MATHEMATICS

DPP No. 58

Total Marks: 34

Max. Time: 32 min.

M.M., Min.

12]

8]

5]

8]

[12,

[10,

[4,

[8,

Topics: Function, Vector, Three Dimensional Geometry Type of Questions

Single choice Objective (no negative marking) Q.1 to 4 (3 marks, 3 min.) Multiple choice objective (no negative marking) Q.5, 6 (5 marks, 4 min.) Subjective Questions (no negative marking) Q.7 (4 marks, 5 min.) Match the Following (no negative marking) Q.8 (8 marks, 8 min.)

- The greatest value of the function $f(x) = 2.3^{3x} 3^{2x}$. 4 + 2.3x in the interval [-1, 1] is 1.
 - (A) 0
- (B) 8/27
- (C) 1
- (D) 24
- Let \vec{a} , \vec{b} , \vec{c} be three non-coplanar vectors such that volume of the parallelopiped formed by these 2. vectors is 1/4. Now, if any vector \vec{d} is represented as, $\vec{d} = \lambda \left(\vec{a} \times \vec{b} \right) + \mu \left(\vec{b} \times \vec{c} \right) + \nu \left(\vec{c} \times \vec{a} \right)$. Then $\lambda + \mu + \nu$ equals:

 - (A) $\vec{d} \cdot (\vec{a} + \vec{b} + \vec{c})$ (B) $\frac{2\vec{d}}{3} \cdot (\vec{a} + \vec{b} + \vec{c})$ (C) $8\vec{d} \cdot (\vec{a} + \vec{b} + \vec{c})$ (D) $4\vec{d} \cdot (\vec{a} + \vec{b} + \vec{c})$
- If \vec{a} , \vec{b} , \vec{c} , \vec{d} are non zero, non collinear vectors and if $((\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})) \cdot (\vec{a} \times \vec{d}) = 0$, then which of the 3. following is always true
 - (A) \vec{a} , \vec{b} , \vec{c} , \vec{d} are necessarily coplanar
- (B) either \vec{a} or \vec{d} must lie in the plane of \vec{b} and \vec{c}
- (C) either \vec{b} or \vec{c} must lie in plane of \vec{a} and \vec{d} (D) either \vec{a} or \vec{b} must lie in plane of \vec{c} and \vec{d}
- Let $\vec{r} = (\vec{a} \times \vec{b}) \sin x + (\vec{b} \times \vec{c}) \cos y + 2 (\vec{c} \times \vec{a})$ where $\vec{a} \vec{b} \vec{c}$ are three noncoplanar vectors. If \vec{r} is 4. perpendicular to $\vec{a} + \vec{b} + \vec{c}$, then minimum value of $x^2 + y^2$ is
 - (A) π^{2}
- (B) $\frac{\pi^2}{4}$ (C) $\frac{5\pi^2}{4}$
- (D) none of these
- If \vec{a} , \vec{b} , \vec{c} are non-zero non-coplanar vectors, then $\vec{r}_1 = 2\vec{a} 3\vec{b} + \vec{c}$, $\vec{r}_2 = 3\vec{a} 5\vec{b} + 2\vec{c}$, $\vec{r}_3 = 4\vec{a} 5\vec{b} + \vec{c}$ are 5.
 - (A) linearly independent

(B) linearly dependent

(C) $\vec{r}_3 = \alpha \vec{r}_1 - \beta \vec{r}_2$; $\alpha, \beta \in R$

(D) None of these

- Projection of line $\frac{x+1}{2} = \frac{y+1}{-1} = \frac{z+3}{4}$ on the plane x + 2y + z = 6; has equation 6.
 - (A) x + 2y + z 6 = 0 = 9x 2y 5z 8 (B) x + 2y + z + 6 = 0, 9x 2y + 5z = 4

(B)
$$x + 2y + z + 6 = 0$$
, $9x - 2y + 5z = 4$

(C)
$$\frac{x-1}{4} = \frac{y-3}{-7} = \frac{z+1}{10}$$

(D)
$$\frac{x+3}{4} = \frac{y-2}{7} = \frac{z-7}{-10}$$

- 7. Find the equation of the plane passing through the point (1, 1, -1) and perpendicular to the planes x + 2y + 3z - 7 = 0 and 2x - 3y + 4z = 0.
- 8. Match the column

Column - I Column - I

If \vec{a} , \vec{b} , \vec{c} are non coplanar unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$, $\frac{\pi}{3}$ (A) (p)

then the angle between \vec{a} and \vec{b} is

- Four vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ such that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{O}$. Let P_1 and P_2 be (B) (q) planes determined by the pairs of vectors \vec{a} , \vec{b} and \vec{c} , \vec{d} respectively, then the angle between P₁ and P₂ is
- If \vec{a} and \vec{b} are two unit vectors such that $\vec{a} + 2\vec{b}$ and $5\vec{a} 4\vec{b}$ are (C) (r) perpendicular to each other then the angle between \vec{a} and \vec{b} is
- If $\left|\vec{a}\right|=3$, $\left|\vec{b}\right|=5$, $\left|\vec{c}\right|=7$ and $\vec{a}+\vec{b}+\vec{c}=\vec{O}$. The angle between \vec{a} and \vec{b} is (D) (s) 0

Answers Key

1. D 2. D 3. C 4. C

5. BC **6.** AC **7.** 17x + 2y - 7z = 26.

8. $(A) \rightarrow q$; $(B) \rightarrow s$; $(C) \rightarrow p$; $(D) \rightarrow p$