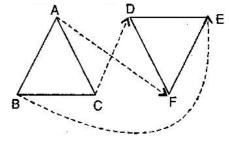
Class –VII Mathematics (Ex. 7.1) Questions

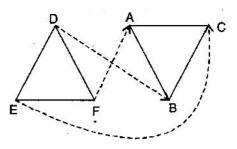
- 1. Complete the following statements:
 - (a) Two line segments are congruent if _____.
 - (b) Among two congruent angles, one has a measure of 70°, the measure of other angle is

(c) When we write $\angle A = \angle B$, we actually mean _____.

- 2. Give any two real time examples for congruent shapes.
- 3. If $\triangle ABC \cong \triangle FED$ under the correspondence ABC \leftrightarrow FED, write all the corresponding congruent parts of the triangles.
- 4. If $\Delta \text{DEF} \cong \Delta \text{BCA}$, write the part(s) of ΔBCA that correspond to:
 - (i) ∠E
 - (ii) $\overline{\rm EF}$
 - (iii) ∠F
 - (iv) $\overline{\rm DF}$

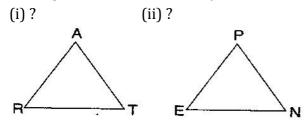
1. (a) they have the same length

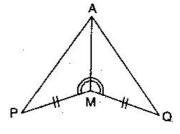

(b) 70°


- (c) $m \angle A = m \angle B$
- 2. (i) Two footballs

- (ii) Two teacher's tables
- 3. Given: $\triangle ABC \cong \triangle FED$.

The corresponding congruent parts of the triangles are:

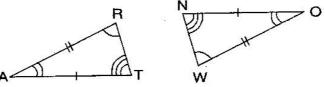

- (i) $\angle A \leftrightarrow \angle F$
- (ii) $\angle B \leftrightarrow \angle E$
- (iii) $\angle C \leftrightarrow \angle D$
- (iv) $\overline{AB} \leftrightarrow \overline{FE}$
- (v) $\overline{BC} \leftrightarrow \overline{ED}$
- (vi) $\overline{AC} \leftrightarrow \overline{FD}$
- 4. Given: $\Delta \text{ DEF} \cong \Delta \text{ BCA}$.
 - (i) $\angle E \leftrightarrow \angle C$
 - (ii) $\overline{\text{EF}} \leftrightarrow \overline{\text{CA}}$
 - (iii) $\angle F \leftrightarrow \angle A$
 - (iv) $\overline{\text{DF}} \leftrightarrow \overline{\text{BA}}$


- Which congruence criterion do you use in the following? 1. (a) Given: AC = DF, AB = DE, BC = EFSo $\Delta ABC \cong \Delta DEF$ D в Ε F С (b) Given: $RP = ZX, RQ = ZY, \angle PRQ = \angle XZY$ $\Delta PQR \cong \Delta XYZ$ So R O (c) Given: \angle MLN = \angle FGH, \angle NML = \angle HFG, ML = FG So $\Delta LMN \cong \Delta GFH$ $_{7}N$ н G M (d) Given: EB = BD, AE = CB, $\angle A = \angle C = 90^{\circ}$ So $\Delta ABE \cong \Delta CDB$ D E в
- 2. You want to show that Δ ART ≅ Δ PEN:
 (a) If you have to use SSS criterion, then you need to show:
 (i) AR = (ii) RT = (iii) AT =

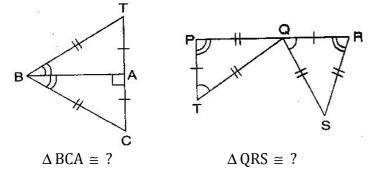
- (b) If it is given that $\angle T = \angle N$ and you are to use SAS criterion, you need to have: (i) RT = and (ii) PN =
- (c) If it is given that AT = PN and you are to use ASA criterion, you need to have:

3. You have to show that $\triangle AMP \cong \triangle AMQ$. In the following proof, supply the missing reasons:

Steps	Reasons		
(i) $PM = QM$	(i)		
(ii) $\angle PMA = \angle QMA$	(ii)		
(iii) AM = AM	(iii)		
(iv) $\Delta AMP \cong \Delta AMQ$	(iv)		

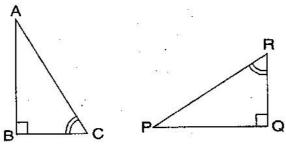


4. In \triangle ABC, \angle A = 30°, \angle B = 40° and \angle C = 110°.

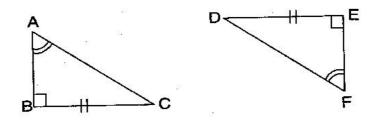

In \triangle PQR, \angle P = 30°, \angle Q = 40° and \angle R = 110°.

A student says that $\triangle ABC \cong \triangle PQR$ by AAA congruence criterion. Is he justified? Why or why not?

5. In the figure, the two triangles are congruent. The corresponding parts are marked. We can write $\Delta RAT \cong ?$



6. Complete the congruence statement:



- 7. In a squared sheet, draw two triangles of equal area such that:
 - (i) the triangles are congruent.
 - (ii) the triangles are not congruent.What can you say about their perimeters?

- 8. Draw a rough sketch of two triangles such that they have five pairs of congruent parts but still the triangles are not congruent.
- 9. If \triangle ABC and \triangle PQR are to be congruent, name one additional pair of corresponding parts. What criterion did you use?

10. Explain, why $\triangle ABC \cong \triangle FED$.

 (a) By SSS congruence criterion, since it is given that AC = DF, AB = DE, BC = EF The three sides of one triangle are equal to the three corresponding sides of another triangle.

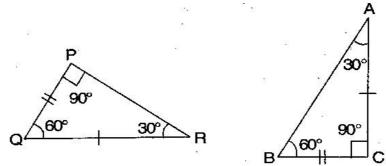
Therefore, $\Delta ABC \cong \Delta DEF$

(b) By SAS congruence criterion, since it is given that RP = ZX, RQ = ZY and $\angle PRQ = \angle XZY$ The two sides and one angle in one of the triangle are equal to the corresponding sides and the angle of other triangle.

Therefore, $\Delta PQR \cong \Delta XYZ$

(c) By ASA congruence criterion, since it is given that \angle MLN = \angle FGH, \angle NML = \angle HFG, ML = FG.

The two angles and one side in one of the triangle are equal to the corresponding angles and side of other triangle.


Therefore, $\Delta LMN \cong \Delta GFH$

- (d) By RHS congruence criterion, since it is given that EB = BD, AE = CB, $\angle A = \angle C = 90^{\circ}$ Hypotenuse and one side of a right angled triangle are respectively equal to the hypotenuse and one side of another right angled triangle. Therefore, $\triangle ABE \cong \triangle CDB$
- 2. (a) Using SSS criterion, $\triangle ART \cong \triangle PEN$ (i) AR = PE (ii) RT = EN (iii) AT = PN
- 3. Sol.

Steps	Reasons	
(i) $PM = QM$	(i) Given	
(ii) $\angle PMA = \angle QMA$	(ii) Given	
(iii) $AM = AM$	(iii) Common	
$(iv) \Delta AMP \cong \Delta AMQ$	(iv) SAS congruence rule	

- 4. No, because the two triangles with equal corresponding angles need not be congruent. In such a correspondence, one of them can be an enlarged copy of the other.
- 5. In the figure, given two triangles are congruent. So, the corresponding parts are: $A \leftrightarrow 0, R \leftrightarrow W, T \leftrightarrow N.$ We can write, $\Delta RAT \cong \Delta WON$ [By SAS congruence rule]

- 6. In \triangle BAT and \triangle BAC, given triangles are congruent so the corresponding parts are: $B \leftrightarrow B, A \leftrightarrow A, T \leftrightarrow C$ Thus, \triangle BCA $\cong \triangle$ BTA [By SSS congruence rule] In \triangle QRS and \triangle TPQ, given triangles are congruent so the corresponding parts are: $P \leftrightarrow R, T \leftrightarrow Q, Q \leftrightarrow S$ Thus, \triangle QRS $\cong \triangle$ TPQ [By SSS congruence rule]
- 7. In a squared sheet, draw \triangle ABC and \triangle PQR. When two triangles have equal areas and
 - (i) these triangles are congruent, i.e., $\triangle ABC \cong \triangle PQR$ [By SSS congruence rule] Then, their perimeters are same because length of sides of first triangle are equal to the length of sides of another triangle by SSS congruence rule.
 - (ii) But, if the triangles are not congruent, then their perimeters are not same because lengths of sides of first triangle are not equal to the length of corresponding sides of another triangle.
- 8. Let us draw two triangles PQR and ABC.

All angles are equal, two sides are equal except one side. Hence, Δ PQR are not congruent to Δ ABC.

9. \triangle ABC and \triangle PQR are congruent. Then one additional pair is $\overline{BC} = \overline{QR}$.

	Given:	∠B =	$\angle Q = 9$	90°		
		∠C =	∠R			
		$\overline{\mathrm{BC}}$ =	\overline{QR}			
	(iii)	Therefo	re,	$\Delta ABC \cong \Delta$	PQR	[By ASA congruence rule]
10.	10. Given: $\angle A = \angle F$, BC = ED, $\angle B = \angle E$					
	In \triangle ABC and \triangle FED,					
	$\angle B = \angle E = 90^{\circ}$					
	$\angle A = \angle F$					
	BC = ED					
	Theref	ore,	ΔABC	$\cong \Delta FED$		[By RHS congruence rule]