8x^{2} + 24x^{2} + 21$
d) gog = (gog)(x) = g[g(x)]
= $5[g(x)] - 2 = 5(5x-2)-2$
= $25x - 12$