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Fourier Methods

Fourier Series

In this chapter we are going to look in more detail at the implications of the principles of

superposition which we met at the beginning of the book when we added the two separate

solutions of the simple harmonic motion equation. Our discussion of monochromatic

waves has led to the idea of repetitive behaviour in a simple form. Now we consider more

complicated forms of repetition which arise from superposition.

Any function which repeats itself regularly over a given interval of space or time is

called a periodic function. This may be expressed by writing it as f ðxÞ ¼ f ðx� �Þ where �
is the interval or period.

The simplest examples of a periodic function are sines and cosines of fixed frequency

and wavelength, where � represents the period � , the wavelength � or the phase angle

2� rad, according to the form of x. Most periodic functions for example the square wave

system of Figure 10.1, although quite simple to visualize are more complicated to represent

mathematically. Fortunately this can be done for almost all periodic functions of interest in

physics using the method of Fourier Series, which states that any periodic function may be

represented by the series

f ðxÞ ¼ 1
2
a0 þ a1 cos xþ a2 cos 2x . . .þ an cos nx

þ b1 sin xþ b2 sin 2x . . .þ bn sin nx;
ð10:1Þ

that is, a constant 1
2
a0 plus sine and cosine terms of different amplitudes, having

frequencies which increase in discrete steps. Such a series must of course, satisfy certain

conditions, chiefly those of convergence. These convergence criteria are met for a function

with discontinuities which are not too severe and with first and second differential

coefficients which are well behaved. At such discontinuities, for instance in the square

wave where f ðxÞ ¼ �h at x ¼ 0;�2�, etc. the series represents the mean of the values of

the function just to the left and just to the right of the discontinuity.
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We may write the series in several equivalent forms:

f ðxÞ ¼ 1

2
a0 þ

X1
n¼1

ðan cos nxþ bn sin nxÞ

¼ 1

2
a0 þ

X1
n¼1

cn cos ðnx� �nÞ

where

c2n ¼ a2
n þ b2

n

and

tan �n ¼ bn=an

or

f ðxÞ ¼
X1
n¼�1

dn e
inx

where

2dn ¼ an � ibnðn� 0Þ
and

2dn ¼ a�n þ ib�nðn < 0Þ

To find the values of the coefficients an and bn let us multiply both sides of equation

(10.1) by cos nx and integrate with respect to x over the period 0 to 2� (say).

Every term

ð 2�

0

cosmx cos nx dx ¼ 0 if m 6¼ n

� if m ¼ n

�

whilst every term ð 2�

0

sinmx cos nx dx ¼ 0 for all m and n:

2 pp 4 p– p x0
h

4h (sin x + sin 3x +pf (x ) = 1
3

sin 5x +1
5

sin 7x . . . )1
7

Figure 10.1 Square wave of height h and its Fourier sine series representation (odd function)
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Thus for m ¼ n,

an

ð 2�

0

cos2 nx dx ¼ �an

so that

an ¼ 1

�

ð 2�

0

f ðxÞ cos nx dx

Similarly, by multiplying both sides of equation (10.1) by sin nx and integrating from 0

to 2� we have, since ð 2�

0

sinmx sin nx dx ¼ 0 if m 6¼ n

� if m ¼ n

�

that

bn ¼ 1

�

ð 2�

0

f ðxÞ sin nx dx

Immediately we see that the constant ðn ¼ 0Þ, given by 1
2
a0 ¼ 1=2�

Ð 2�

0
f ðxÞ dx, is just

the average of the function over the interval 2�. It is, therefore, the steady or ‘d.c.’ level on

which the alternating sine and cosine components of the series are superimposed, and the

constant can be varied by moving the function with respect to the x-axis. When a periodic

function is symmetric about the x-axis its average value, that is, its steady or d.c. base level,
1
2
a0, is zero, as in the square wave system of Figure 10.1. If we raise the square waves so

that they stand as pulses of height 2h on the x-axis, the value of 1
2
a0 is h� (average value

over 2�). The values of an represent twice the average value of the product f ðxÞ cos nx over
the interval 2�; bn can be interpreted in a similar way.

We see also that the series representation of the function is the sum of cosine terms

which are even functions ½cos x ¼ cos ð�xÞ� and of sine terms which are odd functions

½sin x ¼ �sin ð�xÞ�. Now every function f ðxÞ ¼ 1
2
½ f ðxÞ þ f ð�xÞ� þ 1

2
½ f ðxÞ � f ð�xÞ�, in

which the first bracket is even and the second bracket is odd. Thus, the cosine part of a

Fourier series represents the even part of the function and the sine terms represent the odd

part of the function. Taking the argument one stage further, a function f ðxÞ which is an even
function is represented by a Fourier series having only cosine terms; if f ðxÞ is odd it will

have only sine terms in its Fourier representation. Whether a function is completely even or

completely odd can often be determined by the position of the y-axis. Our square wave of

Figure 10.1 is an odd function ½ f ðxÞ ¼ �f ð�xÞ�; it has no constant and is represented by

f ðxÞ ¼ 4h=�ðsin xþ 1=3 sin 3x þ1=5 sin 5x, etc. but if we now move the y-axis a half

period to the right as in Figure 10.2, then f ðxÞ ¼ f ð�xÞ, an even function, and the square

wave is represented by

f ðxÞ ¼ 4h

�
ðcos x� 1

3
cos 3xþ 1

5
cos 5x� 1

7
cos 7xþ � � �Þ
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If we take the first three or four terms of the series representing the square wave of

Figure 10.1 and add them together, the result is Figure 10.3. The fundamental, or first

harmonic, has the frequency of the square wave and the higher frequencies build up the

squareness of the wave. The highest frequencies are responsible for the sharpness of the

vertical sides of the waves; this type of square wave is commonly used to test the frequency

response of amplifiers. An amplifier with a square wave input effectively ‘Fourier analyses’

the input and responds to the individual frequency components. It then puts them together

again at its output, and if a perfect square wave emerges from the amplifier it proves that

the amplifier can handle the whole range of the frequency components equally well. Loss

of sharpness at the edges of the waves shows that the amplifier response is limited at the

higher frequency range.

x

2

h

p
2
–p

2
3p

2
–3p

4h (cos x – cos 3x +pf (x ) = 1
3

cos 5x –1
5

cos 7x . . . )1
7

Figure 10.2 The wave of Figure 10.1 is now symmetric about the y axis and becomes a cosine series
(even function)

h

4h sin x

sin 3x

p

sin 5x

addition of first
three terms

Figure 10.3 Addition of the first three terms of the Fourier series for the square wave of Figure 10.1
shows that the higher frequencies are responsible for sharpening the edges of the pulse
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Example of Fourier Series

Consider the square wave of height h in Figure 10.1. The value of the function is given by

f ðxÞ ¼ h for 0 < x < �

and

f ðxÞ ¼ �h for � < x < 2�

The coefficients of the series representation are given by

an ¼ 1

�
h

ð �

0

cos nx dx� h

ð 2�

�

cos nx dx

� �
¼ 0

because

ð �

0

cos nx dx ¼
ð 2�

�

cos nx dx ¼ 0

and

bn ¼ 1

�
h

ð �

0

sin nx dx� h

ð 2�

�

sin nx dx

� �

¼ h

n�
½½cos nx�0� þ ½cos nx�2�� �

¼ h

n�
½ð1� cos n�Þ þ ð1� cos n�Þ�

giving bn ¼ 0 for n even and bn ¼ 4h=n� for n odd. Thus, the Fourier series representation

of the square wave is given by

f ðxÞ ¼ 4h

�
sin xþ sin 3x

3
þ sin 5x

5
þ sin 7x

7
þ � � �

� �

Fourier Series for any Interval

Although we have discussed the Fourier representation in terms of a periodic function its

application is much more fundamental, for any section or interval of a well behaved

function may be chosen and expressed in terms of a Fourier series. This series will

accurately represent the function only within the chosen interval. If applied outside that

interval it will not follow the function but will periodically repeat the value of the function

within the chosen interval. If we represent this interval by a Fourier cosine series the

repetition will be that of an even function, if the representation is a Fourier sine series an

odd function repetition will follow.
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Suppose now that we are interested in the behaviour of a function over only one-half of

its full interval and have no interest in its representation outside this restricted region. In

Figure 10.4a the function f ðxÞ is shown over its full space interval �l=2 to þl=2, but f ðxÞ
can be represented completely in the interval 0 to þl=2 by either a cosine function (which

will repeat itself each half-interval as an even function) or it can be represented completely

by a sine function, in which case it will repeat itself each half-interval as an odd function.

Neither representation will match f ðxÞ outside the region 0 to þl=2, but in the half-interval

0 to þl=2 we can write

f ðxÞ ¼ feðxÞ ¼ foðxÞ

where the subscripts e and o are the even (cosine) or odd (sine) Fourier representations,

respectively.

The arguments of sines and cosines must, of course, be phase angles, and so far the

variables x has been measured in radians. Now, however, the interval is specified as a

distance and the variable becomes 2�x=l, so that each time x changes by l the phase angle

changes by 2�.
Thus

f eðxÞ ¼ a0

2
þ
X1
n¼1

an cos
2�nx

l

(a)

(b)

0

f (x )

f e(x )

f 0(x )

0

0

(c)

2
–l

2
–l

2
–l

x

x

x

2
l

2
l

2
l

Figure 10.4 A Fourier series may represent a function over a selected half-interval. The general
function in (a) is represented in the half-interval 0 < x < l=2 by f e, an even function cosine series in
(b), and by f o, an odd function sine series in (c). These representations are valid only in the specified
half-interval. Their behaviour outside that half-interval is purely repetitive and departs from the
original function
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where

an ¼ 1
1
2
interval

ð l=2

�l=2

f ðxÞ cos 2�nx
l

dx

¼ 2

l

ð 0

�l=2

feðxÞ cos 2�nx
l

dxþ
ð l=2

0

feðxÞ cos 2�nx
l

dx

" #

¼ 4

l

ð l=2

0

f ðxÞ cos 2�nx
l

dx

because

f ðxÞ ¼ feðxÞ from x ¼ 0 to l=2

and

f ðxÞ ¼ f ð�xÞ ¼ feðxÞ from x ¼ 0 to � l=2

Similarly we can represent f ðxÞ by the sine series

f ðxÞ ¼ foðxÞ ¼
X1
n¼1

bn sin
2�nx

l

in the range x ¼ 0 to l=2 with

bn ¼ 1
1
2
interval

ð l=2

�l=2

f ðxÞ sin 2�nx

l
dx

¼ 2

l

ð 0

�l=2

foðxÞ sin 2�nx

l
dxþ

ð l=2

0

foðxÞ sin 2�nx

l
dx

" #

In the second integral foðxÞ ¼ f ðxÞ in the interval 0 to l=2 whilst

ð 0

�l=2

foðxÞ sin 2�nx

l
dx ¼

ð 0

l=2

foð�xÞsin 2�nx

l
dx ¼ �

ð 0

l=2

foðxÞ sin 2�nx

l
dx

¼
ð l=2

0

foðxÞ sin 2�nx

l
dx ¼

ð l=2

0

f ðxÞ sin 2�nx

l
dx

Hence

bn ¼ 4

l

ð l=2

0

f ðxÞ sin 2�nx

l
dx
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If we follow the behaviour of feðxÞ and foðxÞ outside the half-interval 0 to l=2 (Fig-

ure 10.4a, b) we see that they no longer represent f ðxÞ.

Application of Fourier Sine Series to a Triangular Function

Figure 10.5 shows a function which we are going to describe by a sine series in the half-

interval 0 to �. The function is

f ðxÞ ¼ x 0 < x <
�

2

� �
and

f ðxÞ ¼ �� x
�

2
< x < �

� �

Writing f ðxÞ ¼ P
bn sin nx gives

bn ¼ 2

�

ð �=2

0

x sin nx dxþ 2

�

ð �

�=2

ð�� xÞ sin nx dx

¼ 4

n2�
sin

n�

2

When n is even sin n�=2 ¼ 0, so that only terms with odd values of n are present and

f ðxÞ ¼ 4

�

sin x

12
� sin 3x

32
þ sin 5x

52
� sin 7x

72
þ � � �

� �

Note that at x ¼ �=2, f ðxÞ ¼ �=2, giving

�2

8
¼ 1

12
þ 1

32
þ 1

52
þ ¼

X1
n¼0

1

ð2nþ 1Þ2

We shall use this result a little later.

0

I

x

f (x )

p

f (x ) = x (0<x<     )
2
p

f (x ) = p –x (     < x< p )
2
p

2
p

2
–p–p

Figure 10.5 Function representing a plucked string and defined over a limited interval. When the
string vibrates all the permitted harmonics contribute to the initial configuration
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Note that the solid line in the interval 0 to �� in Figure 10.5 is the Fourier sine

representation for f ðxÞ repeated outside the interval 0 to � whilst the dotted line would

result if we had represented f ðxÞ in the interval 0 to � by an even cosine series.

(Problems 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9)

Application to the Energy in the Normal Modes of a Vibrating
String

If we take a string of length l with fixed ends and pluck its centre a distance d we have the

configuration of the half interval 0 to � of Figure 10.5 which we represented as a Fourier

sine series. Releasing the string will set up its normal mode or standing wave vibrations,

each of which we have shown on p. 126 to have the displacement

yn ¼ ðAn cos!nt þ Bn sin!ntÞ sin !nx

c
ð5:10Þ

where !n ¼ n�c=l is the normal mode frequency.

The total displacement, which represents the shape of the plucked string at t ¼ 0 is given

by summing the normal modes

y ¼
X

yn ¼
X

ðAn cos!nt þ Bn sin!ntÞ sin !nx

c

Note that this sum resembles a Fourier series where the fixed ends of the string, y ¼ 0 at

x ¼ 0 and x ¼ l allow only the sine terms in x in the series expansion. If the string remains

plucked at rest only the terms in x with appropriate coefficients are required to describe it,

but its vibrational motion after release has a time dependence which is expressed in each

harmonic coefficient as

An cos!nt þ Bn sin!nt

The significance of these coefficients emerges when we consider the initial or boundary

conditions in time.

Let us write the total displacement of the string at time t ¼ 0 as

y0ðxÞ ¼
X

ynðxÞ ¼
X

ðAn cos!nt þ Bn sin!ntÞ sin !nx

c

¼
X

An sin
!nx

c
at t ¼ 0

Similarly we write the velocity of the string at time t ¼ 0 as

v 0ðxÞ ¼ @

@t
y0ðxÞ ¼

X
_yynðxÞ

¼
X

ð�!nAn sin!nt þ !nBn cos!ntÞ sin !nx

c

¼
X

!nBn sin
!nx

c
at t ¼ 0

Both y0ðxÞ and v 0ðxÞ are thus expressed as Fourier sine series, but if the string is at rest at

t ¼ 0, then v 0ðxÞ ¼ 0 and all the Bn coefficients are zero, leaving only the An’s. If the
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displacement of the string y0ðxÞ ¼ 0 at time t ¼ 0 whilst the string is moving, then all the

An’s are zero and the Fourier coefficients are the !nBn’s.

We can solve for both An and !nBn in the usual way for if

y0ðxÞ ¼
X

An sin
!nx

c

and

v 0ðxÞ ¼
X

!nBn sin
!nx

c

for a string of length l then

An ¼ 2

l

ð l

0

y0ðxÞ sin !nx

c
dx

and

!nBn ¼ 2

l

ð l

0

v 0ðxÞ sin !nx

c
dx

If the plucked string of mass m (linear density �) is released from rest at

t ¼ 0 ðv 0ðxÞ ¼ 0Þ the energy in each of its normal modes of vibration, given on p. 134 as

En ¼ 1
4
m!2

nðA2
n þ B2

nÞ
is simply

En ¼ 1
4
m!2

nA
2
n

because all Bn’s are zero.

The total vibrational energy of the released string will be the sum
P

En over all the

modes present in the vibration.

Let us now solve the problem of the plucked string released from rest. The configuration

of Figure 10.5 (string length l, centre plucked a distance d) is given by

y0ðxÞ ¼ 2dx

l
0� x� l

2

¼ 2dðl� xÞ
l

l

2
� x� l

so

An ¼ 2

l

ð l=2

0

2dx

l
sin

!nx

c
dxþ

ð l

l=2

2dðl� xÞ
l

sin
!nx

c
dx

" #

¼ 8d

n2�2
sin

n�

2
for !n ¼ n�c

l

� �

We see at once that An ¼ 0 for n even (when the sine term is zero) so that all even

harmonic modes are missing. The physical explanation for this is that the even harmonics

would require a node at the centre of the string which is always moving after release.
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The displacement of our plucked string is therefore given by the addition of all the

permitted (odd) modes as

y0ðxÞ ¼
X
n odd

ynðxÞ ¼
X
n odd

An sin
!nx

c

where

An ¼ 8d

n2�2
sin

n�

2

The energy of the nth mode of oscillation is

En ¼ 1

4
m!2

nA
2
n ¼

64d 2m!2
n

4ðn2�2Þ2

and the total vibrational energy of the string is given by

E ¼
X
n odd

En ¼ 16d 2m

�4

X
n odd

!2
n

n4
¼ 16d 2c2m

�2l2

X
n odd

1

n2

for

!n ¼ n�c

l

But we saw in the last section that

X
n odd

1

n2
¼ �2

8

so

E ¼
X

En ¼ 2mc2d 2

l2
¼ 2Td 2

l

where T ¼ �c2 is the constant tension in the string.

This vibrational energy, in the absence of dissipation, must be equal to the potential

energy of the plucked string before release and the reader should prove this by calculating

the work done in plucking the centre of the string a small distance d, where d � l.

To summarize, our plucked string can be represented as a sine series of Fourier

components, each giving an allowed normal mode of vibration when it is released. The

concept of normal modes allows the energies of each mode to be added to give the total

energy of vibration which must equal the potential energy of the plucked string before

release. The energy of the nth mode is proportional to n�2 and therefore decreases with

increasing frequency. Even modes are forbidden by the initial boundary conditions.
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The boundary conditions determine which modes are allowed. If the string were struck

by a hammer those harmonics having a node at the point of impact would be absent, as in

the case of the plucked string. Pianos are commonly designed with the hammer striking a

point one seventh of the way along the string, thus eliminating the seventh harmonic which

combines to produce discordant effects.

Fourier Series Analysis of a Rectangular Velocity Pulse on a
String

Let us now consider a problem similar to that of the last section except that now the

displacement y0ðxÞ of the string is zero at time t ¼ 0 whilst the velocity v 0ðxÞ is non-zero.
A string of length l, fixed at both ends, is struck by a mallet of width a about its centre

point. At the moment of impact the displacement

y0ðxÞ ¼ 0

but the velocity

v 0ðxÞ ¼ @y0ðxÞ
@t

¼ 0 for x� l

2

����
����� a

2

¼ v for x� l

2

����
���� < a

2

This situation is shown in Figure 10.6.

The Fourier series is given by

v 0ðxÞ ¼
X
n

_yyn ¼
X
n

!nBn sin
!nx

c

where

!nBn ¼ 2

l

ð l=2þa=2

þl=2�a=2

v sin
!nx

c
dx

¼ 4v

n�
sin

n�

2
sin

n�a

2l

V

a

l

x

Figure 10.6 Velocity distribution at time t ¼ 0 of a string length l, fixed at both ends and struck
about its centre point by a mallet of width a. Displacement y0ðxÞ ¼ 0; velocity v 0ðxÞ ¼ v for
jx � l=2j < a=2 and zero outside this region
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Again we see that !nBn ¼ 0 for n even ðsin n�=2 ¼ 0Þ because the centre point of the

string is never stationary, as is required in an even harmonic.

Thus

v 0ðxÞ ¼
X
n odd

4v

n�
sin

n�a

2l
sin

!nx

c

The energy per mode of oscillation

En ¼ 1
4
m!2

nðA2
n þ B2

nÞ
¼ 1

4
m!2

nB
2
n ðAll An’s ¼ 0Þ

¼ 1
4
m
16v 2

n2�2
sin2

n�a

2l

¼ 4mv 2

n2�2
sin2 n�a

2l

Now

n ¼ !n

!1

¼ !nl

�c

for the fundamental frequency

!1 ¼ �c

l

So

En ¼ 4mv 2c2

l2!2
n

sin2 !na

2c

Again we see, since !n / n that the energy of the nth mode / n�2 and decreases with

increasing harmonic frequency. We may show this by rewriting

Enð!Þ ¼ mv 2a2

l2
sin2ð!na=2cÞ
ð!na=2cÞ2

¼ mv 2a2

l2
sin2�

�2

where

� ¼ !na=2c

and plotting this expression as an energy-frequency spectrum in Figure 10.7.
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The familiar curve of sin2�=�2 again appears as the envelope of the energy values for

each !n.

If the energy at !1 is E1 then E3 ¼ E1=9 and E5 ¼ E1=25 so the major portion of the

energy in the velocity pulse is to be found in the low frequencies. The first zero of the

envelope sin2�=�2 occurs when

� ¼ !a

2c
¼ �

so the width of the central frequency pulse containing most of the energy is given by

! � 2�c

a

This range of energy-bearing harmonics is known as the ‘spectral width’ of the pulse

written

�! � 2�c

a

The ‘spatial width’ a of the pulse may be written as �x so we have

�x�! � 2�c

w1 w3 w5 w7

wn

En(w)

E1

E1
9 E1

25 E1
49

(a)

w = 2p C
a

Figure 10.7 (a) Distribution of the energy in the harmonics !n of the string of Figure 10.6. The
spectrum Enð!Þ / sin2�=�2 where � ¼ !na=2c. Most of the energy in the string is contained in the
frequency range �! � 2�c=a, and for a ¼ �x (the spatial width of the pulse), �x=c ¼ �t and
�!� t � 2� (Bandwidth Theorem). Note that the values of Enð!Þ for !3; !5; !7, etc. are magnified
for clarity. (b) The true shape of the pulse

wn

En(w)

(b)
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Reducing the width �x of the mallet will increase the range of frequencies �! required

to take up the energy in the rectangular velocity pulse. Now c is the velocity of waves on

the string so a wave travels a distance �x along the string in a time

�t ¼ �x=c

which defines the duration of the pulse giving

�!�t � 2�

or

���t � 1

the Bandwidth Theorem we first met on p. 134.

Note that the harmonics have frequencies

!n ¼ n�c

l

so �c=l is the harmonic interval. When the length l of the string becomes very long and

l ! 1 so that the pulse is isolated and non-periodic, the harmonic interval becomes so

small that it becomes differential and the Fourier series summation becomes the Fourier

Integral discussed on p. 283.

The Spectrum of a Fourier Series

The Fourier series can always be represented as a frequency spectrum. In Figure 10.8 a the

relative amplitudes of the frequency components of the square wave of Figure 10.1 are

plotted, each sine term giving a single spectral line. In a similar manner, the distribution of

energy with frequency may be displayed for the plucked string of the earlier section. The

frequency of the r th mode of vibration is given by ! r ¼ r�c=l, and the energy in each

mode varies inversely with r 2, where r is odd. The spectrum of energy distribution is

therefore given by Figure 10.8 b.

Suppose now that the length of this string is halved but that the total energy remains

constant. The frequency of the fundamental is now increased to ! 0
r ¼ 2r�c=l and

the frequency interval between consecutive spectral lines is doubled (Figure 10.8 c). Again,

the smaller the region in which a given amount of energy is concentrated the wider the

frequency spectrum required to represent it.

Frequently, as in the next section, a Fourier series is expressed in its complex or

exponential form

f ðtÞ ¼
X1
n¼�1

dn e
in!t
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4h (sin x + sin 3x +pf (x ) =

4h
p

1
3

sin 5x +1
5

sin 7x )1
7

Frequency
spectrum

h

l

x 5x 7x

0
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Figure 10.8 (a) Fourier sine series of a square wave represented as a frequency spectrum; (b)
energy spectrum of a plucked string of length l; and (c) the energy spectrum of a plucked string of
length l=2 with the same total energy as (b), demonstrating the Bandwidth Theorem that the greater
the concentration of the energy in space or time the wider its frequency spectrum. Complex
exponential frequency spectrum of (d) cos!t and (e) sin!t
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where 2dn ¼ an � ibnðn� 0Þ and 2dn ¼ a�n þ ib�nðn < 0Þ.
Because

cos n!t ¼ 1
2
ðein!t þ e�in!tÞ

and

sin n!t ¼ 1

2i
ðe in!t � e�in!tÞ

a frequency spectrum in the complex plane produces two spectral lines for each frequency

component n!, one at þn! and the other at �n!. Figure 10.8 d shows the cosine

representation, which lies wholly in the real plane, and Figure 10.8 e shows the sine

representation, which is wholly imaginary. The amplitudes of the lines in the positive and

negative frequency ranges are, of course, complex conjugates, and the modulus of their

product gives the square of the true amplitude. The concept of a negative frequency is seen

to arise because the e�in!t term increases its phase in the opposite sense to that of the

positive term ein!t. The negative amplitude of the negative frequency in the sine repre-

sentation indicates that it is in antiphase with respect to that of the positive term.

Fourier Integral

At the beginning of this chapter we saw that one Fourier representation of the function

could be written

f ðxÞ ¼
X1
n¼�1

dn e
inx

where 2dn ¼ an � ibnðn� 0Þ and 2dn ¼ a�n þ ib�nðn < 0Þ.
If we use the time as a variable we may rewrite this as

f ðtÞ ¼
X1
n¼�1

dn e
in!t

where, if T is the period,

dn ¼ 1

T

ð T=2

�T=2

f ðtÞ e�in!t d t

(for n ¼ �2;�1; 0; 1; 2, etc.).
If we write ! ¼ 2��1, where �1 is the fundamental frequency, we can write

f ðtÞ ¼
X1
n¼�1

ð T=2

�T=2

f ðt 0Þ e�i2�n� 1t
0
d t 0

" #
e i2�n� 1t � 1

T
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If we now let the period T approach infinity we are isolating a single pulse by saying that

it will not be repeated for an infinite period; the frequency �1 ¼ 1=T ! 0, and 1=T
becomes infinitesimal and may be written d�.
Furthermore, n times �1, when n becomes as large as we please and 1=T ¼ �1 ! 0, may

be written as n�1 ¼ �, and the sum over n now becomes an integral, since unit change in n

produces an infinitesimal change in n=T ¼ n�1.

Hence, for an infinite period, that is for a single non-periodic pulse, we may write

f ðtÞ ¼
ð1

�1

ð1

�1
f ðt 0Þ e�i2��t 0 d t 0

� �
ei2��t d�

which is called the Fourier Integral.

We may express this as

f ðtÞ ¼
ð1

�1
Fð�Þ ei2��t d�

where

Fð�Þ ¼
ð1

�1
f ðt 0Þ e�i2��t 0 d t 0

is called the Fourier Transform of f ðtÞ. We shall discuss the transform in more detail in a

later section of this chapter.

We see that when the period is finite and f ðtÞ is periodic, the expression

f ðtÞ ¼
X1

n¼�1
dn e

in!t

tells us that the representation is in terms of an infinite number of different frequencies,

each frequency separated by a finite amount from its nearest neighbour, but when f ðtÞ is not
periodic and has an infinite period then

f ðtÞ ¼
ð1

�1
Fð�Þ ei2��t d�

and this expression is the integral (not the sum) of an infinite number of frequency

components of amplitude Fð�Þ d� infinitely close together, since � varies continuously

instead of in discrete steps.

For a periodic function the amplitude of the Fourier series coefficient

dn ¼ 1

T

ð T=2

�T=2

f ðtÞ e�in!t d t
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whereas the corresponding amplitude in the Fourier integral is

Fð�Þ d� ¼ 1

T

� � ð1

�1
f ðt 0Þ e�in!t 0 d t 0

This corroborates the statement we made when discussing the frequency spectrum that

the narrower or less extended the pulse the wider the range of frequency components

required to represent it. A truly monochromatic wave of one frequency and wavelength (or

wave number) requires a wave train of infinite length before it is properly defined.

No wave train of finite length can be defined in terms of one unique wavelength.

Since a monochromatic wave, infinitely long, of single frequency and constant amplitude

transmits no information, its amplitude must be modified by adding other frequencies (as

we have seen in Chapter 5) before the variation in amplitude can convey information.

These ideas are expressed in terms of the Bandwidth Theorem.

Fourier Transforms

We have just seen that the Fourier integral representing a non-periodic wave group can be

written

f ðtÞ ¼
ð1

�1
Fð�Þ ei2��t d�

where its Fourier transform

Fð�Þ ¼
ð1

�1
f ðt 0Þ e�i2��t 0 d t 0

so that integration with respect to one variable produces a function of the other. Both

variables appear as a product in the index of an exponential, and this product must be non-

dimensional. Any pair of variables which satisfy this criterion forms a Fourier pair of

transforms, since from the symmetry of the expressions we see immediately that if

Fð�Þ is the Fourier transform of f ðtÞ
then

f ð��Þ is the Fourier transform of FðtÞ
If we are given the distribution in time of a function we can immediately express it as a

spectrum of frequency, and vice versa. In the same way, a given distribution in space can be

expressed as a function of wave numbers (this merely involves a factor, 1=2�, in front of

the transform because k ¼ 2�=�).
A similar factor appears if ! is used instead of �. If the function of f ðtÞ is even only the

cosine of the exponential is operative, and we have a Fourier cosine transform

f ðtÞ ¼
ð1

0

Fð�Þ cos 2��t d�
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and

Fð�Þ ¼
ð1

0

f ðtÞ cos 2��t d t

If f ðtÞ is odd only the sine terms operate, and sine terms replace the cosines above. Note

that only positive frequencies appear. The Fourier transform of an even function is real and

even, whilst that of an odd function is imaginary and odd.

Examples of Fourier Transforms

The two examples of Fourier transforms chosen to illustrate the method are of great

physical significance. They are

1. The ‘slit’ function of Figure 10.9a,

2. The Gaussian function of Figure 10.11.

As shown, they are both even functions and their transforms are therefore real; the physical

significance of this is that all the frequency components have the same phase at zero time.

The Slit Function

This is a function having height h over the time range �d=2. Thus, f ðtÞ ¼ h for jtj < d=2
and zero for jtj > d=2, so that

Fð�Þ ¼
ð1

�1
f ðtÞ e�i2��t d t ¼

ð d=2

�d=2

h e�i2��t d t

¼ �h

i2��
½e�i2��d=2 � eþi2��d=2� ¼ hd

sin�

�

(a)

timet = 0

(b)

h hd

d
n1 = 1

d

n

n2 = 2
d

Figure 10.9 (a) Narrow slit function of extent d in time and of height h, and (b) its Fourier
transform

286 Fourier Methods



where

� ¼ 2��d

2

Again we see the Fourier transformation of a rectangular pulse in time to a sin�=� pattern

in frequency. The Fourier transform of the same pulse in space will give the same

distribution as a function of wavelength. Figure 10.9b shows that as the pulse width

decreases in time the separation between the zeros of the transform is increased. The

negative values in the spectrum of the transform indicate a phase reversal for the amplitude

of the corresponding frequency component.

The Fourier Transform Applied to Optical Diffraction from a
Single Slit

This topic belongs more properly to the next chapter where it will be treated by another

method, but here we derive the fundamental result as an example of the Fourier Transform.

The elegance of this method is seen in problems more complicated than the one-

dimensional example considered here. We shall see its extension to two dimensions in

Chapter 12 when we consider the diffraction patterns produced by rectangular and circular

apertures.

The amplitude of light passing through a single slit may be represented in space by the

rectangular pulse of Figure 10.9a where d is now the width of the slit. A plane wave of

monochromatic light, wavelength �, falling normally on a screen which contains the

narrow slit of width d 	 �, forms a secondary system of plane waves diffracted in all

directions with respect to the screen. When these diffracted waves are focused on to a

second screen the intensity distribution (square of the amplitude) may be determined in

terms of the aperture dimension d, the wavelength � and the angle of diffraction �.
In Figure 10.10 the light diffracted through an angle � is brought to focus at a point P on

the screen PP0. Finding the amplitude of the light at P is the simple problem of adding all

the small contributions in the diffracted wavefront taking account of all the phase

differences which arise with variation of path length from P to the points in the slit aperture

from which the contributions originate. The diffraction amplitude in k or wave number

space is the Fourier transform of the pulse, width d, in x space in Figure 10.9b. The

conjugate parameters � and t are exactly reciprocal but the product of x and k involves the term
2� which requires either a constant factor 1=2� in front of one of the transform integrals or

a common factor 1=
ffiffiffiffiffiffi
2�

p
in front of each. This factor is however absorbed into the constant

value of the maximum intensity and all other intensities are measured relative to it.

The constant pulse height now measures the amplitude h of the small wave sources

across the slit width d and the Fourier transform method is the addition by integration of

their contributions.

In Figure 10.10 we see that the path difference between the contribution at the centre of

the slit and that at a point x in the slit is given by x sin �, so that the phase difference is

� ¼ 2�

�
x sin � ¼ kx sin �
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The product kx sin � can, however be expressed in a form more suitable for extension to

two- and three-dimensional examples by writing it as k � x ¼ k lx, the scalar product of the

vector k, giving the wave propagation direction, and the vector x, l being the direction

cosine

l ¼ cos ð�=2� �Þ
¼ sin �

of k with respect to the x-axis.

Adding all the small contributions across the slit to obtain the amplitude at P by the

Fourier transform method gives

FðkÞ ¼ 1

2�

ð
f ðxÞ e�i� dx

¼ 1

2�

ðþd=2

�d=2

h e�iklx dx

¼ h

�ikl

1

2�
ðe�ikld=2 � eþikld=2Þ

¼ �2ih

�ikl2�
sin

kld

2

¼ dh

2�

sin�

�

Source of
monochromatic
light

Condenser
lens

Slit of
width d Focusing

lens

d sinq

qd x
k

Plane of
diffraction
pattern

P

P0

Figure 10.10 A monochromatic plane wave normally incident on a narrow slit of width d is
diffracted an angle �, and the light in this direction is focused at a point P. The amplitude at P is the
superposition of all contributions with their appropriate phases with respect to the central point in
the slit. The contribution from a point x in the slit has phase � ¼ 2�x sin �=� with respect to the
central contribution. The phase difference from contributing points on opposite edges of the slit is
� ¼ 2�d sin �=� ¼ 2�
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where

� ¼ kld

2
¼ �

�
d sin �

The intensity I at P is given by the square of the amplitude; that is, by the product of FðkÞ
and its complex conjugate F 
ðkÞ, so that

I ¼ d 2h2

4�2

sin2�

�2

where I0, the principal maximum intensity at � ¼ 0, (P0 in Figure 10.10) is now

I0 ¼ d 2h2

4�2

The Gaussian Curve

This curve often appears as the wave group description of a particle in wave mechanics.

The Fourier transform of a Guassian distribution is another Gaussian distribution.

In Figure 10.11a the Gaussian function of height h is symmetrically centred at

time t ¼ 0, and is given by f ðtÞ ¼ h e�t2=	2, where the width parameter or standard

deviation 	 is that value of t at which the height of the curve has a value equal to e�1 of its

maximum.

Its transform is

Fð�Þ ¼
ð1

�1
h e�t =	 2

e�i2��t d t

¼
ð1

�1
h e ð�t=	 2�i2��tþ� 2� 2	 2Þ e�� 2� 2	 2

d t

¼ h e ð�� 2� 2	 2Þ
ð1

�1
e�ðt=	þi��	Þ 2 d t

(a)

0 0t n

(b)

h

h

s

e

h s p
1
2

s p
1

Figure 10.11 (a) A Gaussian function Fourier transforms (b) into another Gaussian function
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The integral ð1

�1
e�x 2

dx ¼ ffiffiffi
�

p

and substituting, with x ¼ ðt=	þ i��	Þ and d t ¼ 	 dx, gives

Fð�Þ ¼ h	�1=2e��2�2	2

another Gaussian distribution in frequency space (Figure 10.11b) with a new height h	�1=2

and a new width parameter ð	�Þ�1
.

As in the case of the slit and the diffraction pattern, we see again that a narrow pulse in

time (width 	) leads to a wide frequency distribution [width ð	�Þ�1
].

When the curve is normalized so that the area under it is unity, h takes the value ð	�Þ1=2
because

1

ð	�1=2Þ
ð1

�1
e�t 2=	 2

d t ¼ 1

Thus, the height of a normalized curve transforms into a pulse of unit height whereas a

pulse of unit height transforms to a pulse of width ð	�Þ�1
.

If we consider a family of functions with progressively increasing h values and decreasing 	
values, each satisfying the condition of unit area under their curves, we are led in the limit as the

height h ! 1 and the width 	 ! 0 to an infinitely narrow pulse of finite area unity which

defines the Dirac delta ð
Þ function. The transform of such a function is the constant unity, and

Figures. 10.12a and b show the family of normalized Gaussian distributions and their transforms.

Figure 10.13 shows a number of common Fourier transform pairs.

1

2

3

4

234

(a)

(b)

δ function

δ function (1)

t

n

Figure 10.12 (a) A family of normalized Gaussian functions narrowed in the limit to Dirac’s delta
function; (b) the family of their Fourier transforms
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In wave mechanics the position x of a particle and its momentum px are conjugate

parameters and its Gaussian wave group representation may be Fourier transformed from x

to px space and vice versa. The Fourier Transform gives the amplitude of the wave function

but the probability of finding the particle at x or its having a given momentum px is

proportional to the square of the amplitude.
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Figure 10.13 Some common Fourier transform pairs
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The Dirac Delta Function, its Sifting Property and its Fourier
Transform

The Dirac 
 function is defined by


ðxÞ ¼ 0 at x 6¼ 0

¼ 1 at x ¼ 0

and ð1
�1


ðxÞdx ¼ 1

i.e., an infinitely narrow pulse centred on x ¼ 0. It is also known as the unit impulse

function.

A valuable characteristic is its sifting property, that isð1
�1


ðx� x0Þf ðxÞdx ¼ f ðx0Þ

The Fourier Transform of 
ðx� x0Þ ¼ e�ikx0 because by definition

Fð
ðx� x0ÞÞ ¼
ð1
�1


ðx� x0Þe�ikxdx

so writing f ðxÞ ¼ e�ikx and applying the sifting property gives f ðx0Þ ¼ e�ikx0 . Note that

e�ikx0 ¼ eikx0 ¼ 1 for x0 ¼ 0.

From the form of the transform we see that if a function f ðxÞ is a sum of individual

functions then the Fourier Transform Fð f ðxÞÞ is the sum of their individual transforms.

Thus, if

f ðxÞ ¼
X
j


ðx� xjÞ

then

Ff ðxÞ ¼
X
j

e�ikxj

Figure 10.14 shows two Dirac 
 functions situated at x ¼ � a
2

so that f ðxÞ ¼

ðx� a

2
Þ þ 
ðxþ a

2
Þ giving Fð f ðxÞÞ ¼ e

ika
2 þ e

�ika
2 ¼ 2 cos ka=2.

Convolution

Given two functions f ðxÞ and hðxÞ, their convolution, written

f ðxÞ � hðxÞ ¼
ð1
�1

f ðxÞhðxÞdx
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is the overlap area under the product of the two functions as one function scans across the

other. It the functions are two dimensional, f ðx; yÞ and hðx; yÞ, their convolution is the

volume overlap under their product.

To illustrate a one-dimensional convolution consider the rectangular pulse of length D in

Figure 10.15 convolved with an identical pulse. This is known as self-convolution. The

convolution will be the sum of the shaded areas such as that of Figure 10.15a as one pulse

slides over the other. We can see that the base length of the resulting convolved pulse will

be 2D and that it will be symmetric about its peak, that is, when the two pulses completely

overlap. If we consider the left-hand pulse as an infinite series of 
 functions, of which we

show a few, then Figure 10.15b shows that the integrated sum is an isosceles triangle of

base length 2D.

Another example is the convolution of a small triangular pulse with a rectangular pulse

length D, Figure 10.16. Again, we use the series of d functions to show the sum of the

components of the resulting convolution and its integrated form for an infinite series of d
functions. The length of the final pulse is again the sum of the lengths of the two pulses.

Such a pulse would result in the convolution of a rectangular pulse with an exponential

time function, for example, when a rectangular pulse is passed into an integrating network

formed by a series resistance and parallel condenser, Figure 10.17. Here, the exponential

time function of the network may be considered as fixed in time while the pulse performs

the scanning operation. Note in Figures 10.15, 10.16 and 10.17 that the component

contributions of the left hand pulses are summed in reverse order. This is explained in the

discussion following eq. 10.2.

A convolution f ðxÞ � hðxÞ is generally written in the form

gðx0Þ ¼
ð1
�1

f ðxÞhðx0 � xÞdx ð10:2Þ

This a particularly relevant form when we consider the Optical Transfer Function on page

391. There, x is an object space coordinate and x0 is an image space coordinate so the

convolution relates image to object. If the function hðx0 � xÞ is a localized pulse in

the object space and x0 lies within it on the object axis x then the pulse hðx0 � xÞ is reversed

− a 0
2

+ a
2

x

Figure 10.14 The Fourier transform of two Dirac 
 functions located at x ¼ �a=2 is 2 cos ka=2
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in image space (axis x0) so that its trailing edge becomes its leading edge. Figure 10.18(a)

shows the pulse on the object axis and Figure 10.18(b) shows the reversed pulse on the

image axis.

The product f ðxÞ hðx0 � xÞ exists only where the functions overlap and in Fig-

ure 10.18(b) gðx01Þ is the superposition of all the individual overlapping contributions that

D

D

D

D

D

D D D

(a)

2D

2D

Convolution

Components

(b)

Figure 10.15 (a) A convolution is the integral of all overlapping areas as one function scans
another. A rectangular pulse length D scans an identical pulse and the overlap area is shaded at one
point of the scanning. (b) The scanning pulse is represented by several Dirac d (impulse) functions
and the component overlap areas are summed. When the number of impulse functions is large the
sum of the components is integrated to become the triangular pulse
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exist at x01. The contribution to gðx01Þ at x01 by x1 and dx at x1 is f ðx1Þhðx01 � x1Þdx where

f ðx1Þ is a number which magnifies the pulse of Figure 10.18(b) to become the pulse of

Figure 10.18(c). Each value of x in the overlap region makes a contribution to gðx01Þ; x
values beyond the overlap make no contribution. The contributions begin when the leading

edge of hðx0 � xÞ reaches x01 and they cease when its trailing edge passes x01.
Note that by changing the variable x00 ¼ x0 � x in Equation (10.2).

f � h ¼ h� f

This result is also evident when we consider the Convolution Theorem in the next section.

Convolution

Components

Figure 10.16 The convolution of a triangular with a rectangular pulse using the method of Figure
10.15

t = 0 t = 0t = t1 t = t1

Figure 10.17 The convolution of Figure 10.16 is the same as that of a rectangular electrical pulse
passing through an integrating circuit formed by a series resistance and a parallel condenser
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x1
x′

f(x1) h (x′–x1)

x1′

(c)

x1

h(x′–x1)

x′
x1′

(b)

x′
x

f(x)

h(x′–x)

(a)

Figure 10.18 The function hðx0 � xÞ in the object space is reversed in the image space in Figure
10.18(b). (b) The convolution gðx01Þ is the superposition of all individual overlapping contributions to
f ðxÞhðx0 � xÞ that exist at x01. (c) The contribution made by f ðx1Þd x to gðx01Þ where f ðx1Þ is a number
which magnifies hðx01 � xÞ
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Returning to the convolution of the rectangular pulses in Figure 10.15 and taking the

left-hand pulse as f ðxÞ each impulse xi of the infinite series sweeps across the right-hand

pulse hðx0 � xÞ to give the triangular convolution gðx0Þ. If the left-hand pulse is now

hðx0 � xÞ sweeping across the right-hand pulse f ðxÞ with x0i as a fixed location in hðx0 � xÞ,
the series of overlaps, as x0i moves across f ðxÞ, gives the same triangular convolution.

The Convolution Theorem

The importance of the convolution process may be seen by considering the following.

When a signal, electrical or optical, passes through a system such as an amplifier or a

lens, the resulting output is a function of the original signal and the system response. We

have seen that a slit, in passing light from an optical source, may act as an angular filter,

restricting the amount of information it passes and superimposing its own transform on the

radiation passing through. An electrical filter can behave in a similar fashion.

Effectively there are two transformations, one into the intermediate system and one out

again.

A convolution reduces this to a single transformation. The transform of the intermediate

system is applied to the orginal function or signal and the resulting output is the integrated

product of each point operating on the transformed response.

The convolution theorem states that the Fourier transform of the convolution of two

functions is the product of the Fourier transforms of the individual functions, that is, if

gðx0Þ ¼ f ðxÞ � hðxÞ
then

FðgÞ ¼ Fðf � hÞ ¼ Fð f Þ � FðhÞ
The proof is straightforward.

The convolution gðx0Þ is a function of k, so its transform is

FðgÞ ¼ GðkÞ ¼
ð1
�1

gðx0Þe�ihx0dx0

¼
ð1
�1

� ð1
�1

f ðxÞhðx0 � xÞdx
�
e�ikx0dx0

¼
ð1
�1

� ð1
�1

hðx0 � xÞe�ikx0dx0
�
f ðxÞdx

Putting x0 � x ¼ y gives dy ¼ dx0 and e�ikx0 ¼ e�ikye�ikx and so

FðgÞ ¼ GðkÞ ¼
ð1
�1

f ðxÞe�ikxdx

ð1
�1

hðyÞe�ikydy

¼ Fð f Þ � FðhÞ ¼ FðhÞ � Fð f Þ

We can use this result to find the Fourier Transform of the resulting triangular pulse in

Figure 10.15(b). The slit may be seen as a rectangular pulse of width d and its Fourier
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Transform on page 288 gave its diffraction pattern as / sin�=� where � ¼ kld=2. Each of

the pulses in Figure 10.15(b) contributes a Fourier Transform / sin�=� where

� ¼ klD

2

so the Fourier Transform of the isosceles triangular pulse is / sin2�=�2.

Note that the analysis above is equally true if the arguments of the two functions are

exchanged under the convolution process so that we have f ðx0 � xÞ and hðxÞ. We use this in

the discussion on the Optical Transfer Function on page 393.

(Problems 10.10, 10.11, 10.12, 10.13, 10.14, 10.15, 10.16, 10.17, 10.18, 10.19)

Problem 10.1
After inspection of the two wave forms in the diagram what can you say about the values of the

constant, absence or presence of sine terms, cosine terms, odd or even harmonics, and range of

harmonics required in their Fourier series representation? (Do not use any mathematics.)

T

T

t

2 T

2 T

– T–2 T

t

t

t

Problem 10.2
Show that if a periodic waveform is such that each half-cycle is identical except in sign with the

previous one, its Fourier spectrum contains no even order frequency components. Examine the result

physically.

Problem 10.3
A half-wave rectifier removes the negative half-cycles of a pure sinusoidal wave y ¼ h sin x. Show

that the Fourier series is given by

y ¼ h

�
1þ �

1 � 2 sin x� 2

1 � 3 cos 2x� 2

3 � 5 cos 4x� 2

5 � 7 cos 6x . . .

� �
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Problem 10.4
A full-wave rectifier merely inverts the negative half-cycle in Problem 10.3. Show that this doubles

the output and removes the undesirable modulating ripple of the first harmonic.

Problem 10.5
Show that f ðxÞ ¼ x2 may be represented in the interval �� by

f ðxÞ ¼ 2

3
� 2 þ

X
ð�1Þ n 4

n 2
cos nx

Problem 10.6
Use the square wave sine series of unit height f ðxÞ ¼ 4=�ðsin xþ 1

3
sin 3xþ 1

5
sin 5xÞ to show that

1� 1
3
þ 1

5
� 1

7
¼ �=4

Problem 10.7
An infinite train of pulses of unit height, with pulse duration 2� and a period between pulses of T, is

expressed as

f ðtÞ ¼ 0 for � 1
2
T < t < ��

¼ 1 for � � < t < �

¼ 0 for � < t < 1
2
T

and

f ðt þ TÞ ¼ f ðtÞ

Show that this is an even function with the cosine coefficients given by

an ¼ 2

n�
sin

2�

T
n�

Problem 10.8
Show, in Problem 10.7, that as � becomes very small the values of an ! 4�=T and are independent

of n, so that the spectrum consists of an infinite set of lines of constant height and spacing. The

representation now has the same form in both time and frequency; such a function is called ‘self

reciprocal’. What is the physical significance of the fact that as � ! 0, an ! 0?

Problem 10.9
The pulses of Problems 10.7 and 10.8 now have amplitude 1=2� with unit area under each pulse.

Show that as � ! 0 the infinite series of pulses is given by

f ðtÞ ¼ 1

T
þ 2

T

X1
n¼1

cos 2�nt=T

Under these conditions the amplitude of the original pulses becomes infinite, the energy per pulse
remains finite and for an infinity of pulses in the train the total energy in the waveform is also
infinite. The amplitude of the individual components in the frequency representation is finite,
representing finite energy, but again, an infinity of components gives an infinite energy.
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Problem 10.10
The unit step function is defined by the relation

f ðtÞ ¼ 1 ðt > 0Þ
¼ 0 ðt < 0Þ

t0

1

f (t )

This is a very important function in physics and engineering, but it does not satisfy the criteria for

Fourier representation because its integral is not finite. A similar function of finite period will satisfy

the criteria. If this function is defined

f ðtÞ ¼ 1ð0 < t < TÞ
¼ 0 elsewhere

show that if the transform

Fð!Þ ¼
ð1

�1
f ðtÞ e�i!t d t ¼

ð T

0

e�i!t d t

¼ 1

i!
½1� e i!T �

then

f ðtÞ ¼ 1

2�

ð1

�1
Fð!Þ e i!t d!

¼ 1

2
þ 1

2�

ð1

�1

1

i!
e i!t d!

(use the fact that for T very large

ð1

�1

1

i!
e i!ðt�TÞ d! ¼

ð1

�1

1

i!
e�i!T d! ¼ ��

Note that the integral for the second term of f ðtÞ gives �� for t < 0 and þ� for t > 0. This spectral

representation is shown in Figure 10.13.)

Problem 10.11
Optical wave trains emitted by radiating atoms are of finite length and only an infinite wave train

may be defined in terms of one frequency. The radiation from atoms therefore has a frequency

bandwidth which contributes to the spectral linewidth. The random phase relationships between

these wave trains create incoherence and produce the difficulties in obtaining interference effects

from separate sources.
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Let a finite length monochromatic wave train of wavelength �0 be represented by

f ðtÞ ¼ f0 e
i2�� 0 t

and be a cosine of constant amplitude f0 extending in time between � �=2. The distance l ¼ c� is

called the coherence length. This finite train is the superposition of frequency components of

amplitude Fð�Þ where the transform gives

f ðtÞ ¼
ð1

�1
Fð�Þ e i2��t d�

so that

Fð�Þ ¼
ð1

�1
f ðt 0Þ e�i2��t 0 d t 0

¼
ðþ�=2

��=2

f0 e
�i2�ð��� 0Þt 0 d t 0

Show that

Fð�Þ ¼ f0�
sin½�ð� � � 0Þ� �
�ð� � �0Þ�

and that the relative energy distribution in the spectrum follows the intensity distribution curve in a

single slit diffraction pattern.

Problem 10.12
Show that the total width of the first maximum of the energy spectrum of Problem 10.11 has a

frequency range 2�� which defines the coherence length l of Problem 10.11 as �2
0=��.

Problem 10.13
For a ruby beam the value of �� in Problem 10.12 is found to be 104 Hz and �0 ¼ 6:936� 10�7 m.

Show that �� ¼ 1:6� 10�17 m and that the coherence length l of the beam is 3� 104 m.

Problem 10.14
The energy of the finite wave train of the damped simple harmonic vibrations of the radiating atom

in Chapter 2 was described by E ¼ E0 e
�! 0t=Q. Show from physical arguments that this defines a

frequency bandwidth in this train of �! about the frequency !0, where the quality factor

Q ¼ ! 0=�!. (Suggested line of argument—at the maximum amplitude all frequency components

are in phase. After a time � the frequency component !0 has changed phase by !0�. Other

components have a phase change which interfere destructively. What bandwidth and phase change is

acceptable?)

Problem 10.15
Consider Problem 10.14 more formally. Let the damped wave be represented as a function of time by

f ðtÞ ¼ f 0 e
i2�� 0t e�t=�

where f 0 is constant and � is the decay constant.
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Use the Fourier transform to show that the amplitudes in the frequency spectrum are given by

Fð�Þ ¼ f 0

1=� þ i2�ð� � �0Þ

Write the denominator of Fð�Þ as r e i� to show that the energy distribution of frequencies in the
region of � � �0 is given by

jFð�Þj 2 ¼ f 20
r 2

¼ f 20

ð1=�Þ 2 þ ð!� !0Þ 2

Problem 10.16
Show that the expression jFð�Þj 2 of Problem 10.15 is the resonance power curve of Chapter 3; show

that it has a width at half the maximum value ð f0�Þ 2 which gives �� ¼ 1=�� , and show that a

spectral line which has a value of�� in Problem 10.12 equal to 3� 10�9 m has a finite wave train of

coherence length equal to 32� 10�6 m (32 mm) if �0 ¼ 5:46� 10�7 m.

Problem 10.17
Sketch the self-convolution of the double slit function shown in Figure Q 10.17.

d

Figure Q.10.17

Problem 10.18
Sketch the convolution of the two functions in Figure Q 10.18 and use the convolution theorem to

find its Fourier transform.

d d

×

Figure Q.10.18

302 Fourier Methods



Problem 10.19
The convolution of two identical circles of radius r is very important in the modern method of testing

lenses against an ideal diffraction limited criterion.

In Figure Q 10.19 show that the area of overlap is

R

r

r

θ
A

Figure Q.10.19

A ¼ r2ð2�� 2sin � cos �Þ
and show for

R � 2r

that the convolution

OðRÞ ¼ r2 2 cos �1 R

2r
� 2 1� R2

4r2

� �1
2 R

2r

" #

Sketch OðRÞ for O � R � 2r

Apart from a constant the linear operator ÔO is known as the modulation factor of the

optical transfer function.

Summary of Important Results
Fourier Series
Any function may be represented in the interval �� by

f ðxÞ ¼ 1

2
a0 þ

Xn

1

an cos nxþ
Xn

1

bn sin nx

The Convolution Theorem 303



where

an ¼ 1

�

ð 2�

0

f ðxÞ cos nx dx

and

bn ¼ 1

�

ð 2�

0

f ðxÞ sin nx dx

Fourier Integral
A single non-periodic pulse may be represented as

f ðtÞ ¼
ðþ1

�1

ðþ1

�1
f ðt 0Þ e�i2��t 0 d t 0

� �
ei2��t d�

or as

f ðtÞ ¼
ðþ1

�1
Fð�Þ e i2��t d�

where

Fð�Þ ¼
ðþ1

�1
f ðt 0Þ e�i2��t d t 0

f ðtÞ and Fð�Þ are Fourier Transforms of each other. When t is replaced by x and � by k the

right hand side of each transform has a factor 1=
ffiffiffiffiffiffi
2�

p
. The Fourier Transform of a

rectangular pulse has the shape of sin�=�. (Important in optical diffraction.)
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